Translate this page into:
Mining novel natural reactive oxygen species (ROS) inhibitors by targeting Rho Kinase for prevention of secondary spinal cord injury: An in-silico trial using traditional Chinese medicinal compounds
⁎Corresponding author at: Department of Orthopaedic Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No 528 of zhangheng road pudong new area, Shanghai 2010203, China. RonnyVaughanexo@yahoo.com (Shuqiang Wang)
-
Received: ,
Accepted: ,
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Abstract
Traditional Chinese Medicinal (TCM) compounds provide a plethora of natural chemiome for structure based novel drug discovery against unexplored targets of important diseases. One such disease is Secondary Spinal cord Injury (SSCI), a condition secondary to initial Spinal cord Injury (SCI) caused by a trauma. In SSCI oxidative stress and inflammation play a pivotal role in aggravating neural damage at the site of trauma. To look into it reactive oxygen species (ROS) inhibition is a good strategy. Our Study here focuses on finding novel ROS inhibitors from in-house TCM compound library using advanced structure based drug discovery methods. From Virtual screening, Molecular Docking, Molecular Dynamics Simulation and MM-PBSA calculations a single ROS inhibitor was proposed for targeting SSCI. Our study provides a platform for future structure based drug discoveries in the field of treating SCI by targeting SSCI pathways.
Keywords
Secondary spinal cord injury
Reactive oxygen species
Traditional Chinese medicine
Molecular docking
1 Introduction
Spinal cord injury (SCI) is an injury triggered event that is associated with permanent neurologic deficit. The deficit instigated by SCI leads to medical comorbidity, not only effecting sensory and motor capabilities, but also having impact on the physiological and economical condition of the patient (McDonald and Sadowsky, 2002). Edwin Smith papyrus, an Egyptian physician in 1700 BCE was the first one to document SCI as an “ailment not to be treated. Since then SCI has been recorded as one of the devastating conditions where most of the cases are exanimate before any patient care is given. The surviving SCI cases remain morbid and are more prone to mortality,in USA alone 10–40 people in a million in a year are effected by SCI. The total number of cases estimated in USA as reported in 2016 are at staggering 282,000, to which every year 11,000 new cases are added. Billions of dollars in USA alone are spend on this disease, making it one of the economically devastating diseases. (White and Black, 2016).
SCI is categorized into primary spinal cord injury(pSCI)and secondary spinal cord injury(sSCI), pSCI is defined as the injury inflicted at the time of trauma and sSCI is defined by the injury causedby the body’s response to initial trauma (Cadotte and Fehlings, 2011). The consequences of the SCI are defined by the extent of secondary damage, which is initiated by a cascade of molecular cellular events triggered by pSCI. The pSCI triggers glutamatergic excitotoxicity, free radical damage, cytokine production and inflammation, all of them effecting the survival of neurons and glial cells, thus setting a base for onset of sSCI, leading to other patho-mechanisims that trigger neuropathic pain and autonomic dysfunction. Use of free-radical scavengers, anti-inflammatory drugs and anti-apoptotic drugs are suggested to be effective therapeutic strategies for the inhibition of sSCI (Zhou et al., 2014).
In the pathogenesis of sSCI the role of reactive oxygen species (ROS) molecules in oxidative damage to spinal cord lipids, known as lipid peroxidation (LP) is well established Hall et al., 2016). The hydrogen peroxide and peroxinitrites are non-radical ROS reported to play important roles in post pSCI onset, among them OH, NO2 and CO3 peroxinitrites are more prominent to initiate LP.The expression of peroxinitrites is regulated by RhoA GTPase (RhoA) / Rho-associated kinase (ROCK) pathway, other than this ROCK is also associated with cytoskeletal rearrangement and cell movement function in a cell. This RhoA/ROCK pathway is implicated in disorders like cardiovascular disease (Budzyn et al., 2006) and central nervous system diseases (Yamamoto et al., 2014). Spinal cord injury is one of the prominent CNS disease among others like multiple sclerosis, Alzheimer’s disease, glaucoma and stroke to be regulated by RhoA/ROCK pathway (Tokushige et al., 2011).
Computer aided drug designing (CADD) is a promising strategy in novel drug discovery for rare diseases. This powerful tool is an established standard for novel drug designing and discovery, novel leads have been reported as enzyme inhibitors as well as protein − protein interaction disruptors using this method (Amin et al., 2016). In this study we are trying to look into novel natural lead compound of traditional Chinese medicine (TCM) origin that will alter RhoA/ROCK pathway by inhibiting the ATP binding site of ROCK. The main aim will be to discover a compound that will alter ROS based sSSI. We have used TCM database of 672 compounds for multistep structure based CADD method, virtual screening technique, followed by docking and simulation was employed for identifying promising lead compound, the approach is very well used method for identifying novel leads.
2 Material and method
2.1 Protein and ligand preparation
For CADD the atomic coordinates for ROCK protein (PDB ID: 3V8S) was taken. The structure was checked for missing atoms and the complete structure was energy minimised using swiss PDB viewer (SPDBv) (Viewer et al., 2001). The RMSD (Root Mean Square Deviation) was monitored and using GROMOS96 43B1 force field (van Gunsteren et al., 1996). Six hundred and seventy two highly active TCM compounds from in-house database (Table 1) was used for targeting ATP binding site of ROCK protein.
