7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Correspondence
Corrigendum
Editorial
Full Length Article
Invited review
Letter to the Editor
Original Article
Retraction notice
REVIEW
Review Article
SHORT COMMUNICATION
Short review
7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Correspondence
Corrigendum
Editorial
Full Length Article
Invited review
Letter to the Editor
Original Article
Retraction notice
REVIEW
Review Article
SHORT COMMUNICATION
Short review
View/Download PDF

Translate this page into:

Original article
32 (
5
); 2540-2552
doi:
10.1016/j.jksus.2020.03.039

Mining novel natural reactive oxygen species (ROS) inhibitors by targeting Rho Kinase for prevention of secondary spinal cord injury: An in-silico trial using traditional Chinese medicinal compounds

Department of Orthopaedic Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

⁎Corresponding author at: Department of Orthopaedic Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No 528 of zhangheng road pudong new area, Shanghai 2010203, China. RonnyVaughanexo@yahoo.com (Shuqiang Wang)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
These two authors contribute to this work equally.

Abstract

Traditional Chinese Medicinal (TCM) compounds provide a plethora of natural chemiome for structure based novel drug discovery against unexplored targets of important diseases. One such disease is Secondary Spinal cord Injury (SSCI), a condition secondary to initial Spinal cord Injury (SCI) caused by a trauma. In SSCI oxidative stress and inflammation play a pivotal role in aggravating neural damage at the site of trauma. To look into it reactive oxygen species (ROS) inhibition is a good strategy. Our Study here focuses on finding novel ROS inhibitors from in-house TCM compound library using advanced structure based drug discovery methods. From Virtual screening, Molecular Docking, Molecular Dynamics Simulation and MM-PBSA calculations a single ROS inhibitor was proposed for targeting SSCI. Our study provides a platform for future structure based drug discoveries in the field of treating SCI by targeting SSCI pathways.

Keywords

Secondary spinal cord injury
Reactive oxygen species
Traditional Chinese medicine
Molecular docking
1

1 Introduction

Spinal cord injury (SCI) is an injury triggered event that is associated with permanent neurologic deficit. The deficit instigated by SCI leads to medical comorbidity, not only effecting sensory and motor capabilities, but also having impact on the physiological and economical condition of the patient (McDonald and Sadowsky, 2002). Edwin Smith papyrus, an Egyptian physician in 1700 BCE was the first one to document SCI as an “ailment not to be treated. Since then SCI has been recorded as one of the devastating conditions where most of the cases are exanimate before any patient care is given. The surviving SCI cases remain morbid and are more prone to mortality,in USA alone 10–40 people in a million in a year are effected by SCI. The total number of cases estimated in USA as reported in 2016 are at staggering 282,000, to which every year 11,000 new cases are added. Billions of dollars in USA alone are spend on this disease, making it one of the economically devastating diseases. (White and Black, 2016).

SCI is categorized into primary spinal cord injury(pSCI)and secondary spinal cord injury(sSCI), pSCI is defined as the injury inflicted at the time of trauma and sSCI is defined by the injury causedby the body’s response to initial trauma (Cadotte and Fehlings, 2011). The consequences of the SCI are defined by the extent of secondary damage, which is initiated by a cascade of molecular cellular events triggered by pSCI. The pSCI triggers glutamatergic excitotoxicity, free radical damage, cytokine production and inflammation, all of them effecting the survival of neurons and glial cells, thus setting a base for onset of sSCI, leading to other patho-mechanisims that trigger neuropathic pain and autonomic dysfunction. Use of free-radical scavengers, anti-inflammatory drugs and anti-apoptotic drugs are suggested to be effective therapeutic strategies for the inhibition of sSCI (Zhou et al., 2014).

In the pathogenesis of sSCI the role of reactive oxygen species (ROS) molecules in oxidative damage to spinal cord lipids, known as lipid peroxidation (LP) is well established Hall et al., 2016). The hydrogen peroxide and peroxinitrites are non-radical ROS reported to play important roles in post pSCI onset, among them OH, NO2 and CO3 peroxinitrites are more prominent to initiate LP.The expression of peroxinitrites is regulated by RhoA GTPase (RhoA) / Rho-associated kinase (ROCK) pathway, other than this ROCK is also associated with cytoskeletal rearrangement and cell movement function in a cell. This RhoA/ROCK pathway is implicated in disorders like cardiovascular disease (Budzyn et al., 2006) and central nervous system diseases (Yamamoto et al., 2014). Spinal cord injury is one of the prominent CNS disease among others like multiple sclerosis, Alzheimer’s disease, glaucoma and stroke to be regulated by RhoA/ROCK pathway (Tokushige et al., 2011).

Computer aided drug designing (CADD) is a promising strategy in novel drug discovery for rare diseases. This powerful tool is an established standard for novel drug designing and discovery, novel leads have been reported as enzyme inhibitors as well as protein − protein interaction disruptors using this method (Amin et al., 2016). In this study we are trying to look into novel natural lead compound of traditional Chinese medicine (TCM) origin that will alter RhoA/ROCK pathway by inhibiting the ATP binding site of ROCK. The main aim will be to discover a compound that will alter ROS based sSSI. We have used TCM database of 672 compounds for multistep structure based CADD method, virtual screening technique, followed by docking and simulation was employed for identifying promising lead compound, the approach is very well used method for identifying novel leads.

