7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Correspondence
Corrigendum
Editorial
Full Length Article
Invited review
Letter to the Editor
Original Article
Retraction notice
REVIEW
Review Article
SHORT COMMUNICATION
Short review
7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Correspondence
Corrigendum
Editorial
Full Length Article
Invited review
Letter to the Editor
Original Article
Retraction notice
REVIEW
Review Article
SHORT COMMUNICATION
Short review
View/Download PDF

Translate this page into:

Original article
02 2021
:34;
101754
doi:
10.1016/j.jksus.2021.101754

Estimation of general parameters using auxiliary information in simple random sampling without replacement

Department of General Management, University of Petroleum and Energy Studies, Dehradun, India
Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
Department of Statistics, Banaras Hindu University, India
Department of Statistics & Operations Research, Aligarh Muslim University, India

⁎Corresponding author. irfii.st@amu.ac.in (Irfan Ali)

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
https://orcid.org/0000-0002-1790-5450

Abstract

Estimation of population parameters plays a vital role in the area of sampling. Many authors have proposed several estimators for estimating population parameter(s) using auxiliary information. This paper has attempted to suggest a new estimator for estimating the general parameter t a , b using auxiliary information in simple random sampling without replacement (SRSWOR). A conventional estimator t a , b is used to define the population constants: coefficient of variation, population mean, standard deviation, and population mean square. The expression for the minimum mean squared error has been derived. The efficiency of the suggested estimator and the existing estimators has been analyzed using a simulation study. Theoretical and empirical studies reveal the effectiveness of the proposed estimator over other existing estimators.

Keywords

Auxiliary variable
Conventional estimator
MSE
Efficiency
Simulation study
1

1 Introduction

Auxiliary information, when suitably used, improves the efficiency of the population parameters estimators. There are various techniques for applying auxiliary information, which helps improve the estimator’s performance. These techniques include product methods, ratio, and regression, among others. Auxiliary information can be available in various forms, such as in the form of variables or attributes. Many researchers have widely used it to formulate various estimators for estimating population parameters in different sampling schemes. Srivastava (1971), Kadilar and Cingi (2004) and Gupta and Shabbir (2008) have proposed estimators for estimating unknown population values. Another estimator’s class that uses correlation coefficient value and minimum MSE have been used in population mean estimation as documented in Srivastava and Jhajj (1980), Srivastava and Jhajj (1981), Srivastava and Jhajj (1986). Shabbir and Gupta (2007) proposed an estimator using the information in the form of attributes. Tracy et al. (1996) and Gupta and Shabbir (2007) used information on two auxiliary variables and proposed estimators to estimate the population constants. Some other related work can be found in Singh and Singh (2001), Tripathi et al. (2002), Khoshnevisan et al. (2007), Singh et al. (2008a), Singh et al. (2008b), Singh and Kumar (2011), Singh and Solanki (2011), Singh and Malik (2014), Sharma et al. (2017), Adichwal et al. (2016), Adichwal et al. (2019), Adichwal et al. (2017), Singh et al. (2018) and Mishra and Singh (2017).

Motivated by the work of these authors, we have proposed an improved estimator in the SRSWOR scheme for the general parameter of the population.

2

2 Notations

Let us consider a sample of size n is drawn from a population W = W 1 , W 2 , . . . , W N using SRSWOR scheme. Let Yi and Xi be the study and auxiliary population variables for the ith units (i = 1,2,3,….…, N), and let yi and xi, be ith units, respectively, in the sample for i = 1,2,3,....,n.

In general, consider the following population parameters μ rs = 1 N i = 1 N y i - y ¯ r x i - X ¯ s

δ rs = μ rs / μ 20 r / 2 μ 02 s / 2 and (r, s) is non-negative integers.

Note that

μ 20 = S Y 2 , μ 02 = S X 2 and μ 11 = S XY , So that C Y 2 = S Y 2 / Y ¯ 2 = μ 20 / Y ¯ 2 , C X 2 = S X 2 / X ¯ 2 = μ 02 / X ¯ 2 and ρ XY = S XY / S X S Y = μ 11 / μ 20 μ 02

Let us define,

ε 0 = y ¯ Y ¯ - 1 , ε 1 = s y 2 S Y 2 - 1 , ε 2 = x ¯ X ¯ - 1 and ε 3 = s x 2 S X 2 - 1

Subject to the condition E ( ε i ) = 0 , i = 0 , 1 , 2 , 3 .