Ingredient_name Chrysophanic acid 4-hydroxybenzoic acid Succinate hexose Aspartate Glutamine Hexadecenoic acid Octadecenoic acid Cardiolipin glutamate caffeic acid phenethyl ester tretinoin cytochalasin B lovastatin serine gibberellic acid Arabinose benzoate norethynodrel 7-methoxycoumarin 10-hydroxy-camptothecin
trans-p-Hydroxycinnamic acid 2,6-Di-tert-butyl-4-methylphenol ammonium glycyrrhizinate palmatine chloride acacetin artemisin atropine avicularin baicalin belladonnine biflorin bilirubin biochanin a biotin brucine budlein a butein caffeine camptothecin catharanthine cephalomannine cholesterol chrysin colchicine cortisone coumestrol cryptopine cucurbitacin e cucurbitacin i curcumin daidzein digoxin dubinidine ellipticine enhydrin epicatechin erysovine erythraline estrone eucalyptin formononetin fructose galangin galanthamine genipin genistein ginkgolide a grandisin guanidine guanosine harmaline harmine harringtonine hesperetin homoeriodictyol homoharringtonine honokiol humulone hyoscyamine isoquercitrin isovitexin kaempferol khellin kinetin lapachol alpha-lapachone beta-lapachone licarin a luteolin maltose mangiferin morin naringenin nobiletin orientin perfamine phytosphingosine piceid picrotin picrotoxinin piplartine podophyllotoxin porphyrin precocene ii pregnenolone procyanidin b2 tryptanthrin gallic acid epigallocatechin salicylic acid caffeic acid ellagic acid catechin artemisinin hyperoside estradiol pseudoephedrine reynoutrin asparagine erythrinin quinic acid fluoxetine nifedipine methylprednisolone galgravin artesunate artemether melatonin secoisolariciresinol alternariol velutin vicenin-2 mannitol apigetrin cholic acid lithocholic acid physostigmine riboflavin ginkgolide quercitrin reserpine ribalinine rutin sanguinarine sophocarpine sphingomyelin sucrose swertisin tanshinone i tanshinone iia taxol tetrandrine thebaine theophylline tiliroside tremulacin 7,3′,4′-trihydroxyflavone 3,5,3′-triiodothyronine triptolide tropine tryptanthrine valine veraguensin vincristine vitexin yohimbine 5-o-caffeoylquinic acid ursodeoxycholic acid taxifolin sorbitol icariin rosmarinic acid gallocatechin (−)-epicatechin (−)-noradrenaline (+)-catechin (+)-epicatechin 1,16-hexadecanediol 1,2-benzenediol 11-deoxojervine 15,16-dihydrotanshinone i 17-hydroxycryptotanshinone 1-hydroxyanthraquinone 1-kestose 1-ketoisocyptotanshinone 2,5-dihydroxy benzoic acid 2-acetamido-2-deoxy-d-glucose 2′-deoxythymidine 2-hydroxyanthraquinone 2-hydroxybenzoic acid 2-methoxycinnamic acid 2-methyl-1,4-naphthoquinone 3,3′,4′,5,5′,7-hexahydroxyflavone 3,4-dihydroxybenzoic acid 3,4-phenanthrenedione 3,7,11,15-tetramethyl-2-hexadecen-1-ol 3-hydroxycyptotanshinone 3-hydroxy-glabrol 3-hydroxykynurenine 3-hydroxymethylenetanshinquinone 3-hydroxytanshinone iib 3-methylquercetin 3′-o-acetylhamaudol 3-phenyl-2-propen-1-ol 4-coumaric acid 4-hydroxy-3-methoxybenzaldehyde 4-hydroxybenzoic acid 4-hydroxybenzoylcholine 4-hydroxyphenylacetic acid 4-methylpyrazole 5′-adenosine monophosphate 5-methyluracil 6,7-dihydroxycoumarin 6-aminopurine 6-methoxy-7-hydroxycoumarin 8-geranyloxy psoralen abscisic acid acacetin acaciin acetylcholine acrylic acid adenine adenosine adonitol aesculetin aesculin afzelin agmatine albiflorin allantoin allocryptopine aloin alpha-bisabolol alpha-copaene alpha-tocotrienol alpha-tocotrienol amber acid amentoflavone aminoacetic acid aminopyrine anabasine aniline anserine anthranilic acid apigenin apigenin 7-o-beta-d-glucopyranoside apigenin-7-o-glucoside apigenin-7-o-neohesperidoside apigetrin arachidonic acid asparagine aspartic acid aspidocarpine astragalin atenolol atrazine atropine baicalin behenic acid benzaldehyde benzoate benzoic acid benzophenone berberine bergapten beta-alanine beta-carotene-5,6-epoxide betaine beta-thujaplicin beta-tocopherol betonicine bicuculline biochanin a biotin boldine brassicasterol brucine butanedioic acid butyrate butyric acid cadaverine caffeic acid caffeine caffetannic acid callistephin calycosin-7-o-beta-d-glucoside camphene canavanine canthaxanthin caproic acid capsaicin carnitine carnosine catechin catechol chalcone chelidonine chenodeoxycholic acid chlorogenic acid cholalic acid choline chrysanthemin cinaroside cinchonine cinnamic alcohol cirsimarin
cis-4-hydroxyproline
cis-9-octadecenoic acid