2

2 Material and method

2.1

2.1 Protein and ligand preparation

For CADD the atomic coordinates for ROCK protein (PDB ID: 3V8S) was taken. The structure was checked for missing atoms and the complete structure was energy minimised using swiss PDB viewer (SPDBv) (Viewer et al., 2001). The RMSD (Root Mean Square Deviation) was monitored and using GROMOS96 43B1 force field (van Gunsteren et al., 1996). Six hundred and seventy two highly active TCM compounds from in-house database (Table 1) was used for targeting ATP binding site of ROCK protein.

Ingredient_name
Chrysophanic acid
4-hydroxybenzoic acid
Succinate
hexose
Aspartate
Glutamine
Hexadecenoic acid
Octadecenoic acid
Cardiolipin
glutamate
caffeic acid phenethyl ester
tretinoin
cytochalasin B
lovastatin
serine
gibberellic acid
Arabinose
benzoate
norethynodrel
7-methoxycoumarin
10-hydroxy-camptothecin
trans-p-Hydroxycinnamic acid
2,6-Di-tert-butyl-4-methylphenol
ammonium glycyrrhizinate
palmatine chloride
acacetin
artemisin
atropine
avicularin
baicalin
belladonnine
biflorin
bilirubin
biochanin a
biotin
brucine
budlein a
butein
caffeine
camptothecin
catharanthine
cephalomannine
cholesterol
chrysin
colchicine
cortisone
coumestrol
cryptopine
cucurbitacin e
cucurbitacin i
curcumin
daidzein
digoxin
dubinidine
ellipticine
enhydrin
epicatechin
erysovine
erythraline
estrone
eucalyptin
formononetin
fructose
galangin
galanthamine
genipin
genistein
ginkgolide a
grandisin
guanidine
guanosine
harmaline
harmine
harringtonine
hesperetin
homoeriodictyol
homoharringtonine
honokiol
humulone
hyoscyamine
isoquercitrin
isovitexin
kaempferol
khellin
kinetin
lapachol
alpha-lapachone
beta-lapachone
licarin a
luteolin
maltose
mangiferin
morin
naringenin
nobiletin
orientin
perfamine
phytosphingosine
piceid
picrotin
picrotoxinin
piplartine
podophyllotoxin
porphyrin
precocene ii
pregnenolone
procyanidin b2
tryptanthrin
gallic acid
epigallocatechin
salicylic acid
caffeic acid
ellagic acid
catechin
artemisinin
hyperoside
estradiol
pseudoephedrine
reynoutrin
asparagine
erythrinin
quinic acid
fluoxetine
nifedipine
methylprednisolone
galgravin
artesunate
artemether
melatonin
secoisolariciresinol
alternariol
velutin
vicenin-2
mannitol
apigetrin
cholic acid
lithocholic acid
physostigmine
riboflavin
ginkgolide
quercitrin
reserpine
ribalinine
rutin
sanguinarine
sophocarpine
sphingomyelin
sucrose
swertisin
tanshinone i
tanshinone iia
taxol
tetrandrine
thebaine
theophylline
tiliroside
tremulacin
7,3′,4′-trihydroxyflavone
3,5,3′-triiodothyronine
triptolide
tropine
tryptanthrine
valine
veraguensin
vincristine
vitexin
yohimbine
5-o-caffeoylquinic acid
ursodeoxycholic acid
taxifolin
sorbitol
icariin
rosmarinic acid
gallocatechin
(−)-epicatechin
(−)-noradrenaline
(+)-catechin
(+)-epicatechin
1,16-hexadecanediol
1,2-benzenediol
11-deoxojervine
15,16-dihydrotanshinone i
17-hydroxycryptotanshinone
1-hydroxyanthraquinone
1-kestose
1-ketoisocyptotanshinone
2,5-dihydroxy benzoic acid
2-acetamido-2-deoxy-d-glucose
2′-deoxythymidine
2-hydroxyanthraquinone
2-hydroxybenzoic acid
2-methoxycinnamic acid
2-methyl-1,4-naphthoquinone
3,3′,4′,5,5′,7-hexahydroxyflavone
3,4-dihydroxybenzoic acid
3,4-phenanthrenedione
3,7,11,15-tetramethyl-2-hexadecen-1-ol
3-hydroxycyptotanshinone
3-hydroxy-glabrol
3-hydroxykynurenine
3-hydroxymethylenetanshinquinone
3-hydroxytanshinone iib
3-methylquercetin
3′-o-acetylhamaudol
3-phenyl-2-propen-1-ol
4-coumaric acid
4-hydroxy-3-methoxybenzaldehyde
4-hydroxybenzoic acid
4-hydroxybenzoylcholine
4-hydroxyphenylacetic acid
4-methylpyrazole
5′-adenosine monophosphate
5-methyluracil
6,7-dihydroxycoumarin
6-aminopurine
6-methoxy-7-hydroxycoumarin
8-geranyloxy psoralen
abscisic acid
acacetin
acaciin
acetylcholine
acrylic acid
adenine
adenosine
adonitol
aesculetin
aesculin
afzelin
agmatine
albiflorin
allantoin
allocryptopine
aloin
alpha-bisabolol
alpha-copaene
alpha-tocotrienol
alpha-tocotrienol
amber acid
amentoflavone
aminoacetic acid
aminopyrine
anabasine
aniline
anserine
anthranilic acid
apigenin
apigenin 7-o-beta-d-glucopyranoside
apigenin-7-o-glucoside
apigenin-7-o-neohesperidoside
apigetrin
arachidonic acid
asparagine
aspartic acid
aspidocarpine
astragalin
atenolol
atrazine
atropine
baicalin
behenic acid
benzaldehyde
benzoate
benzoic acid
benzophenone
berberine
bergapten
beta-alanine
beta-carotene-5,6-epoxide
betaine
beta-thujaplicin
beta-tocopherol
betonicine
bicuculline
biochanin a
biotin
boldine
brassicasterol
brucine
butanedioic acid
butyrate
butyric acid
cadaverine
caffeic acid
caffeine
caffetannic acid
callistephin
calycosin-7-o-beta-d-glucoside
camphene
canavanine
canthaxanthin
caproic acid
capsaicin
carnitine
carnosine
catechin
catechol
chalcone
chelidonine
chenodeoxycholic acid
chlorogenic acid
cholalic acid
choline
chrysanthemin
cinaroside
cinchonine
cinnamic alcohol
cirsimarin
cis-4-hydroxyproline