Ignoring fpc, we have E ( ε 0 2 ) = n - 1 C Y 2 E ( ε 1 2 ) = n - 1 δ 40 - 1 E ( ε 2 2 ) = n - 1 C X 2 E ( ε 3 2 ) = n - 1 δ 04 - 1 E ( ε 0 ε 1 ) = n - 1 δ 30 C Y E ( ε 0 ε 2 ) = n - 1 ρ yx C X C Y E ( ε 0 ε 3 ) = n - 1 δ 12 C Y E ( ε 1 ε 2 ) = n - 1 δ 21 C X E ( ε 1 ε 3 ) = n - 1 δ 22 - 1 E ( ε 2 ε 3 ) = n - 1 δ 03 C X

3

3 Conventional estimator

The general form of the parameter under consideration can be stated as

(3.1)
t a , b = Y ¯ a S y b

In Eq. (3.1), a and b are scalars, suitably chosen and y ¯ = 1 n i = 1 n y i and s y 2 = 1 n - 1 i = 1 n y i - y ¯ 2 are unbiased estimators of Y ¯ and S y 2 , respectively.

For choices of a, b the general parameter t a , b will take form of

  1. If a = 1 , b = 0 , t a , b reduces to t 1 , 0 = Y ¯

  2. If a = 0 , b = 2 , t a , b reduces to t 0 , 2 = S Y 2

  3. If a = - 1 , 1 , t a , b reduces to t - 1 , 1 = C Y

  4. If a = 0 , b = 1 , t a , b reduces to t 0 , 1 = S Y

The general parameter t a , b conventional estimator is defined as-

(3.2)
t ̂ a , b = y ¯ a s y b where y ¯ = 1 n i = 1 n y i and s y 2 = 1 n - 1 i = 1 n y i - y ¯ 2 .

Expressing Eq. (3.2) in terms of ε ’s, we have

(3.3)
t ̂ a , b = Y ¯ a S y b 1 + ε 0 a 1 + ε 1 b 2

Eq. (3.3) can be written as t ̂ a , b = t a , b 1 + a ε 0 + b 2 ε 1 + a a - 1 2 ε 0 2 + ab 2 ε 0 ε 1 + b b - 2 8 ε 1 2

or equivalently,

(3.4)
t ̂ a , b - t a , b = t a , b a ε 0 + b 2 ε 1 + a a - 1 2 ε 0 2 + ab 2 ε 0 ε 1 + b b - 2 8 ε 1 2

Squaring Eq. (3.4) and neglecting the terms of ε with power three or more, we have

(3.5)
t ̂ a , b - t a , b 2 = t a , b 2 a 2 ε 0 2 + a b ε 0 ε 1 + b 2 4 ε 1 2

Take the expectations on both sides of Eq. (3.5), we have MSE’s estimators of t ̂ a , b to as given by

(3.6)
M S E t ̂ a , b = t a , b 2 n a 2 C Y 2 + a b δ 30 C Y + b 2 4 δ 40 - 1 or
(3.7)
M S E t ̂ a , b = t a , b 2 n f 1 a , b
where, f 1 a , b = a 2 C Y 2 + a b δ 30 C Y + b 2 4 δ 40 - 1 .

4

4 Proposed estimator

We propose a class of difference-cum exponential ratio type estimators to estimate the parameter of the population t a , b as

(4.1)
t = t ̂ a , b + k X ¯ - x ¯ exp w 1 ( X ¯ - x ¯ ) X ¯ + ( α - 1 ) x ¯ exp w 2 ( S X 2 - s x 2 ) S X 2 + ( β - 1 ) s x 2 where w 1 , w 2 being scalar having the values (0,-1,1), and k, α and β are constants and can be defined suitably.

We express Eq. (4.1) in terms of ε ’s to obtain t = t a , b 1 + ε 0 a 1 + ε 1 b 2 - k X ¯ ε 2 exp - w 1 ε 2 α 1 + α - 1 α ε 2 - 1 exp - w 2 ε 3 β 1 + β - 1 β ε 3 - 1 t = t a , b 1 + a ε 0 + b 2 ε 1 + a a - 1 2 ε 0 2 + ab 2 ε 0 ε 1 + b b - 2 8 ε 1 2 + × 1 - w 2 β ε 3 - w 1 α ε 2 + w 2 2 β - 1 + w 2 2 β 2 ε 3 2 + w 1 2 α - 1 + w 1 2 α 2 ε 2 2 + w 1 α w 2 β ε 2 ε 3 +

(4.2)
- k X ¯ ε 2 1 - w 2 β ε 3 - w 1 α ε 2 + w 2 2 β - 1 + w 2 2 β 2 ε 3 2 + w 1 2 α - 1 + w 1 2 α 2 ε 2 2 + w 1 α w 2 β ε 2 ε 3 +