cis-aconitic acid citrin citrulline cocaine codeine coniferaldehyde coniferyl aldehyde cordycepic acid cosmosiin coumarin creatine creatinine crithmene cyanidin-3-glucoside cyanin cyclamin cyclopamine cystathionine daidzein daidzin danshenxinkun a daphnetin decanedioic acid delphinidin delphinidin-3-glucoside delta-tocotrienol deoxycholic acid d-glucuronic acid diazinon dichlorvos dihydrocapsacine dihydrocapsaicin dihydrochelerythrine dihydromelilotoside dihydroquercetin dimethyl malate diosmin dopamine dulcitol emetine emetine enanthic acid ephedrine epicatechin epiprogoitrin eriodictyol esculetin esculin eserine estrone ethanolamine ferulic acid fipronil fisetin flavanone flavanone flavin mononucleotide fluoxetine foliosidine formononetin fortunellin galactitol galactosamine gamma-aminobutyric acid gamma-linolenic acid gamma-nonalactone gamma-terpinene gamma-tocotrienol genistein gentiobiose gentisic acid gibberellic acid ginsenoside rb1 ginsenoside rb2 ginsenoside rc ginsenoside rd ginsenoside re ginsenoside rg1 glabrene glabridin glabrol glucoerucin gluconasturtiin glucosamine glucotropaeolin glutamic acid glutaric acid glutathione glycerin glycerol glycine glycocholic acid glycolic acid glycyrrhetinic acid glycyrrhizic acid glycyrrhizin glycyrrhizinate glycyrrhizinic acid gomisin e gomisin f gomisin g gossypin guanidine guanosine haplopine harmaline harman harmane heptadecane heptanoic acid hesperetin hesperidin methyl chalcone heteroauxin hexanoic acid hippuric acid hirsutrin hispaglabridin a hispaglabridin b homogentisic acid homoorientin homoserine hymecromone hyoscyamine hyperin hyperoside hypoxanthine hypoxanthine icariin indole indole-3-acetonitrile indole-3-carboxaldehyde inosine isoamylamine isobetanin isobutyric acid isocitric acid isoguvacine isoliquiritin isomaltose isoorientin isoquercetin isorhamnetin isorhamnetin-3-beta-d-galactopyranoside isorhamnetin-3-o-glucoside isorhamnetin-3-o-rutinoside isosakuranetin isovaleric acid juniperic acid kaempferide kaempferitrin kaempferol kaempferol-3-o-glucoside kaempferol-3-rhamnoside kinetin kynurenic acid kynurenine laudanosine levodopa l-homocysteine l-homoserine licochalcone b lignoceric acid linarin linoleic acid liquiritin liquiritin apioside lumichrome lutein luteolin luteolin 7-beta-d-glucopyranoside luteolin-4′-o-glucoside luteolin-7-o-glucoside luteoloside lysine acid malonic acid malvin m-coumaric acid melatonin meletin mesaconic acid methyl dihydrojasmonate methyl octadecanoate methyl salicylate methyl stearate methylprednisolone metolachlor miltirone miscanthoside monodydroxytanshinone i morin morphine mucic acid myo-inositol myricetin narcissin naringenin naringenin-7-o-glucoside naringin neoeriocitrin neohesperidin niacinamide nicotiflorin nicotinamide nicotine nicotinic acid noradrenaline norvaline notoginsenoside r1 o-aminophenol o-coumaric acid oenin oleic acid ononin o-phenylenediol orientin orotic acid oxalacetic acid paeoniflorin paeonin palmatine palmitoleic acid pantothenic acid p-coumaric acid pelargonidin pentanoate pentanoic acid peonidin peoniflorin peonin petunidin phenethylamine phloretic acid phloretin phloridzin phlorizin phosphoenolpyruvate p-hydroxybenzoic acid pipecolic acid piperazine piperidine p-methoxycinnamic acid polyprenol poncirin procyanidin b1 procyanidin b2 procyanidin b3 procyanidin b4 procyanidin c1 progoitrin propranolol prostaglandin e1 protocatechuic acid protopine prunin puerarin putrescine pyridoxine pyrocatechol pyroglutamic acid quercetin quercetin-3-arabinoside quercetin-3-o-alpha-l-rhamnopyranoside quercetin-3-o-rutinoside quercetin-3-rhamnoside quercetin-4′-glucoside quercetrin quercitin querciturone quinone quisqualic acid raffinose raphanin reserpine resveratrol retinol reynoutrin rhamnetin rhoifolin ribitol riboflavin ricinine robinin rosmarinic acid rotenone rutin sabinene salicylic acid salsolinol sanguinarine saponarin sarcosine sarsasapogenin sativin schisantherin a schisantherin b scopoletin scopolin scoulerine sebacic acid sennoside a serotonin sinalbin sinapaldehyde sinapic acid sinapine sinapyl alcohol sinigrin sinomenine sissotrin smilagenin solasodine sophoricoside sparteine spermidine spermine spiraeoside styrone suberic acid succinic acid sulfanilic acid synephrine syringaldehyde syringic acid syringic aldehyde syringin tamarixetin tanshindiol b tanshinone i tanshinone iia tanshinone iib tanshinone vi taurine taurocholic acid thebaine theobromine theophylline thymol tiliroside
trans-2-hexenal
trans-aconitic acid
trans-cinnamaldehyde
trans-cinnamic acid triacanthine tribuloside trifolirhizin trigonelline trijuganone b tropine tropinone tryptamine tyramine uridylic acid urocanic acid veratramine vincetoxicoside b vitexin xanthine xanthohumol xanthotoxin xylitol zearalenone zeatin zeaxanthin
3 Virtual screening drug likeliness prediction
A total of 128 TCM compounds were shortlisted after virtual screening based on their binding energy (ΔG) calculations (Trott and Olson, 2010). The selected compounds were further limited by subjecting them to rules set by lipiski (Lipinski, 2004). The Lipinki Rule of five (RO5) parameters gave us five compounds for further analysis.