cis-9-octadecenoic acid
cis-aconitic acid
citrin
citrulline
cocaine
codeine
coniferaldehyde
coniferyl aldehyde
cordycepic acid
cosmosiin
coumarin
creatine
creatinine
crithmene
cyanidin-3-glucoside
cyanin
cyclamin
cyclopamine
cystathionine
daidzein
daidzin
danshenxinkun a
daphnetin
decanedioic acid
delphinidin
delphinidin-3-glucoside
delta-tocotrienol
deoxycholic acid
d-glucuronic acid
diazinon
dichlorvos
dihydrocapsacine
dihydrocapsaicin
dihydrochelerythrine
dihydromelilotoside
dihydroquercetin
dimethyl malate
diosmin
dopamine
dulcitol
emetine
emetine
enanthic acid
ephedrine
epicatechin
epiprogoitrin
eriodictyol
esculetin
esculin
eserine
estrone
ethanolamine
ferulic acid
fipronil
fisetin
flavanone
flavanone
flavin mononucleotide
fluoxetine
foliosidine
formononetin
fortunellin
galactitol
galactosamine
gamma-aminobutyric acid
gamma-linolenic acid
gamma-nonalactone
gamma-terpinene
gamma-tocotrienol
genistein
gentiobiose
gentisic acid
gibberellic acid
ginsenoside rb1
ginsenoside rb2
ginsenoside rc
ginsenoside rd
ginsenoside re
ginsenoside rg1
glabrene
glabridin
glabrol
glucoerucin
gluconasturtiin
glucosamine
glucotropaeolin
glutamic acid
glutaric acid
glutathione
glycerin
glycerol
glycine
glycocholic acid
glycolic acid
glycyrrhetinic acid
glycyrrhizic acid
glycyrrhizin
glycyrrhizinate
glycyrrhizinic acid
gomisin e
gomisin f
gomisin g
gossypin
guanidine
guanosine
haplopine
harmaline
harman
harmane
heptadecane
heptanoic acid
hesperetin
hesperidin methyl chalcone
heteroauxin
hexanoic acid
hippuric acid
hirsutrin
hispaglabridin a
hispaglabridin b
homogentisic acid
homoorientin
homoserine
hymecromone
hyoscyamine
hyperin
hyperoside
hypoxanthine
hypoxanthine
icariin
indole
indole-3-acetonitrile
indole-3-carboxaldehyde
inosine
isoamylamine
isobetanin
isobutyric acid
isocitric acid
isoguvacine
isoliquiritin
isomaltose
isoorientin
isoquercetin
isorhamnetin
isorhamnetin-3-beta-d-galactopyranoside
isorhamnetin-3-o-glucoside
isorhamnetin-3-o-rutinoside
isosakuranetin
isovaleric acid
juniperic acid
kaempferide
kaempferitrin
kaempferol
kaempferol-3-o-glucoside
kaempferol-3-rhamnoside
kinetin
kynurenic acid
kynurenine
laudanosine
levodopa
l-homocysteine
l-homoserine
licochalcone b
lignoceric acid
linarin
linoleic acid
liquiritin
liquiritin apioside
lumichrome
lutein
luteolin
luteolin 7-beta-d-glucopyranoside
luteolin-4′-o-glucoside
luteolin-7-o-glucoside
luteoloside
lysine acid
malonic acid
malvin
m-coumaric acid
melatonin
meletin
mesaconic acid
methyl dihydrojasmonate
methyl octadecanoate
methyl salicylate
methyl stearate
methylprednisolone
metolachlor
miltirone
miscanthoside
monodydroxytanshinone i
morin
morphine
mucic acid
myo-inositol
myricetin
narcissin
naringenin
naringenin-7-o-glucoside
naringin
neoeriocitrin
neohesperidin
niacinamide
nicotiflorin
nicotinamide
nicotine
nicotinic acid
noradrenaline
norvaline
notoginsenoside r1
o-aminophenol
o-coumaric acid
oenin
oleic acid
ononin
o-phenylenediol
orientin
orotic acid
oxalacetic acid
paeoniflorin
paeonin
palmatine
palmitoleic acid
pantothenic acid
p-coumaric acid
pelargonidin
pentanoate
pentanoic acid
peonidin
peoniflorin
peonin
petunidin
phenethylamine
phloretic acid
phloretin
phloridzin
phlorizin
phosphoenolpyruvate
p-hydroxybenzoic acid
pipecolic acid
piperazine
piperidine
p-methoxycinnamic acid
polyprenol
poncirin
procyanidin b1
procyanidin b2
procyanidin b3
procyanidin b4
procyanidin c1
progoitrin
propranolol
prostaglandin e1
protocatechuic acid
protopine
prunin
puerarin
putrescine
pyridoxine
pyrocatechol
pyroglutamic acid
quercetin
quercetin-3-arabinoside
quercetin-3-o-alpha-l-rhamnopyranoside
quercetin-3-o-rutinoside
quercetin-3-rhamnoside
quercetin-4′-glucoside
quercetrin
quercitin
querciturone
quinone
quisqualic acid
raffinose
raphanin
reserpine
resveratrol
retinol
reynoutrin
rhamnetin
rhoifolin
ribitol
riboflavin
ricinine
robinin
rosmarinic acid
rotenone
rutin
sabinene
salicylic acid
salsolinol
sanguinarine
saponarin
sarcosine
sarsasapogenin
sativin
schisantherin a
schisantherin b
scopoletin
scopolin
scoulerine
sebacic acid
sennoside a
serotonin
sinalbin
sinapaldehyde
sinapic acid
sinapine
sinapyl alcohol
sinigrin
sinomenine
sissotrin
smilagenin
solasodine
sophoricoside
sparteine
spermidine
spermine
spiraeoside
styrone
suberic acid
succinic acid
sulfanilic acid
synephrine
syringaldehyde
syringic acid
syringic aldehyde
syringin
tamarixetin
tanshindiol b
tanshinone i
tanshinone iia
tanshinone iib
tanshinone vi
taurine
taurocholic acid
thebaine
theobromine
theophylline
thymol
tiliroside
trans-2-hexenal
trans-aconitic acid
trans-cinnamaldehyde
trans-cinnamic acid
triacanthine
tribuloside
trifolirhizin
trigonelline
trijuganone b
tropine
tropinone
tryptamine
tyramine
uridylic acid
urocanic acid
veratramine
vincetoxicoside b
vitexin
xanthine
xanthohumol
xanthotoxin
xylitol
zearalenone
zeatin
zeaxanthin

