7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Editorial
Invited review
Letter to the Editor
Original Article
REVIEW
Review Article
SHORT COMMUNICATION
7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Editorial
Invited review
Letter to the Editor
Original Article
REVIEW
Review Article
SHORT COMMUNICATION
View/Download PDF

Translate this page into:

Original Article
21 (
2
); 99-108
doi:
10.1016/j.jksus.2009.07.003

Discriminating between gamma and lognormal distributions with applications

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

*Corresponding author alzaid@ksu.edu.sa (A. Alzaid),

Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.

Abstract

In this paper, we discuss the use of the coefficient of skewness as a goodness-of-fit test to distinguish between the gamma and lognormal distributions. We also show the limitations of this idea. Next, we use the moments of order statistics from gamma distribution to adjust the correlation goodness-of-fit test. In addition, we calculate the power of the test based on some other alterative distributions including the lognormal distribution. Further, we show some numerical illustration. Finally, we apply the procedure developed in the paper to some real data sets.

Keywords

Skewness
Moments of order statistics
Correlation coefficient
Goodness-of-fit test
Power of the test and Monte Carlo simulation
1

1 Introduction

Let X be a random variable has the three-parameter gamma[Gamma(θ, λ, α)] density function (pdf) as

(1.1)
f ( x ) = ( x - θ ) α - 1 λ α Γ ( α ) exp - x - θ λ , x θ , λ , α > 0 , θ 0 , where θ, λ and α are the location, scale and shape parameters, respectively. When θ = 0, we have the pdf of the two-parameter gamma as:
(1.2)
f ( x ) = x α - 1 λ α Γ ( α ) exp - x λ , x 0 , λ , α > 0 ,
when λ = 1 and θ = 0, we have the pdf of the one-parameter gamma:
(1.3)
f ( x ) = x α - 1 Γ ( α ) exp [ - x ] , x 0 , α > 0 .
Let Y be a two-parameter lognormal[LN(μ, σ)] random variable with pdf
(1.4)
g ( y ) = 1 y σ 2 π exp - log y - μ 2 σ 2 , y 0 , σ > 0 , - < μ < .
For more details of the lognormal and gamma distributions, see Johnson et al. (1994). Some useful measures of the two-parameter gamma given in (1.2) and the two-parameter lognormal distributions given in (1.4) are listed below:
  1. Mean:

    (1.5)
    E ( X ) = α λ , and E ( Y ) = exp [ μ + σ 2 / 2 ] .

  2. Variance:

    (1.6)
    Var ( X ) = α λ 2 and Var ( Y ) = ω ( 1 - ω ) exp [ 2 μ ] , ω = exp [ σ 2 ] .

  3. Skewness:

    (1.7)
    SK ( X ) = 2 α , and SK ( Y ) = ( ω + 2 ) ω - 1 .

The problem for testing whether some given data come from one of the two probability distributions, is quite old in the statistical literature. Atkinson (1969, 1970), Chen (1980), Chambers and Cox (1967), Cox (1961, 1962), Dyer (1973) have considered this problem in general for discriminating between two models. Due to increasing applications of the lifetime distributions, special attention is given to the problem of discriminating between the lognormal and Weibull distributions by Dumonceaux and Antle (1973) and between the lognormal and gamma by Jackson (1969) and between the gamma and Weibull distribution by Bain and Engelhard (1980) and Fearn and Nebenzahl (1991). Wiens (1999) has discussed a case study when the lognormal and gamma give different results. Recently, Gupta and Kundu (2003a) have discussed the closeness of gamma and the generalized exponential distribution while Gupta and Kundu (2003b) have discriminated between Weibull and the generalized exponential distributions. Gupta and Kundu (2004) have discriminated between gamma and the generalized exponential distribution.