3.1 Molecular docking analysis
AutoDock 4.2 tool was employed for molecular docking study to achieve structure based drug againstcPLA2 protein (Morris et al., 2009). The tool calculates energy values by classification of energies as; internal energy, and torsional free energy.
ΔG represents the overall binding energy. ΔGvdw, ΔGhbond, ΔGelec represents Vander Waals, hydrogen bonding, and electrostatic energies respectively. ΔGtor represents translation and rotation and the term ΔGdesolv indicates the desolvation on binding and hydrophobic effect. Lamarckian genetic algorithm (GA) default parameters were used for calculating ΔG of each shortlisted compound. Grid box (60 × 60 × 60 A°) was build around the active site. Energy values generated and the binding mode with cPLA2 protein site was used to limit the compound to single molecule.
3.2 Molecular visualization:
The cPLA2-Lead4 complex was studied using visualization tools Pymol (DeLano, 2002) and Discovery Studio (Studio, 2013).
4 Result and discussion
Virtual Screening: A database of in-house highly active TCM compounds were used to inhibit the ROCK protein by targeting its ATP binding site (Fig. 1). ROCK is composed of a ATP binding and a catalytic domain as where phosphorylation takes place, shown in Fig. 2. The ATP binding domain was used to generate inhibitors against ROCK protein. This inhibition has a role in reducing sSCI induced tissue damage via reduction of LP and decrease in oxidative stress. To come up with a novel ROCK protein inhibitor virtual screening, drug-likeliness, docking and molecular dynamics simulation methods were used. Virtual screening helped us to limit the number of compounds from the 672 natural productsto 128, based on their binding energy (ΔG Kcal/mol).
Drug likeliness: To limit the focus on compounds that could be promising for further development, we checked each compound for drug-likeliness. Drug-likeliness of shortlisted compounds was defined by mutagenic and carcinogenic property and rule of five (RO5) set by Lipinski RO5 properties include number of hydrogen bond donor (HBD), number of hydrogen bond acceptor (HBA) molecular weight (MW) and octanol/water partition coefficient (logP), the permissible range is HBD ≤ 5, HBA ≤ 10, MW ≤ 500 Dalton and clog p ≤ 5. Table 2 shows drug-likeliness properties, five compounds were shortlisted on their drug-likeliness values. All the compounds are accommodating the values expected from typical drugs.
Drug
Plant source
CID No.
CSID No.
Absinthin
Artemisia absinthium Linn
CID 442138
Aescin
Aesculus indica colebr. & Camb. (Hippocastanaceae)
CSID 23089563
Aesculin
Aesculus hippocastanum Linn
CID 5281417
Aglycone
Eryngium coeruleum Bieb.
CSID 16736194
Alantolactone
Inula racemosa HK. F.
CID 72724
Amaroswerin
Gentiana kurroo Royle
CID 45359883
Andromedotoxin (Acetyllandromedol)
Rhododendron campanulatum D. Don.
CSID 7827535
Apigenin
Meconopsis horridula
CID 5280443
Apigravin
Apium graveolens L.
CSID 30776837
Apiumoside (Apiin)
Apium graveolens L.
CSID 4444321
Arnidiol
Calendula officinalis Linn.
CID 470259
Artabsin
Artemisia absinthium L
CID 442146
Artemisinin
Artemisia drancunculus L.
CID 68827
Asarone
Acorus calamus Linn
CSID 552532
Ascaridol
Chenopodium ambrosioides L.
CID 10545
Astragalin
Aesculus indica colebr. & Camb. (Hippocastanaceae)
CID 5282102
Atisine
Aconitum heterophyllum Wallich ex Royle
CID 9548630
Atropine
Atropa acuminata
CID 174174
Avicularin
Polygonum aviculare Linn.
CID 5490064
Azulene
Achillea millefolium L.