3

3 Virtual screening drug likeliness prediction

A total of 128 TCM compounds were shortlisted after virtual screening based on their binding energy (ΔG) calculations (Trott and Olson, 2010). The selected compounds were further limited by subjecting them to rules set by lipiski (Lipinski, 2004). The Lipinki Rule of five (RO5) parameters gave us five compounds for further analysis.

3.1

3.1 Molecular docking analysis

AutoDock 4.2 tool was employed for molecular docking study to achieve structure based drug againstcPLA2 protein (Morris et al., 2009). The tool calculates energy values by classification of energies as; internal energy, and torsional free energy.ΔG=ΔGvdw+ΔGhbond+ΔGelec+ΔGtor+ΔGdesolv

ΔG represents the overall binding energy. ΔGvdw, ΔGhbond, ΔGelec represents Vander Waals, hydrogen bonding, and electrostatic energies respectively. ΔGtor represents translation and rotation and the term ΔGdesolv indicates the desolvation on binding and hydrophobic effect. Lamarckian genetic algorithm (GA) default parameters were used for calculating ΔG of each shortlisted compound. Grid box (60 × 60 × 60 A°) was build around the active site. Energy values generated and the binding mode with cPLA2 protein site was used to limit the compound to single molecule.

3.2

3.2 Molecular visualization:

The cPLA2-Lead4 complex was studied using visualization tools Pymol (DeLano, 2002) and Discovery Studio (Studio, 2013).

4

4 Result and discussion

Virtual Screening: A database of in-house highly active TCM compounds were used to inhibit the ROCK protein by targeting its ATP binding site (Fig. 1). ROCK is composed of a ATP binding and a catalytic domain as where phosphorylation takes place, shown in Fig. 2. The ATP binding domain was used to generate inhibitors against ROCK protein. This inhibition has a role in reducing sSCI induced tissue damage via reduction of LP and decrease in oxidative stress. To come up with a novel ROCK protein inhibitor virtual screening, drug-likeliness, docking and molecular dynamics simulation methods were used. Virtual screening helped us to limit the number of compounds from the 672 natural productsto 128, based on their binding energy (ΔG Kcal/mol).

Fig. 1
Fig. 2

Drug likeliness: To limit the focus on compounds that could be promising for further development, we checked each compound for drug-likeliness. Drug-likeliness of shortlisted compounds was defined by mutagenic and carcinogenic property and rule of five (RO5) set by Lipinski RO5 properties include number of hydrogen bond donor (HBD), number of hydrogen bond acceptor (HBA) molecular weight (MW) and octanol/water partition coefficient (logP), the permissible range is HBD ≤ 5, HBA ≤ 10, MW ≤ 500 Dalton and clog p ≤ 5. Table 2 shows drug-likeliness properties, five compounds were shortlisted on their drug-likeliness values. All the compounds are accommodating the values expected from typical drugs.