Multiplying out and neglecting the higher-order terms of ε ’s which are greater than two powers in Eq. (4.2), we have t = t a , b 1 + a ε 0 + b 2 ε 1 - w 1 α ε 2 - w 2 β ε 3 + a a - 1 2 ε 0 2 + ab 2 ε 0 ε 1 + b b - 2 8 ε 1 2 - w 1 α a ε 0 ε 2 + b 2 ε 1 ε 2

(4.3)
- w 2 β a ε 0 ε 3 + b 2 ε 1 ε 3 + w 1 α w 2 β ε 2 ε 3 + w 1 2 α - 1 + w 1 2 α 2 ε 2 2 + w 2 2 β - 1 + w 2 2 β 2 ε 3 2 - k X ¯ ε 2 + w 2 β k X ¯ ε 2 ε 3 + w 1 α k X ¯ ε 2 2

or

(4.4)
t - t a , b = t a , b a ε 0 + b 2 ε 1 - w 1 α ε 2 - w 2 β ε 3 + a a - 1 2 ε 0 2 + ab 2 ε 0 ε 1 + b b - 2 8 ε 1 2 - w 1 α a ε 0 ε 2 + b 2 ε 1 ε 2 - w 2 β a ε 0 ε 3 + b 2 ε 1 ε 3 + w 1 α w 2 β ε 2 ε 3 + w 1 2 α - 1 + w 1 2 α 2 ε 2 2 + w 2 2 β - 1 + w 2 2 β 2 ε 3 2 - k X ¯ ε 2 + w 2 β k X ¯ ε 2 ε 3 + w 1 α k X ¯ ε 2 ε 3

Squaring Eq. (4.4) both sides and neglect the higher order of ε ’s which are greater than two powers, the result is as follows t - t a , b 2 = t a , b a ε 0 + t a , b b 2 ε 1 - t a , b w 1 α + k X ¯ ε 2 - t a , b w 2 β ε 3 2

or

(4.5)
t - t a , b 2 = t a , b a ε 0 + b 2 ε 1 - w 1 α ε 2 - w 2 β ε 2 - k X ¯ ε 2 2

From Eq. (4.5), we have t - t a , b 2 = t a , b 2 a 2 ε 0 2 + b 2 4 ε 1 2 + w 1 α 2 ε 2 2 + w 2 β 2 ε 3 2 + 2 ab 2 ε 0 ε 1 - 2 a w 1 α ε 0 ε 2 - 2 a w 2 β ε 0 ε 3 - 2 b 2 w 1 α ε 1 ε 2 - 2 b 2 w 2 β ε 1 ε 3 + 2 w 1 α w 2 β ε 2 ε 3 - 2 t a , b a k X ¯ ε 0 ε 2 - 2 t a , b b 2 k X ¯ ε 1 ε 2 + 2 t a , b w 1 α k X ¯ ε 2 2 + 2 t a , b w 2 β k X ¯ ε 2 ε 3

(4.6)
+ k 2 X ¯ 2 ε 2 2 or t - t a , b 2 = t a , b 2 a 2 ε 0 2 + b 2 4 ε 1 2 + 2 ab 2 ε 0 ε 1 + t a , b 2 w 1 α 2 ε 2 2 + w 2 β 2 ε 3 2 - 2 w 1 α a ε 0 ε 2 + b 2 ε 1 ε 2 - 2 w 2 β a ε 0 ε 3 + b 2 ε 1 ε 3 + 2 w 1 β w 2 β ε 2 ε 3 + 2 t a , b k X ¯ w 1 α ε 2 2 + w 2 β ε 2 ε 3
(4.7)
- 2 t a , b k X ¯ a ε 0 ε 2 + b 2 ε 1 ε 2 + k 2 X ¯ 2 ε 2 2

Take the expectation of Eq. (4.7), we have M S E t = M S E t ̂ a , b + t a , b 2 n w 1 α 2 C X 2 + w 2 β 2 δ 04 - 1 - 2 w 1 α a ρ XY C Y + b 2 δ 21 C X - 2 w 2 β a δ 12 C Y + b 2 δ 22 - 1 + 2 w 1 β w 2 β δ 03 C X + 2 t a , b n k X ¯ w 1 α C X 2 + w 2 β δ 03 C X

(4.8)
- 2 t a , b n k X ¯ a ρ XY C Y + b 2 δ 21 C X + k 2 X ¯ 2 n C X 2 or
(4.9)
M S E t = M S E t ̂ a , b + t a , b 2 n A 1 2 C X 2 + A 2 2 δ 04 - 1 - 2 A 1 f 2 a , b C X - 2 A 2 f 3 a , b + 2 A 1 A 2 δ 03 C X + 2 t a , b n k X ¯ A 1 C X 2 + A 2 δ 03 C X - 2 t a , b n k X ¯ f 2 a , b C X + k 2 X ¯ 2 n C X 2
where, A 1 = w 1 α A 2 = w 2 β f 2 a , b = a ρ XY C Y + b 2 δ 21 f 3 a , b = a δ 12 C Y + b 2 δ 22 - 1 .