CID 9231
Barrigenol A1
Eryngium coeruleum Bieb.
CID 177603
Barringenol R1
Eryngium coeruleum Bieb.
CID 44202129
β-Dihydrofucosterol (Azuprostat)
Euphorbia helioscopia Linn.
CID 457801
Berberine
Berberis aristata DC
CID 2353
Bergapten
Apium graveolens L.
CID 2355
Bergenin
Bergenia stracheyi Hook
CID 2356
Bikhaconitine
Aconitum violaceum Jacq.
CID 441713
Borneol
Prangos pabularia Lindl.
CID 64685
Camphene
Prangos pabularia Lindl.
CID 6616
Cannabinin
Cannabis sativus Linn.
CSID 8372337
Cannabinol
Cannabis sativus Linn.
CID 2543
Capillarin
Artemisia drancunculus L.
CSID 2340963
Carpesterol
Solanum xanthocarpum
CID 21155918
Carvacrol
Carum carvi Linn.
CID 10364
Carvone
Carum carvi Linn.
CSID 21106424
Celerin
Apium graveolens L.
CSID 137753
Choline
Dictamnus albus Linn.
CID 305
Chrysophanic Acid (Chrysophanol)
Rheum emodi Wall.
CID 10208
Citronellol
Mentha arvensis Linn.
CID 8842
Colchicine
Colchicum leteum Baker
CID 6167
Convolvulin (Convolvin)
Convolvulus arvensis L.
CSID 245689
Coriandrol
Coriandum sativum Linn.
CID 67179
Coumarin
Angelica glauca Edgew.
CID 323
Cryptopine
Fumaria indica L.
CID 72616
Cyanidin
Asparagus racemosus Willd.
CID 68247
Diosgenin
Dioscorea deltoidea Wall
CID 99474
Ecdysterone
Achyranthes aspera L.
CID 5459840
Emodin
Rheum emodii
CID 3220
Ephedrine
Ephedra gerardiana
CID 5032
Esculetin
Koelpinia linearis Pall.
CID 5281416
Etoposide
Podophyllum hexandrum Royle
CID 36462
Faradiel
Calendula officinalis Linn.
CID 122856
Filicin
Dryopteris filixmas L.
CID 197044
Fumaramine
Fumaria indica L.
CID 6450006
Gentianine
Gentiana kurroo Royle
CID 354616
Gentiopicrin
Gentiana kurroo Royle
CSID 32697064
Harmaline
Peganum harmala Linn.
CID 5280951
Harmalol
Peganum harmala Linn.
CID 5353656
Harmine
Peganum harmala Linn.
CID 5280953
Hetisine
Aconitum heterophyllum Wallich ex Royle
CSID 10226875
Hetisinone
Aconitum heterophyllum Wallich ex Royle
CSID 10226887
Hexacosane
Anagallis arvensis L.
CSID 11901
Hyoscine
Datura stramonium Linn
CID 3000322
Hyoscyamine
Datura stramonium Linn
CID 64692
Hyperoside
Asparagus racemosus Willd.
CID 5281643
Imperialine (Kashmirine)
Fritillaria imperialis Linn.
CID 442977
Indaconitine
Aconitum violaceum Jacq.
CID 441740
Inokosterone
Achyranthes aspera L.
CID 441828
Intybin
Cichorium intybus L.
CID 174863
Irigenin
Iris kashmiriana
CID 5464170
Isoalantolactone
Inula racemosa HK. F.
CID 73285
Isoatisine
Aconitum heterophyllum Wallich ex Royle
CID 245006
Isoimperatorin
Anthriscus nemorosa Spreng
CID 68081
Isopimpinellin
Apium graveolens L.
CID 68079
Kaempferol
Anagallis arvensis L.
CID 5280863
Lactucin
Cichorium intybus L.
CID 3756497
Lactucopicrin
Lactuca serriola Linn.
CSID 2723771
Laureline
Skimmia laureola Hk. f.
CID 821373
Lignans
Daphne oleoides
CID 9917980
Luteolin
Meconopsis horridula
CID 5280445
Malvalic Acid
Althaea officinalis L.
CID 10416
Marrubin
Marrubium vulgare L.
CSID 66118
Maslinic Acid
Epilobium angustifolium Linn.
CID 73659
Mezerein
Daphne oleoides
CID 9549167
Myrcene
Prangos pabularia Lindl.
CID 31253
Nepetalactone
Nepeta cataria
CID 161367
Obaculactone (Dictamnolactone)
Dictamnus albus Linn.
CID 65071
Obtusilobin (Obtusifolin)
Anemone obtusiloba D. Don
CID 3083575
Oleanolic Acid
Epilobium angustifolium Linn.
CID 10494
Osthenol
Apium graveolens L.
CID 5320318
p-Cymene
Thymus serpyllum Linn.
CID 7463
Peganine
Peganum harmala Linn.
CID 72610
Pinoresinol
Daphne oleoides
CID 234817
Podophyllotoxin
Podophyllum hexandrum Royle
CID 10607
Prangolarin
Anthriscus nemorosa Spreng
CID 17536
Protopine
Argemone mexicana L.