Table 2 Top 124 compounds scrrened for further analysis.
Drug Plant source CID No. CSID No.
Absinthin Artemisia absinthium Linn CID 442138
Aescin Aesculus indica colebr. & Camb. (Hippocastanaceae) CSID 23089563
Aesculin Aesculus hippocastanum Linn CID 5281417
Aglycone Eryngium coeruleum Bieb. CSID 16736194
Alantolactone Inula racemosa HK. F. CID 72724
Amaroswerin Gentiana kurroo Royle CID 45359883
Andromedotoxin (Acetyllandromedol) Rhododendron campanulatum D. Don. CSID 7827535
Apigenin Meconopsis horridula CID 5280443
Apigravin Apium graveolens L. CSID 30776837
Apiumoside (Apiin) Apium graveolens L. CSID 4444321
Arnidiol Calendula officinalis Linn. CID 470259
Artabsin Artemisia absinthium L CID 442146
Artemisinin Artemisia drancunculus L. CID 68827
Asarone Acorus calamus Linn CSID 552532
Ascaridol Chenopodium ambrosioides L. CID 10545
Astragalin Aesculus indica colebr. & Camb. (Hippocastanaceae) CID 5282102
Atisine Aconitum heterophyllum Wallich ex Royle CID 9548630
Atropine Atropa acuminata CID 174174
Avicularin Polygonum aviculare Linn. CID 5490064
Azulene Achillea millefolium L. CID 9231
Barrigenol A1 Eryngium coeruleum Bieb. CID 177603
Barringenol R1 Eryngium coeruleum Bieb. CID 44202129
β-Dihydrofucosterol (Azuprostat) Euphorbia helioscopia Linn. CID 457801
Berberine Berberis aristata DC CID 2353
Bergapten Apium graveolens L. CID 2355
Bergenin Bergenia stracheyi Hook CID 2356
Bikhaconitine Aconitum violaceum Jacq. CID 441713
Borneol Prangos pabularia Lindl. CID 64685
Camphene Prangos pabularia Lindl. CID 6616
Cannabinin Cannabis sativus Linn. CSID 8372337
Cannabinol Cannabis sativus Linn. CID 2543
Capillarin Artemisia drancunculus L. CSID 2340963
Carpesterol Solanum xanthocarpum CID 21155918
Carvacrol Carum carvi Linn. CID 10364
Carvone Carum carvi Linn. CSID 21106424
Celerin Apium graveolens L. CSID 137753
Choline Dictamnus albus Linn. CID 305
Chrysophanic Acid (Chrysophanol) Rheum emodi Wall. CID 10208
Citronellol Mentha arvensis Linn. CID 8842
Colchicine Colchicum leteum Baker CID 6167
Convolvulin (Convolvin) Convolvulus arvensis L. CSID 245689
Coriandrol Coriandum sativum Linn. CID 67179
Coumarin Angelica glauca Edgew. CID 323
Cryptopine Fumaria indica L. CID 72616
Cyanidin Asparagus racemosus Willd. CID 68247
Diosgenin Dioscorea deltoidea Wall CID 99474
Ecdysterone Achyranthes aspera L. CID 5459840
Emodin Rheum emodii CID 3220
Ephedrine Ephedra gerardiana CID 5032
Esculetin Koelpinia linearis Pall. CID 5281416
Etoposide Podophyllum hexandrum Royle CID 36462
Faradiel Calendula officinalis Linn. CID 122856
Filicin Dryopteris filixmas L. CID 197044
Fumaramine Fumaria indica L. CID 6450006
Gentianine Gentiana kurroo Royle CID 354616
Gentiopicrin Gentiana kurroo Royle CSID 32697064
Harmaline Peganum harmala Linn. CID 5280951
Harmalol Peganum harmala Linn. CID 5353656
Harmine Peganum harmala Linn. CID 5280953
Hetisine Aconitum heterophyllum Wallich ex Royle CSID 10226875
Hetisinone Aconitum heterophyllum Wallich ex Royle CSID 10226887
Hexacosane Anagallis arvensis L. CSID 11901
Hyoscine Datura stramonium Linn CID 3000322
Hyoscyamine Datura stramonium Linn CID 64692
Hyperoside Asparagus racemosus Willd. CID 5281643
Imperialine (Kashmirine) Fritillaria imperialis Linn. CID 442977
Indaconitine Aconitum violaceum Jacq. CID 441740
Inokosterone Achyranthes aspera L. CID 441828
Intybin Cichorium intybus L. CID 174863
Irigenin Iris kashmiriana CID 5464170
Isoalantolactone Inula racemosa HK. F. CID 73285
Isoatisine Aconitum heterophyllum Wallich ex Royle CID 245006
Isoimperatorin Anthriscus nemorosa Spreng CID 68081
Isopimpinellin Apium graveolens L. CID 68079
Kaempferol Anagallis arvensis L. CID 5280863
Lactucin Cichorium intybus L. CID 3756497
Lactucopicrin Lactuca serriola Linn. CSID 2723771
Laureline Skimmia laureola Hk. f. CID 821373
Lignans Daphne oleoides CID 9917980
Luteolin Meconopsis horridula CID 5280445
Malvalic Acid Althaea officinalis L. CID 10416
Marrubin Marrubium vulgare L. CSID 66118
Maslinic Acid Epilobium angustifolium Linn. CID 73659
Mezerein Daphne oleoides CID 9549167
Myrcene Prangos pabularia Lindl. CID 31253
Nepetalactone Nepeta cataria CID 161367
Obaculactone (Dictamnolactone) Dictamnus albus Linn. CID 65071
Obtusilobin (Obtusifolin) Anemone obtusiloba D. Don CID 3083575
Oleanolic Acid Epilobium angustifolium Linn. CID 10494
Osthenol Apium graveolens L. CID 5320318
p-Cymene Thymus serpyllum Linn. CID 7463
Peganine Peganum harmala Linn. CID 72610
Pinoresinol Daphne oleoides CID 234817
Podophyllotoxin Podophyllum hexandrum Royle CID 10607
Prangolarin Anthriscus nemorosa Spreng CID 17536
Protopine Argemone mexicana L. CID 4970
Quercetin Aesculus indica colebr. & Camb. (Hippocastanaceae) CID 5280343
Rutin Aesculus indica colebr. & Camb. (Hippocastanaceae) CID 5280805
Sabinen Nepeta cataria CID 18818
Safranal Crocus sativus L. CID 61041
Sanguinarine Fumaria indica L. CID 5154
Santonin Artemisia maritima Linn CID 221071
scopoletin Artemisia drancunculus L. CID 5280460
Sesamin Daphne oleoides CID 72307
Seselin Apium graveolens L. CID 68229
Sesquiterpene Acorus calamus L. CSID 19953446
shikonin Arnebia guttata Bunge CID 479503
Sitosterol Adonis aestivalis L. CID 222284
Spathulenol Nepeta cataria CID 522266
Stigmasterol Asparagus racemosus Willd. CID 5280794
Taraxacin Taraxacum officinale CID 5241825
Taraxasterol Taraxacum officinale CID 5270604
Tectoreginin Iris kashmiriana CID 5281811
Trigonelline Achillea millefolium L. CID 5570
Tropane Atropa acuminata CID 637986
Umbelliferone Skimmia laureola Hk. f. CID 5281426
Ursolic Acid Epilobium angustifolium Linn. CID 64945
Valepotriate Valeriana jatamansi Jones CID 442436
Xylopinine (Govanine) Corydalis govaniana CID 226520
1-Hentriacontanol Aesculus indica colebr. & Camb. (Hippocastanaceae) CSID 61640
1,4-Cineole (Natural) Artemisia maritima L. CID 10106
7-Methoxycoumarin (herniarin) Artemisia drancunculus L. CID 10748
16-Hentriacontanone (palmitone) Aesculus indica colebr. & Camb. (Hippocastanaceae) CSID 85480