Differentiate partially Eq. (4.9) w.r.to A 1 and A 2 and equate to zero, we have

t a , b C X t a , b δ 03 t a , b δ 03 C X t a , b 4 δ 03 - 1 A 1 A 2 = t a , b a ρ XY C Y + b 2 δ 21 - k X ¯ C X t a , b a δ 12 C Y + b 2 δ 22 - 1 - k X ¯ C X δ 03

After simplifying, we obtain the optimum value of A 1 and A 2 , that is,

(4.10)
A 1 opt = δ 04 - 1 f 2 a , b - δ 03 f 3 a , b δ 04 - δ 03 2 - 1 C X - K X ¯ t a , b A 2 opt = f 3 a , b - δ 03 f 2 a , b δ 04 - δ 03 2 - 1

Substituting A 1 opt and A 2 opt from Eq. (4.10) in Eq. (4.9), we have

(4.11)
MSE t min = M S E t ̂ a , b - t a , b 2 n f 3 a , b 2 - 2 f 2 a , b f 3 a , b δ 03 + δ 04 - 1 f 2 a , b 2 δ 04 - δ 03 2 - 1
(4.12)
= M S E t ̂ a , b - t a , b 2 n f 2 a , b 2 - t a , b 2 n f 2 a , b δ 03 - f 3 a , b 2 δ 04 - δ 03 2 - 1
(4.13)
= M S E t ̂ a , b - t a , b 2 n f 3 a , b 2 δ 04 - 1 - t a , b 2 n δ 04 - 1 f 2 a , b - δ 03 f 3 a , b 2 δ 04 - δ 03 2 - 1 δ 04 - 1

Remark 4.1: The optimum values of constants A1 and A2 at (4.10) involve unknown population parameters. The values of these quantities can be guessed accurately through a pilot sample survey or sample data at hand or experience gathered in due course of time, see Srivastava and Jhajj (1980), Singh et al. (2003) and Singh and Solanki (2013).

When X ¯ is known, the following Difference-cum exponential ratio type estimator (DCERTE) to obtain population parameter t a , b on putting w 2 = 0 in Eq. (4.1) is defined as:

(4.14)
t 1 = t ̂ a , b + k X ¯ - x ¯ exp w 1 ( X ¯ - x ¯ ) X ¯ + ( α - 1 ) x ¯ where w 1 being scalar has real values (0,-1,1) and k and α is arbitrary constants.

MSE of the estimator t 1 is given by

(4.15)
M S E t 1 = M S E t ̂ a , b + t a , b 2 n w 1 α 2 C X 2 - 2 w 1 α f 2 a , b C X

M S E t 1 defined in Eq. (4.15) is minimized for w 1 α opt = f 2 a , b C X

(4.16)
MSE t 1 min = M S E t ̂ a , b - t a , b 2 n f 2 a , b 2

Table 4.1 presents the existing estimators obtained from Eq. (4.14) on taking appropriate values of a, b, k, w 1 and α accordingly.

Table 4.1 Particular cases of the estimator t 1 .
Subset of the proposed estimator a b K w 1 α
t 1 1 = t ̂ a , b exp ( X ¯ - x ¯ ) X ¯ + ( α - 1 ) x ¯ (Singh and Pal, 2017) a b 0 1 α
t 1 2 = y ¯ exp ( X ¯ - x ¯ ) X ¯ + ( α - 1 ) x ¯ (Upadhyaya et al., 2011) 1 0 0 1 α
t 1 2 = y ¯ exp ( X ¯ - x ¯ ) X ¯ + x ¯ (Bahl and Tuteja, 1991) 1 0 0 1 2
t 1 3 = y ¯ + k X ¯ - x ¯ (Difference Estimator) 1 0 0 0 α

Using known S x 2 , following exponential ratio type estimator to estimate the parameter t a , b of the population by putting k = 0 and w 1 = 0 in Eq. (4.1) is defined as

(4.17)
t 2 = t ̂ a , b exp w 2 ( S X 2 - s x 2 ) S X 2 + ( β - 1 ) s x 2 where w 2 being scalar has real values (0,-1,1) and β is suitably chosen constants, MSE of the estimator t 2 is defined as:
(4.18)
M S E t 2 = M S E t ̂ a , b + t a , b 2 n w 2 β 2 δ 04 - 1 - 2 w 2 β f 3 a , b

M S E t 2 in (4.18) is minimized form for w 2 β opt = f 3 a , b δ 04 - 1

(4.19)
MSE t 2 min = M S E t ̂ a , b - t a , b 2 n f 3 a , b 2 δ 04 - 1

Table 4.2 presents a set of existing estimators obtained from (4.17) by suitable a, b, w 2 and β .