CID 4970
Quercetin
Aesculus indica colebr. & Camb. (Hippocastanaceae)
CID 5280343
Rutin
Aesculus indica colebr. & Camb. (Hippocastanaceae)
CID 5280805
Sabinen
Nepeta cataria
CID 18818
Safranal
Crocus sativus L.
CID 61041
Sanguinarine
Fumaria indica L.
CID 5154
Santonin
Artemisia maritima Linn
CID 221071
scopoletin
Artemisia drancunculus L.
CID 5280460
Sesamin
Daphne oleoides
CID 72307
Seselin
Apium graveolens L.
CID 68229
Sesquiterpene
Acorus calamus L.
CSID 19953446
shikonin
Arnebia guttata Bunge
CID 479503
Sitosterol
Adonis aestivalis L.
CID 222284
Spathulenol
Nepeta cataria
CID 522266
Stigmasterol
Asparagus racemosus Willd.
CID 5280794
Taraxacin
Taraxacum officinale
CID 5241825
Taraxasterol
Taraxacum officinale
CID 5270604
Tectoreginin
Iris kashmiriana
CID 5281811
Trigonelline
Achillea millefolium L.
CID 5570
Tropane
Atropa acuminata
CID 637986
Umbelliferone
Skimmia laureola Hk. f.
CID 5281426
Ursolic Acid
Epilobium angustifolium Linn.
CID 64945
Valepotriate
Valeriana jatamansi Jones
CID 442436
Xylopinine (Govanine)
Corydalis govaniana
CID 226520
1-Hentriacontanol
Aesculus indica colebr. & Camb. (Hippocastanaceae)
CSID 61640
1,4-Cineole (Natural)
Artemisia maritima L.
CID 10106
7-Methoxycoumarin (herniarin)
Artemisia drancunculus L.
CID 10748
16-Hentriacontanone (palmitone)
Aesculus indica colebr. & Camb. (Hippocastanaceae)
CSID 85480
Molecular Docking: The five final shortlisted natural compounds from IBS database were docked using AutoDock 4.2 tool into the optimized binding site of ROCK protein (Fig. 3). In Table 3 we have shown the results generated. Three of the Five natural compounds were found to form hydrogen bond with ROCK protein (Table 4). AutoDock tool was used for molecular docking simulations, the top binding pose based on ΔG were taken for further analysis. Each binding pose was studied using discovery studio, the default parameters were used to calculate all the possible interactions. The interactions studied are van der waals, conventional hydrogen bond, carbon hydrogen bond, pi-cation, pi-donor hydrogen bond, alkyl and pi- alkyl interaction. The lead2-ROCK complex has binding energy of −7.34 Kcal/mol andis forming two conventional hydrogen bonds with TYR96 and HIS62 of cPLA2′s C2 domain. The binding pocket of lead2 (1-cyclohexyl-5-(4-methoxybenzyl)-5-(((1R)-8-oxo-5,6-dihydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(2H,4H,8H)-yl) methyl)pyrimidine-2,4,6(1H,3H,5H)-trione) comprises following amino acids TYR96, VAL97, ASP40, LYS32, THR41, PRO42, ASP43, HIS62, ASN64, ASN65, ASP93, ALA94, and ASN95. The O22 atomic site of lead2 shows hydrogen bond interaction with TYR96 and HIS62, with a distance between the lead and ROCK of 1.88 Å and 1.67 Å respectively. Lead 4 (3-(furan-2-yl)-N-(furan-2-ylmethyl)-3-(p-tolyl)propan-1-amine) shows three conventional hydrogen bond interactions with the ATP binding domain of ROCK. Three atoms of lead4, N15, O2 andO5 are forming the bond with TYR96, HIS62 and ASN95 with a bond length of 1.82 Å, 2.14 Å and 1.97 Å respectively. The binding pocket of lead 4 comprises of nine amino acids: ASP40, THR41, ASN65, ASP43, ASN64, HIS62, ASN95, TYR96, and VAL97. Lead4 is having ΔG of −10.09 Kcal/mol, the best reported among the top ten compounds. The third compound showing interaction is Lead6 ((12bS)-7-(2-ethoxy-3-methoxyphenyl)-2-(3-isopropoxypropyl)-12b-methyl-2,3,6,7-tetrahydropyrazino [1′,2′:1,2] pyrido[3,4-b]indole-1,4(12H,12bH)-dione),the binding pocket of the lead 6 molecule with lipid binding C2 domain of CPLA2 comprises of following amino acids viz. TYR96, ALA94, ASN95, LEU39, LYS32, ASP40, ASP43, ASN65, ASN64 and HIS62. Out of them lead6 forms hydrogen bond with TYR96 and HIS62, the interaction of our interest here is formed by lead6 O16 and O23 position with TYR96 and HIS62 at bond length 1.31 Å and 2.01 Å respectively. Based on ΔG and the number of interactions lead 7 (1-((S)-2-amino-4-methylpentanoyl)-N-((S)-1-((4-fluorobenzyl)amino)-3-methyl-1-oxobutan-2-yl)piperidine-4-carboxamide hydrochloride) is the least ranked among the top ten natural compounds inhibiting ATP binding domain of ROCK. Its binding pocket comprises of eleven amino acids; ASN64, ASP43, ASN65, LYS32, MET38, GLY36, LEU39, ASP37, THR41, ASP93, ASN95, TYR96, and ALA94. Lead7 shows ΔG of −6.07 Kcal/mol and has single hydrogen bond interaction between lead4′s O13 position and CPLA2′s TYR96 with bond length of 1.52. Q: Qualified; V: Violated.