Molecular Docking: The five final shortlisted natural compounds from IBS database were docked using AutoDock 4.2 tool into the optimized binding site of ROCK protein (Fig. 3). In Table 3 we have shown the results generated. Three of the Five natural compounds were found to form hydrogen bond with ROCK protein (Table 4). AutoDock tool was used for molecular docking simulations, the top binding pose based on ΔG were taken for further analysis. Each binding pose was studied using discovery studio, the default parameters were used to calculate all the possible interactions. The interactions studied are van der waals, conventional hydrogen bond, carbon hydrogen bond, pi-cation, pi-donor hydrogen bond, alkyl and pi- alkyl interaction. The lead2-ROCK complex has binding energy of −7.34 Kcal/mol andis forming two conventional hydrogen bonds with TYR96 and HIS62 of cPLA2′s C2 domain. The binding pocket of lead2 (1-cyclohexyl-5-(4-methoxybenzyl)-5-(((1R)-8-oxo-5,6-dihydro-1H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(2H,4H,8H)-yl) methyl)pyrimidine-2,4,6(1H,3H,5H)-trione) comprises following amino acids TYR96, VAL97, ASP40, LYS32, THR41, PRO42, ASP43, HIS62, ASN64, ASN65, ASP93, ALA94, and ASN95. The O22 atomic site of lead2 shows hydrogen bond interaction with TYR96 and HIS62, with a distance between the lead and ROCK of 1.88 Å and 1.67 Å respectively. Lead 4 (3-(furan-2-yl)-N-(furan-2-ylmethyl)-3-(p-tolyl)propan-1-amine) shows three conventional hydrogen bond interactions with the ATP binding domain of ROCK. Three atoms of lead4, N15, O2 andO5 are forming the bond with TYR96, HIS62 and ASN95 with a bond length of 1.82 Å, 2.14 Å and 1.97 Å respectively. The binding pocket of lead 4 comprises of nine amino acids: ASP40, THR41, ASN65, ASP43, ASN64, HIS62, ASN95, TYR96, and VAL97. Lead4 is having ΔG of −10.09 Kcal/mol, the best reported among the top ten compounds. The third compound showing interaction is Lead6 ((12bS)-7-(2-ethoxy-3-methoxyphenyl)-2-(3-isopropoxypropyl)-12b-methyl-2,3,6,7-tetrahydropyrazino [1′,2′:1,2] pyrido[3,4-b]indole-1,4(12H,12bH)-dione),the binding pocket of the lead 6 molecule with lipid binding C2 domain of CPLA2 comprises of following amino acids viz. TYR96, ALA94, ASN95, LEU39, LYS32, ASP40, ASP43, ASN65, ASN64 and HIS62. Out of them lead6 forms hydrogen bond with TYR96 and HIS62, the interaction of our interest here is formed by lead6 O16 and O23 position with TYR96 and HIS62 at bond length 1.31 Å and 2.01 Å respectively. Based on ΔG and the number of interactions lead 7 (1-((S)-2-amino-4-methylpentanoyl)-N-((S)-1-((4-fluorobenzyl)amino)-3-methyl-1-oxobutan-2-yl)piperidine-4-carboxamide hydrochloride) is the least ranked among the top ten natural compounds inhibiting ATP binding domain of ROCK. Its binding pocket comprises of eleven amino acids; ASN64, ASP43, ASN65, LYS32, MET38, GLY36, LEU39, ASP37, THR41, ASP93, ASN95, TYR96, and ALA94. Lead7 shows ΔG of −6.07 Kcal/mol and has single hydrogen bond interaction between lead4′s O13 position and CPLA2′s TYR96 with bond length of 1.52.