Table 4.2 Particular cases of the estimator t 2 .
Subset of the proposed estimator A b w 2 β
t 2 1 = t ̂ a , b exp ( S X 2 - s x 2 ) S X 2 + ( β - 1 ) s x 2 (Singh and Pal, 2017) a b 1 β
t 2 1 = s y 2 exp ( S X 2 - s x 2 ) S X 2 + ( β - 1 ) s x 2 (Yadav and Kadilar, 2013) 0 2 1 β
t 2 1 = s y 2 exp ( S X 2 - s x 2 ) S X 2 + s x 2 (Singh et al., 2011) 0 2 1 2

5

5 Efficiency comparison

(5.1)
M S E t ̂ a , b - M S E t min = t a , b 2 n f 3 a , b 2 - 2 f 2 a , b f 3 a , b δ 03 + δ 04 - 1 f 2 a , b 2 δ 04 - δ 03 2 - 1 0
(5.2)
MSE t 1 min - M S E t min = t a , b 2 n f 2 a , b δ 03 - f 3 a , b 2 δ 04 - δ 03 2 - 1 0
(5.3)
MSE t 2 min - M S E t min = t a , b 2 n δ 04 - 1 f 2 a , b - δ 03 f 3 a , b 2 δ 04 - δ 03 2 - 1 δ 04 - 1 0

We note that δ 04 - δ 03 2 - 1 0 always.

It can be observed from (5.1), (5.2) and (5.3), the proposed difference-cum exponential ratio type conventional estimator t performs efficiently than the estimators t ̂ a , b , t 1 and t 2 .

6

6 Estimation of the population mean of the study variable Y

For a , b , k , w 1 , w 2 , α , β = 1 , 0 , k , w 1 , w 2 , α , β , class of estimator ‘t’ written in Eq. (4.1), will take the following form

(6.1)
t = y ¯ + k X ¯ - x ¯ exp w 1 ( X ¯ - x ¯ ) X ¯ + ( α - 1 ) x ¯ exp w 2 ( S X 2 - s x 2 ) S X 2 + ( β - 1 ) s x 2

MSE’s expressions of the estimator t up to O(n−1) is given by M S E t = M S E y ¯ + Y ¯ 2 n A 1 2 C x 2 + A 2 2 δ 04 - 1 - 2 A 1 ρ XY C X C Y - 2 A 2 δ 12 C Y + 2 A 1 A 2 δ 03 C X

(6.2)
+ 2 n k X ¯ Y ¯ A 1 C X 2 + A 2 δ 03 C X - 2 n k X ¯ Y ¯ ρ XY C X C Y + k 2 X ¯ 2 n C X 2 where, A 1 = w 1 α and A 2 = w 2 β

MSE of t at (6.2) is minimized for values

(6.3)
A 1 opt = δ 04 - 1 ρ XY - δ 03 δ 12 C Y δ 04 - δ 03 2 - 1 C x - K X ¯ Y ¯ A 2 opt = δ 12 - δ 03 ρ XY C Y δ 04 - δ 03 2 - 1

Putting the value of A 1 opt and A 2 opt from Eq. (6.3) in Eq. (6.2) to get the minimum MSE of the estimator t as (Table 6.1)

(6.4)
MSE t min = V y ¯ - Y ¯ 2 n δ 12 2 - 2 ρ XY δ 03 δ 12 + δ 04 - 1 ρ XY 2 C Y 2 δ 04 - δ 03 2 - 1
Table 6.1 Particular cases of the estimator t .
Subset of the proposed estimator k w 1 w2 α
t 1 2 = y ¯ exp ( X ¯ - x ¯ ) X ¯ + ( α - 1 ) x ¯ (Upadhyaya et al., 2011) 0 1 0 α
t 1 2 = y ¯ exp ( X ¯ - x ¯ ) X ¯ + x ¯ (Bahl and Tuteja, 1991) 0 1 0 2
t 1 3 = y ¯ + k X ¯ - x ¯ (Difference Estimator) 0 0 0 α