On the other hand, goodness-of-fit tests are very important techniques for data analysis in the sense of check whether the given data fits the distributional assumptions of the statistical model. A variety of goodness-of-fit tests are available in the literature and recently there seems to be significant research on this topic. For more details, see, D’Agostino and Stephens (1986) and Huber-Carol et al. (2002). Correlation coefficient test is considered one of the easiest of such tests, that is because it is only needs special tables introduce from Monte Carlo simulations. The correlation coefficient test was introduced by Filliben (1975) for testing goodness-of-fit to the normal distribution and tables where updated later by Looney and Gulledge (1985). Among others Kinnison (1985, 1989) used the correlation coefficient method to present tables for testing goodness-of-fit to the extreme-value Type-I (Gumbel) and the extreme-value distribution, respectively. Recently, Sultan (2001) has devolved the correlation goodness-of-fit to the logarithmically-decreasing survival distribution. Baklizi (2006) has suggested weighted Kolmogrove–Smirnov type test for grouped Rayleigh data. Chen (2006) has discussed some tests of fit for the three-parameter lognormal distribution.

In this paper, we discuss the motivation of the problem in Section 2 below. In Section 3, we use the single moments of the rth order statistic from the one-parameter gamma distribution to develop goodness-of-fit tests for the two- and three-parameter gamma distributions. In Section 4, we calculate the power of the tests based on some different alternative distributions. In addition, we discuss some simulated examples. Finally, in Section 5, we apply the proposed test for some real data sets were collected from Dalla hospital, Riyadh, Saudi Arabia.

2

2 Motivation

The problem starts whenever we have a certain data and we need to fit the given data to either gamma or lognormal distributions. In many situations, we have found that gamma distribution fits better than the lognormal distribution. Then a question rises: why we do use the lognormal? Consequently, the answer of such question leads us to discuss some issues they are: (i) different measures of skewness, (ii) nonparametric tests, and (iii) correlation coefficient goodness-of-fit test.

Let X1, … , Xn be a random sample has mean M and variance V and assume: E ( X ) = E ( Y ) = M , and Var ( X ) = Var ( Y ) = V , then it is easy to write

(2.1)
α = M 2 V and λ = V M . Similarly, we write:
(2.2)
μ = log M 2 M 2 + V and σ = log V + M 2 V .

2.1

2.1 Result 1

If E(X) = E(Y) and Var(X) = Var(Y), then by using (1.7), (2.1) and (2.2), we have SK ( X ) < SK ( Y ) .

It thought that Results 1 could be used to distinguish between gamma and lognormal distributions by calculating the skewness for the given data. Then the closer values of the skewness to either of SK(X) and SK(Y) fits the given data. Unfortunately, this approach has some limitations based on the mean and variance for the given data. Among 10,000 Monte Carlo simulations, this approach works out well when the mean of the given data is less than 2.8 and the variance is greater than 3.

This is also true when we apply the nonparametric tests such as chi-square and Kolmogorov–Smirnov tests. So, we use the correlation goodness-of-fit tests.

3

3 Correlation goodness of fit test of gamma pdf

Let x1:n, … , xnr:n represents n order statistics from Gamma(0, 1, α) given in (1.3). Then, the pdf of the rth order statistic is given by:

(3.1)
f r : n ( x ) = n ! ( r - 1 ) ! ( n - r ) ! [ F ( x ) ] r - 1 [ 1 - F ( x ) ] n - r f ( x ) , r = 1 , 2 , , n . For more details, see David (1981), David and Nagaraja (2003) and Arnold et al. (1992). The single moment of the rth order statistic is given by:
(3.2)
μ r : n ( k ) = 0 x k f r : n ( x ) dx .
Gupta (1960, 1962) has derived the first single moments of the rth order statistic from gamma distribution in (1.3) when the shape parameter α is integer as follows:
(3.3)
μ r : n ( k ) = n ! ( r - 1 ) ! ( n - r ) ! Γ ( α ) j = 0 r - 1 ( - 1 ) j r - 1 j × s = 0 ( α - 1 ) ( n - r + j ) a s ( α , n - r + j ) Γ ( k + α + s ) × 1 ( n - r + j + 1 ) k + α + s ,
where as(α, n − r + j) is the coefficient of xs in the expansion of = 0 α - 1 x ! n - r + j .