Compound
Gibbs Free Energy (kcal/mol)
Drug-likeness
Absorbtion Distribution Metabolisim Excretion
Mutagenicity
Carcinogenicity
HBA
HBD
TPSA
MW
BBB
Caco2
HIA
MDCK
PPB
Carpesterol
−13.3787
yes
No
Peganine
−11.0601
Yes
No
Cyanidin
−10.4529
Yes
No
Isoimperatorin
−10.3158
Yes
No
Capillarin
−10.2923
Yes
Yes
Atropine
−10.195
No
Yes
Taraxacin
−10.0508
Yes
Yes
Aescin
−10.0481
Irigenin
−10.0414
No
No
Q
Q
Q
Q
0.043263
9.21056
86.80184
1.77078
79.69777
Hyoscyamine
−10.0339
Yes
No
Osthenol
−9.58138
Yes
No
Sabinen
−9.50068
Yes
No
p-cymene
−9.42523
Yes
Yes
Sanguinarine
−9.35777
Yes
Yes
Coumarin
−9.33665
Yes
Yes
Safranal
−9.29266
No
No
Q
Q
Q
Q
1.06267
23.0033
100
249.139
15.17273
Cannabinol
−9.18551
No
Yes
Myrcene
−9.10893
Yes
No
Ephedrine
−9.01662
Yes
No
Carvone
−8.96438
Yes
No
Intybin
−8.92803
No
Yes
Azulene
−8.92402
Yes
Yes
Carvacrol
−8.89384
Yes
No
Faradiol
−8.89069
No
Yes
Bergenin
−8.86525
Yes
No
Hyperoside
−8.78649
No
No
V
V
Q
Q
Avicularin
−8.67923
Yes
No
Taraxasterol
−8.49042
Yes
No
Emodin
−8.43599
No
No
Q
Q
Q
Q
0.668094
20.2745
90.42972
44.9367
100
Maslinic Acid
−8.40496
No
Yes
Kaempferol
−8.36988
Yes
No
Asarone
−8.34362
Yes
Yes
Ecdysterone
−8.33694
No
Yes
Apigenin
−8.32192
Yes
No
Obaculactone
−8.29701
Yes
No
Umbelliferone
−8.281
Yes
Yes
Amaroswerin
−8.23858
No
Yes
Tectorigenin
−8.23005
No
No
Q
Q
Q
Q
0.126227
5.59415
88.18405
16.8164
87.63624
Oleanolic Acid
−8.21107
No
Yes
Celerin
−8.15443
Yes
No
Barringenol A1
−8.02007
No
Yes
Obtusifolin
−8.00917
Yes
No
Esculetin
−7.94481
7-Methoxycoumarin
−7.94033
Arnidiol
−7.92807
Chrysophanic Acid
−7.90567
Astragalin
−7.90475
Fumaramine
−7.8825
Ursolic Acid
−7.83721
Sitosterol
−7.78748
Marrubin
−7.76988
Aesculin
−7.76358
Shikonin
−7.70705
Hetisine
−7.62995
Seselin
−7.57116
Ascaridol
−7.54342
Hyoscine
−7.5294
Malvalic Acid
−7.48294
Quercetin
−7.4617
Inokosterone
−7.41245
Luteolin
−7.39778
Imperialine
−7.38899
Santonin
−7.25135
Camphene
−7.22408
Stigmasterol
−7.2086
Diosgenin
−7.20553
Sesquiterpene
−7.19878
Isopimpinellin
−7.10912
Absinthin
−7.08183
Filicin
−7.06472
Colchicine
−7.05574
Isoatisine
−6.99133
Laureline
−6.98638
Lactucopicrin
−6.96841
ß-Dihydrofucosterol
−6.95752
Scopoletin
−6.88906
Andromedotoxin
−6.86834
Gentiopicrin
−6.84314
Hetisinone
−6.83401
Harmalol
−6.82384
Podophyllotoxin
−6.82185
Harmaline
−6.81269
Govanine
−6.78949
Bergapten
−6.75754
Lactucin
−6.75577
Sesamin
−6.74654
Harmine
−6.72931
Protopine
−6.71054
Apiin
−6.68698
Artabsin
−6.64119
Berberine
−6.62831
Valepotriate
−6.59665
Barringenol A1
−6.59396
Apigravin
−6.52009
Artemisinin
−6.51894
Spathulenol
−6.4596
Alantolactone
−6.43428
Isoalantolactone
−6.42729
Convolvin
−6.33586
Rutin
−6.23839
Pinoresinol
−6.23388
Citronellol
−6.21042
Nepetalactone
−6.19349
Atisine
−6.18617
1,4-Cineole
−6.02481
Tropane
−5.85134
Borneol
−5.81539
Prangolarin
−5.73041
Cryptopine
−5.59433
Coriandrol
−5.59364
Trigonelline
−5.55835
16-Hentriacontanone
−5.45843
Lignans
−5.4099
Hexacosane
−5.35611
Cannabinin
−5.15507
Mezerein
−4.89756
Choline
−4.69109
Etoposide
−4.47279
1-Hentriacontanol
−1.20476
Aglycone
24.0676
NAME
Chem ID
ΔG
Kcal/molLigand binding pocket
H-bonds
Irigenin
5,464,170
−10.04
GLY42, ILE43,PHE47,GLU45,HIS44
IRIGENIN:H31 -:GLU45:O(2.082 Å).