The minimum MSE’s of the estimator t 1 2 , t 1 2 and t 1 3 is given by

(6.5)
MSE t 1 2 min = V y ¯ - Y ¯ 2 n ρ XY 2 C Y 2
(6.6)
MSE t 1 2 min = V y ¯ - Y ¯ 2 n 1 4 C X 2 - ρ XY C X C Y
(6.7)
MSE t 1 3 min = V y ¯ - Y ¯ 2 n ρ XY 2 C Y 2

7

7 Efficiency comparison

(7.1)
V y ¯ - M S E t min = Y ¯ 2 n δ 12 2 - 2 ρ XY δ 03 δ 12 + δ 04 - 1 ρ XY 2 C Y 2 δ 04 - δ 03 2 - 1 0
(7.2)
M S E t 1 2 - M S E t min = Y ¯ 2 n δ 12 2 - 2 ρ XY δ 03 δ 12 + δ 04 - 1 ρ XY 2 C Y 2 δ 04 - δ 03 2 - 1 - Y ¯ 2 n ρ XY 2 C Y 2 0
(7.3)
MSE t 1 2 min - M S E t min = Y ¯ 2 n δ 12 2 - 2 ρ XY δ 03 δ 12 + δ 04 - 1 ρ XY 2 C Y 2 δ 04 - δ 03 2 - 1 - Y ¯ 2 n 1 4 C X 2 - ρ XY C X C Y 0
(7.4)
MSE t 1 3 min - M S E t min = Y ¯ 2 n δ 12 2 - 2 ρ XY δ 03 δ 12 + δ 04 - 1 ρ XY 2 C Y 2 δ 04 - δ 03 2 - 1 - Y ¯ 2 n 1 4 C X 2 - ρ XY C X C Y 0

8

8 Empirical study

In this section, we compare the performance of the proposed estimators using a known population data set.

The description of population data sets is as follows.

Population

Y = Number of person per block

X = Number of rooms per block

The values of the parameters are

n = 10, X - = 58.8 , Y - = 101.1 , C X = 0.1281 , C Y = 0.1450 , ρ XY = 0.6500 , δ 12 = 0.5714 , δ 21 = 0.4537 , δ 03 = 0.4861 , δ 30 = 0.3248 , δ 04 = 2.2387 , δ 40 = 2.3523 , δ 13 = 1.5041 , δ 31 = 1.6923 , δ 22 = 1.5432 .

Tables 8.1 is concluded that the performance of the proposed estimator t is more efficient in comparison to the usual mean estimator and other existing estimators t 1 2 , t 1 2 and t 1 3 as the PRE of the proposed estimator t is greater than the existing estimators.

Table 8.1 PRE’s of the proposed and existing estimators.
Estimators PRE
y ¯ 100.0000
t 195.1564
t 1 2 173.1602
t 1 2 72.5100
t 1 3 173.1602

9

9 Simulation study

This section shows the procedure for comparing estimators t 1 2 , t 1 2 and t 1 3 with the estimator t computationally based on the Reddy et al. (2010) algorithm. The following stepwise simulation algorithm is used to evaluate the efficiency of Y ¯ :

Step 1: Simulate X Ñ μ , σ 2 and X 1 Ñ μ 1 , σ 1 2 independently and randomly using the method of box-Muller.

Step 2: Let Y = ρ X + 1 - ρ 2 X 1 such that 0 < ρ = 0.4 , 0.6 , 0.8 < 1 .

Step 3: Gives the pair (Y, X).

Step-4: Let define the parameters μ = 5 , σ = 3 , μ 1 = 5 and σ 1 = 3 for population-I in step 1, repeat steps 1 to 3 for 1000 times. Variable Y and X will have the same variances in the population.

Step-5: Similarly, use parameters μ = 3 , σ = 2 , μ 1 = 5 and σ 1 = 3 in step-1 to generate the population-II, and then repeat the process from steps 1 to 3 for 1000 times. Variable Y and X will have different variances in the population.

Step-6: Use SRS to draw 500 samples y i , x i , for i = 1, 2,…,n from the population of size N = 1000, WOR of size n = 40, 50 and 60.

Step-7: Calculate A M S E t = 1 500 k = 1 500 E t k - y ¯ 2

and PRE of an estimator t with respect to the usual estimator y ¯ is P R E t = V a r y ¯ × 100 M S E t

Tables 9.1 and 9.2 shows simulation results that have been obtained following the stepwise procedures.