3.1

3.1 Test for the two-parameter case

Let X1:n, … , Xnr:n denote a Type-II right-censored sample from the gamma distribution in (1.2), and let Zi:n = Xi:n/λ, i = 1, 2, n − r, be the corresponding order statistics from the one-parameter gamma in (1.3). Let us denote: E ( Z i : n ) by μ i : n , the E ( X i : n ) = λ μ i : n , i = 1 , 2 , , n - r . The correlation goodness-of-fit test in this case may be formed as follows:

H0: F is correct, that is X1, X2, … , Xn have Gamma(0, λ, α) given in (1.2) versus, H1: Fist not correct, that is X1, X2, … , Xn have another pdf, and the statistic used to run the test is given by:

(3.4)
T 1 = i = 1 n - r X i : n μ i : n i = 1 n - r X i : n 2 i = 1 n - r μ i : n 2 . This statistic represents the correlation between Xi:n and μi:n, i = 1, 2, … , n − r. By using the formula of the moments μi:n obtained in (3.3), and using the IMSL package, the statistic T1 is simulated through Monte Carlo method based on 10,001 simulations. Table 1 represents the percentage points of T1 for sample sizes up to n = 25 and different censoring ratios p = n - r n = 1.0 , 0.8 , 0.6 .
Table 1 The lower percentage points of T1.
α p n 0.5% 1% 2% 2.5% 5% 10% 20% 30% 40% 50%
2 1.0 10 0.912 0.928 0.941 0.946 0.958 0.968 0.977 0.982 0.985 0.988
20 0.937 0.951 0.960 0.963 0.971 0.979 0.985 0.988 0.990 0.991
30 0.952 0.961 0.968 0.971 0.978 0.983 0.988 0.990 0.992 0.993
40 0.958 0.967 0.974 0.976 0.982 0.986 0.990 0.992 0.993 0.994
50 0.965 0.971 0.978 0.980 0.984 0.988 0.992 0.993 0.994 0.995
3 10 0.925 0.941 0.956 0.959 0.968 0.976 0.982 0.986 0.988 0.990
20 0.951 0.962 0.970 0.973 0.979 0.984 0.989 0.991 0.992 0.994
30 0.967 0.972 0.978 0.979 0.984 0.988 0.991 0.993 0.994 0.995
40 0.972 0.977 0.982 0.983 0.987 0.990 0.993 0.994 0.995 0.996
50 0.974 0.980 0.984 0.985 0.989 0.992 0.994 0.995 0.996 0.997
4 10 0.946 0.955 0.964 0.967 0.974 0.980 0.986 0.989 0.991 0.992
20 0.962 0.969 0.977 0.979 0.983 0.987 0.991 0.993 0.994 0.995
30 0.973 0.978 0.982 0.984 0.988 0.991 0.993 0.994 0.995 0.996
40 0.976 0.981 0.986 0.987 0.990 0.992 0.995 0.996 0.996 0.997
50 0.981 0.985 0.988 0.989 0.992 0.994 0.995 0.996 0.997 0.997
5 10 0.953 0.962 0.970 0.973 0.979 0.984 0.988 0.991 0.992 0.993
20 0.969 0.975 0.980 0.982 0.986 0.989 0.992 0.994 0.995 0.996
30 0.979 0.982 0.986 0.987 0.990 0.992 0.994 0.995 0.996 0.997
40 0.982 0.985 0.989 0.990 0.992 0.994 0.995 0.996 0.997 0.997
50 0.985 0.988 0.990 0.991 0.993 0.995 0.996 0.997 0.997 0.998
2 0.8 10 0.933 0.945 0.954 0.957 0.967 0.974 0.982 0.986 0.988 0.990