GLU45:H – : IRIGENIN:O3(1.81 Å).
GLU45:H – : IRIGENIN:O4(2.29 Å).
HIS44:HD1 – : IRIGENIN:O3(2.19 Å).
HIS44:HD1 – IRIGENIN:O4(1.89 Å).
IRIGENIN:H33 – ILE43:O (2.19 Å).
ILE43:H – : IRIGENIN:O6(2.43 Å).
Safranal
61,041
−9.29
HIS44, TYR68, LEU46, GLY61, TYR36, LEU62, LEU59
TYR36:HH – :SAFRANAL:O1(1.99 Å).
Emodin
3220
−8.43
ASP41, GLY42, ILE43, GLU45, HIS44
EMODIN:H30 – GLU45:OE1 (2.03 Å).
ILE43:H – : EMODIN:O2. (2.37 Å).
EMODIN:H28 – A:ASP41:O(1.84 Å).
Tectorigenin
5,281,811
−8.23
GLU45,ILE43,GLY42,ASP41,HIS44
Tect:H34 – GLU45:OE1(1.91 Å).
Tect:H29 – :ILE43:O(2.12 Å).
ILE43:H – :TECT:O3(2.05 Å).
Novel ROCK Inhibitor: The top natural compound inhibiting ATP binding domain of ROCK. The compound has the best binding energy and forms maximum number of hydrogen bonds, thus jamming the important ATP binding site in ROCK protein. To look into Lead 4 drug-ability, its Absorption, Distribution, Metabolism and Excretion (ADME) properties were calculated using in-silico ADME/Tox server (https://preadmet.bmdrc.kr/). In this calculation features like Caco-2 cell permeability (Caco-2p), MDCK cell permeability (MDCKp), Human intestinal absorption, Plasma Protein Binding and Blood Brain Barrier values of Lead 4 were calculated. The results generated are shown in Table 5. For drug absorption Caco-2 cell model and MDCK cell model were used and the value ranges in permissible range, the human intestinal absorbance (HIA) of 92.59% shows that Lead 4 can be well absorbed and can reach the target site easily. The plasma protein binding of lead 4 is 17.71% and shows its availability to reach the target protein is high. Evaluation of cell cytotoxicity revealed the IC50 for lead4 at 134.2 ± 6.8 μg/ml.
Summary
Values
Van der Waal energy
−160.104 ± 23.737 kJ/mol
Electrostatic energy
−8.257 ± 8.986 kJ/mol
Polar solvation energy
39.374 ± 14.616 kJ/mol
SAV energy
−92.616 ± 17.234 kJ/mol
Binding energy
−221.602 ± 35.657 kJ/mol
Conflict of interest
The authors declared no conflict in this manuscript and publications.
References
- Irigenin, a novel lead from Western Himalayan chemiome inhibits Fibronectin-Extra Domain A induced metastasis in Lung cancer cells. Sci. Rep. 2016:6.
- [Google Scholar]
- Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol. Sci.. 2006;27(2):97-104.
- [Google Scholar]
- Spinal cord injury: a systematic review of current treatment options. Clin. Orthopaedics Related Res.®. 2011;469(3):732-741.
- [Google Scholar]
- DeLano, W.L., 2002. The PyMOL molecular graphics system.
- Lipid peroxidation in brain or spinal cord mitochondria after injury. J. Bioenerg. Biomembr.. 2016;48(2):169-174.
- [Google Scholar]
- Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today: Technol.. 2004;1(4):337-341.
- [Google Scholar]
- AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem.. 2009;30(16):2785-2791.
- [Google Scholar]
- Studio, D., 2013. Accelrys Inc. San Diego, CA, USA.
- Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats. Curr. Eye Res.. 2011;36(10):964-970.
- [Google Scholar]
- van Gunsteren, W.F. et al., 1996. Biomolecular simulation: the {GROMOS96} manual and user guide.
- Briefings Bioinf.. 2001;2(2):195-197.
- AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.. 2010;31(2):455-461.
- [Google Scholar]
- White, N.-H., Black, N.-H., 2016. Spinal cord injury (SCI) facts and figures at a glance.
- The Novel Rho Kinase (ROCK) Inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucomanovel rho kinase inhibitor. Invest. Ophthalmol. Vis. Sci.. 2014;55(11):7126-7136.
- [Google Scholar]
- Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regener. Res.. 2014;9(20):1787.
- [Google Scholar]