Table 9.1 Average PRE of the estimators for Population-I.
ρ N Average PRE’s
y ¯ t t 1 2 t 1 2 t 1 3
0.5 40 100.0000 140.2242 138.7793 80.36167 138.7793
50 100.0000 139.6806 138.6224 80.1948 138.6224
60 100.0000 139.5516 138.5826 80.29106 138.5826
0.6 40 100.0000 165.8203 164.1184 72.5535 164.1184
50 100.0000 165.1557 163.9098 72.47781 163.9098
60 100.0000 164.9832 163.841 72.51843 163.841
0.8 40 100.0000 299.7129 296.6709 60.68814 296.6709
50 100.0000 298.4635 296.2357 60.68819 296.2357
60 100.0000 298.0521 296.0032 60.66814 296.0032
Table 9.2 Average PRE of the estimators for Population-II.
ρ N Average PRE’s
y ¯ t t 1 2 t 1 2 t 1 3
0.5 40 100.0000 119.2466 118.0128 97.4543 118.0128
50 100.0000 118.8099 117.9053 96.43723 117.9053
60 100.0000 118.7146 117.8876 96.7558 117.8876
0.6 40 100.0000 130.8356 129.4851 87.2013 129.4851
50 100.0000 130.3386 129.3491 86.7238 129.3491
60 100.0000 130.2249 129.3196 86.9226 129.3196
0.8 40 100.0000 191.0631 189.1082 68.4768 189.1082
50 100.0000 190.2839 188.8529 68.3965 188.8529
60 100.0000 190.0674 188.7543 68.4277 188.7543

From Tables 9.1 and 9.2, we observe that from the various values of correlation coefficient ρ = 0.4 , 0.6 , 0.8 and the sample size n = 40,50,60, it can be concluded that the performance of the proposed estimator t is more efficient in comparison to the usual mean estimator and other existing estimators t 1 2 , t 1 2 and t 1 3 . Table 9.1 and 9.2 indicates that the average PRE of the proposed t estimator is higher in all the cases (for variations in ρ and n) and for both the simulated data sets discussed above.

10

10 Conclusion

The present study proposed an improved estimator for a general parameter estimation using the information on “additional value X”. Differential cum exponential ratio type estimator ‘t’ of a general parameter is suggested in SRSWOR. The estimator ‘t’ proposed in Eq. (4.1) can be used to estimate different population parameters. We have verified the performance of the proposed estimator using simulated data set for the case of estimation of population mean only. The result of this study shows that the usual mean estimator, Singh and Pal (2017), Upadhyaya et al. (2011), Bahl and Tuteja (1991), Yadav and Kadilar (2013) and Singh et al. (2011) can be shown as the members of the proposed class. An empirical study has been carried out using real data set (presented in Table 8.1) and simulated data sets (presented in Table 9.1 and Table 9.2 by taking two different simulated population data sets) to illustrate the efficiency and effectiveness of the proposed estimator. The result of simulation studies shows that the average PRE of the suggested estimator t is higher as compared to the existing estimators Upadhyaya et al. (2011) t_{1\left(2 \right)}, Tuteja and Bahl (1991) t 1 2 t 1 2 and difference estimator t 1 3 for different choices of correlation coefficient ρ and sample size n in all the cases and for both the simulated data sets. The same pattern can also be obtained in case of real data set i.e. the proposed estimator t performing better as comparison to the usual mean estimator and other existing estimators t 1 2 , t 1 2 and t 1 3 as the PRE of the proposed estimator t is greater than the existing estimators. Through a literature survey, it can be found that the best estimator is one having the minimum mean square error. Hence, by the result of the simulation study, we can conclude that the proposed estimator t performs better than the existing estimators t 1 2 , t 1 2 and t 1 3 . Hence, this method is recommended for practical application.