Fig. 3
Table 3 Gibbs free energy score, Physico-Chemical and biological properties of bioactive compounds.
Compound Gibbs Free Energy (kcal/mol) Drug-likeness Absorbtion Distribution Metabolisim Excretion
Mutagenicity Carcinogenicity HBA HBD TPSA MW BBB Caco2 HIA MDCK PPB
Carpesterol −13.3787 yes No
Peganine −11.0601 Yes No
Cyanidin −10.4529 Yes No
Isoimperatorin −10.3158 Yes No
Capillarin −10.2923 Yes Yes
Atropine −10.195 No Yes
Taraxacin −10.0508 Yes Yes
Aescin −10.0481
Irigenin −10.0414 No No Q Q Q Q 0.043263 9.21056 86.80184 1.77078 79.69777
Hyoscyamine −10.0339 Yes No
Osthenol −9.58138 Yes No
Sabinen −9.50068 Yes No
p-cymene −9.42523 Yes Yes
Sanguinarine −9.35777 Yes Yes
Coumarin −9.33665 Yes Yes
Safranal −9.29266 No No Q Q Q Q 1.06267 23.0033 100 249.139 15.17273
Cannabinol −9.18551 No Yes
Myrcene −9.10893 Yes No
Ephedrine −9.01662 Yes No
Carvone −8.96438 Yes No
Intybin −8.92803 No Yes
Azulene −8.92402 Yes Yes
Carvacrol −8.89384 Yes No
Faradiol −8.89069 No Yes
Bergenin −8.86525 Yes No
Hyperoside −8.78649 No No V V Q Q
Avicularin −8.67923 Yes No
Taraxasterol −8.49042 Yes No
Emodin −8.43599 No No Q Q Q Q 0.668094 20.2745 90.42972 44.9367 100
Maslinic Acid −8.40496 No Yes
Kaempferol −8.36988 Yes No
Asarone −8.34362 Yes Yes
Ecdysterone −8.33694 No Yes
Apigenin −8.32192 Yes No
Obaculactone −8.29701 Yes No
Umbelliferone −8.281 Yes Yes
Amaroswerin −8.23858 No Yes
Tectorigenin −8.23005 No No Q Q Q Q 0.126227 5.59415 88.18405 16.8164 87.63624
Oleanolic Acid −8.21107 No Yes
Celerin −8.15443 Yes No
Barringenol A1 −8.02007 No Yes
Obtusifolin −8.00917 Yes No
Esculetin −7.94481
7-Methoxycoumarin −7.94033
Arnidiol −7.92807
Chrysophanic Acid −7.90567
Astragalin −7.90475
Fumaramine −7.8825
Ursolic Acid −7.83721
Sitosterol −7.78748
Marrubin −7.76988
Aesculin −7.76358
Shikonin −7.70705
Hetisine −7.62995
Seselin −7.57116
Ascaridol −7.54342
Hyoscine −7.5294
Malvalic Acid −7.48294
Quercetin −7.4617
Inokosterone −7.41245
Luteolin −7.39778
Imperialine −7.38899
Santonin −7.25135
Camphene −7.22408
Stigmasterol −7.2086
Diosgenin −7.20553
Sesquiterpene −7.19878
Isopimpinellin −7.10912
Absinthin −7.08183
Filicin −7.06472
Colchicine −7.05574
Isoatisine −6.99133
Laureline −6.98638
Lactucopicrin −6.96841
ß-Dihydrofucosterol −6.95752
Scopoletin −6.88906
Andromedotoxin −6.86834
Gentiopicrin −6.84314
Hetisinone −6.83401
Harmalol −6.82384
Podophyllotoxin −6.82185
Harmaline −6.81269
Govanine −6.78949
Bergapten −6.75754
Lactucin −6.75577
Sesamin −6.74654
Harmine −6.72931
Protopine −6.71054
Apiin −6.68698
Artabsin −6.64119
Berberine −6.62831
Valepotriate −6.59665
Barringenol A1 −6.59396
Apigravin −6.52009
Artemisinin −6.51894
Spathulenol −6.4596
Alantolactone −6.43428
Isoalantolactone −6.42729
Convolvin −6.33586
Rutin −6.23839
Pinoresinol −6.23388
Citronellol −6.21042
Nepetalactone −6.19349
Atisine −6.18617
1,4-Cineole −6.02481
Tropane −5.85134
Borneol −5.81539
Prangolarin −5.73041
Cryptopine −5.59433
Coriandrol −5.59364
Trigonelline −5.55835
16-Hentriacontanone −5.45843
Lignans −5.4099
Hexacosane −5.35611
Cannabinin −5.15507
Mezerein −4.89756
Choline −4.69109
Etoposide −4.47279
1-Hentriacontanol −1.20476
Aglycone 24.0676

Q: Qualified; V: Violated.