Acknowledgement

The authors wish to acknowledge the editor in chief and the anonymous reviewers for their constructive comments, which improved the quality of the work.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. , , , , , . A two parameter ratio-product-ratio type estimator for population coefficient of variation based on SRSWOR. J. Adv. Res. Appl. Math Stat.. 2016;1(3&4):1-5.
    [Google Scholar]
  2. , , , , . A class of Estimators for population mean utilizing information on auxiliary variables using two phase sampling scheme in the presence of non-response when study variable is an attribute. Pakistan J. Stat.. 2019;35(3):187-196.
    [Google Scholar]
  3. , , , . Generalized class of estimators for population variance using information on two auxiliary variables. IJACM. 2017;3(2):651-661.
    [Google Scholar]
  4. , , . Ratio and product type exponential estimators. J. Inform. Opt. Sci.. 1991;12(1):159-164.
    [Google Scholar]
  5. , , . Multivariate product estimators. Calcutta Statistical Assoc. Bull.. 1991;41(1-4):109-116.
    [Google Scholar]
  6. , , . On the use of transformed auxiliary variables in estimating population mean by using two auxiliary variables. J. Stat. Plan. Inference. 2007;137(5):1606-1611.
    [Google Scholar]
  7. , , . On improvement in estimating the population mean in simple random sampling. J. Appl. Stat.. 2008;35(5):559-566.
    [Google Scholar]
  8. , , . Ration estimators in simple random sampling. Appl. Math. Comput.. 2004;151:893-902.
    [Google Scholar]
  9. , , , , , . A general family of estimators for estimating population means using known value of some population parameter(s) Far East J. Stat.. 2007;22(2):181-191.
    [Google Scholar]
  10. , , . A new log-product type estimator using auxiliary information. J. Sci. Res.. 2017;61(1&2):179-183.
    [Google Scholar]
  11. , , , . Comparison of ratio estimators using Monte Carlo Simulation. Int. J. Agric. Stat. Sci.. 2010;6(2):517-527.
    [Google Scholar]
  12. , , . Improved Ratio-type Estimator for Variance Using Auxiliary Information. J.I.S.A.S.. 2001;54(3):276-287.
    [Google Scholar]
  13. , , . A class of exponential-type ratio estimators of a general parameter. Commun. Stat.-Theor. Methods. 2017;46(8):3957-3984.
    [Google Scholar]
  14. , , , , . Almost Unbiased Ratio and Product Type Estimator of Finite Population Variance Using the Knowledge of Kurtosis of an Auxiliary Variable in Sample Surveys. Octogon Math. J.. 2008;16(1):123-130.
    [Google Scholar]
  15. , , , , . Ratio estimators in simple random sampling using information on auxiliary attribute. Pak. J. Stat. Oper. Res.. 2008;4(1):47-53.
    [Google Scholar]
  16. , , . A note on transformations on auxiliary variable in survey sampling. Mod. Assis. Stat. Appl.. 2011;6(1):17-19.
    [Google Scholar]
  17. Singh, R., Chauhan, P., Sawan, N., Smarandache, F., 2011. Improved exponential estimator for population variance using two auxiliary variables. Italia. J. P. Appl. Math., 28, 101–108.
  18. , , . Improved estimator of population variance using information on auxiliary attribute in simple random sampling. Appl. Math. Comp.. 2014;235:43-49.
    [Google Scholar]
  19. , , , , , . Improved estimators for population coefficient of variation using auxiliary variable. J. Stat. Manage. Syst.. 2018;21(7):1335-1355.
    [Google Scholar]
  20. , , . On estimating the finite population mean with known population proportion of an auxiliary variable. Pakistan J. Stat.. 2007;23:1-9.
    [Google Scholar]
  21. , , , , . Generalized estimators using characteristics of Poisson distribution. Int. J. Appl. Comput. Math. 2017;3(2):745-755.
    [Google Scholar]
  22. , , . On linear regression and ratio-product estimation of a finite population mean. J. Royal Stat. Soc. (The Statistician). 2003;52(1):59-67.
    [Google Scholar]
  23. , , . Generalized ratio and product methods of estimation in survey sampling. Pak. J. Stat. Oper. Res.. 2011;7:245-264.
    [Google Scholar]
  24. , , . A new procedure for variance estimation in simple random sampling using auxiliary information. Stat. Pap.. 2013;54(2):479-497.
    [Google Scholar]
  25. , . A generalized estimator for the mean of a finite population using multiauxiliary information. J. Am. Stat. Assoc.. 1971;66:404-407.
    [Google Scholar]
  26. , , . A class of estimators of the population mean in survey sampling using auxiliary information. Biometrika. 1981;68(1):341-343.
    [Google Scholar]
  27. , , . A class of estimators using auxiliary information for estimating finite population variance. Sankhya, C. 1980;42:87-96.
    [Google Scholar]
  28. , , . On the estimation of finite population correlation coefficient. J. Ind. Soc. Agric. Stat.. 1986;38:82-91.
    [Google Scholar]
  29. , , , . An alternative to ratio-cum-product estimator in sample surveys. J.S.P.I.. 1996;53:375-387.
    [Google Scholar]
  30. , , , . A general method of estimation and its application to the estimation of coefficient of variation. Stat. Transit.. 2002;5:887-908.
    [Google Scholar]
  31. , , , , . Improved ratio and product exponential type estimators. J. Stat. Theo. Pract.. 2011;5(2):285-302.
    [Google Scholar]
  32. , , . Improved exponential type ratio estimator of population variance. Revis. Colum. de Estadist.. 2013;36(1):145-152.
    [Google Scholar]
Show Sections