Table 4 Auto Dock analysis of four compounds. The ligand binding pocket and the hydrogen bond formation was calculated using Discovery Studio 3.5 software. The bold amino acids represent the one which are involved in forming hydrogen bond with the ligand.
NAME Chem ID ΔG
Kcal/mol
Ligand binding pocket H-bonds
Irigenin 5,464,170 −10.04 GLY42, ILE43,PHE47,GLU45,HIS44 IRIGENIN:H31 -:GLU45:O(2.082 Å).
GLU45:H – : IRIGENIN:O3(1.81 Å).
GLU45:H – : IRIGENIN:O4(2.29 Å).
HIS44:HD1 – : IRIGENIN:O3(2.19 Å).
HIS44:HD1 – IRIGENIN:O4(1.89 Å).
IRIGENIN:H33 – ILE43:O (2.19 Å).
ILE43:H – : IRIGENIN:O6(2.43 Å).
Safranal 61,041 −9.29 HIS44, TYR68, LEU46, GLY61, TYR36, LEU62, LEU59 TYR36:HH – :SAFRANAL:O1(1.99 Å).
Emodin 3220 −8.43 ASP41, GLY42, ILE43, GLU45, HIS44 EMODIN:H30 – GLU45:OE1 (2.03 Å).
ILE43:H – : EMODIN:O2. (2.37 Å).
EMODIN:H28 – A:ASP41:O(1.84 Å).
Tectorigenin 5,281,811 −8.23 GLU45,ILE43,GLY42,ASP41,HIS44 Tect:H34 – GLU45:OE1(1.91 Å).
Tect:H29 – :ILE43:O(2.12 Å).
ILE43:H – :TECT:O3(2.05 Å).

Novel ROCK Inhibitor: The top natural compound inhibiting ATP binding domain of ROCK. The compound has the best binding energy and forms maximum number of hydrogen bonds, thus jamming the important ATP binding site in ROCK protein. To look into Lead 4 drug-ability, its Absorption, Distribution, Metabolism and Excretion (ADME) properties were calculated using in-silico ADME/Tox server (https://preadmet.bmdrc.kr/). In this calculation features like Caco-2 cell permeability (Caco-2p), MDCK cell permeability (MDCKp), Human intestinal absorption, Plasma Protein Binding and Blood Brain Barrier values of Lead 4 were calculated. The results generated are shown in Table 5. For drug absorption Caco-2 cell model and MDCK cell model were used and the value ranges in permissible range, the human intestinal absorbance (HIA) of 92.59% shows that Lead 4 can be well absorbed and can reach the target site easily. The plasma protein binding of lead 4 is 17.71% and shows its availability to reach the target protein is high. Evaluation of cell cytotoxicity revealed the IC50 for lead4 at 134.2 ± 6.8 μg/ml.

Table 5 MM-PBSA calculations.
Summary Values
Van der Waal energy −160.104 ± 23.737 kJ/mol
Electrostatic energy −8.257 ± 8.986 kJ/mol
Polar solvation energy 39.374 ± 14.616 kJ/mol
SAV energy −92.616 ± 17.234 kJ/mol
Binding energy −221.602 ± 35.657 kJ/mol

Conflict of interest

The authors declared no conflict in this manuscript and publications.

References

  1. . Irigenin, a novel lead from Western Himalayan chemiome inhibits Fibronectin-Extra Domain A induced metastasis in Lung cancer cells. Sci. Rep. 2016:6.
    [Google Scholar]
  2. , , . Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol. Sci.. 2006;27(2):97-104.
    [Google Scholar]
  3. , . Spinal cord injury: a systematic review of current treatment options. Clin. Orthopaedics Related Res.®. 2011;469(3):732-741.
    [Google Scholar]
  4. DeLano, W.L., 2002. The PyMOL molecular graphics system.
  5. . Lipid peroxidation in brain or spinal cord mitochondria after injury. J. Bioenerg. Biomembr.. 2016;48(2):169-174.
    [Google Scholar]
  6. . Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today: Technol.. 2004;1(4):337-341.
    [Google Scholar]
  7. , . Spinal-cord injury. Lancet. 2002;359(9304):417-425.
    [Google Scholar]
  8. . AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem.. 2009;30(16):2785-2791.
    [Google Scholar]
  9. Studio, D., 2013. Accelrys Inc. San Diego, CA, USA.
  10. . Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats. Curr. Eye Res.. 2011;36(10):964-970.
    [Google Scholar]
  11. van Gunsteren, W.F. et al., 1996. Biomolecular simulation: the {GROMOS96} manual and user guide.
  12. , , . Briefings Bioinf.. 2001;2(2):195-197.
  13. , . AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.. 2010;31(2):455-461.
    [Google Scholar]
  14. White, N.-H., Black, N.-H., 2016. Spinal cord injury (SCI) facts and figures at a glance.
  15. . The Novel Rho Kinase (ROCK) Inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucomanovel rho kinase inhibitor. Invest. Ophthalmol. Vis. Sci.. 2014;55(11):7126-7136.
    [Google Scholar]
  16. , , . Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regener. Res.. 2014;9(20):1787.
    [Google Scholar]
Show Sections