20 0.966 0.970 0.976 0.977 0.982 0.986 0.990 0.992 0.993 0.994
30 0.978 0.982 0.984 0.985 0.988 0.991 0.993 0.994 0.995 0.996
40 0.983 0.986 0.988 0.989 0.991 0.993 0.995 0.996 0.996 0.997
50 0.987 0.989 0.990 0.991 0.993 0.994 0.996 0.996 0.997 0.998
3 10 0.952 0.960 0.967 0.969 0.975 0.981 0.986 0.989 0.991 0.993
20 0.976 0.979 0.982 0.984 0.987 0.990 0.992 0.994 0.995 0.996
30 0.984 0.986 0.988 0.989 0.991 0.993 0.995 0.996 0.996 0.997
40 0.988 0.990 0.991 0.992 0.993 0.995 0.996 0.997 0.997 0.998
50 0.990 0.992 0.993 0.993 0.995 0.996 0.997 0.997 0.998 0.998
4 10 0.962 0.968 0.973 0.975 0.980 0.985 0.989 0.991 0.993 0.994
20 0.981 0.984 0.986 0.987 0.990 0.992 0.994 0.995 0.996 0.997
30 0.987 0.989 0.991 0.992 0.993 0.995 0.996 0.997 0.997 0.998
40 0.990 0.992 0.993 0.993 0.995 0.996 0.997 0.997 0.998 0.998
50 0.992 0.993 0.994 0.995 0.996 0.997 0.997 0.998 0.998 0.998
5 10 0.967 0.972 0.977 0.979 0.983 0.987 0.991 0.993 0.994 0.995
20 0.984 0.986 0.988 0.989 0.991 0.993 0.995 0.996 0.997 0.997
30 0.989 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.998
40 0.992 0.993 0.994 0.995 0.996 0.996 0.997 0.998 0.998 0.998
50 0.994 0.995 0.995 0.996 0.996 0.997 0.998 0.998 0.999 0.999
2 0.6 10 0.932 0.942 0.952 0.955 0.965 0.973 0.980 0.985 0.987 0.990
20 0.962 0.968 0.974 0.975 0.981 0.985 0.989 0.991 0.993 0.994
30 0.975 0.978 0.982 0.983 0.986 0.989 0.992 0.994 0.995 0.996
40 0.980 0.984 0.987 0.988 0.990 0.992 0.994 0.995 0.996 0.997
50 0.985 0.988 0.989 0.990 0.992 0.994 0.995 0.996 0.997 0.997
3 10 0.942 0.953 0.964 0.966 0.973 0.980 0.985 0.988 0.991 0.992
20 0.972 0.976 0.981 0.982 0.986 0.989 0.992 0.993 0.995 0.995
30 0.981 0.984 0.987 0.988 0.990 0.992 0.994 0.995 0.996 0.997
40 0.986 0.988 0.990 0.991 0.992 0.994 0.996 0.996 0.997 0.998
50 0.989 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.998
4 10 0.956 0.964 0.971 0.973 0.979 0.984 0.989 0.991 0.993 0.994
20 0.979 0.982 0.985 0.986 0.989 0.991 0.993 0.995 0.996 0.996
30 0.986 0.988 0.990 0.990 0.992 0.994 0.995 0.996 0.997 0.997
40 0.989 0.991 0.992 0.993 0.994 0.995 0.997 0.997 0.998 0.998
50 0.991 0.993 0.994 0.994 0.995 0.996 0.997 0.998 0.998 0.998
5 10 0.965 0.970 0.976 0.978 0.983 0.987 0.991 0.993 0.994 0.995
20 0.982 0.985 0.988 0.988 0.990 0.993 0.995 0.996 0.996 0.997
30 0.988 0.990 0.992 0.992 0.994 0.995 0.996 0.997 0.997 0.998
40 0.991 0.992 0.994 0.994 0.995 0.996 0.997 0.998 0.998 0.998
50 0.993 0.994 0.995 0.995 0.996 0.997 0.998 0.998 0.998 0.999

As we can see from Table 1, the percentage points of T1 increases as the sample size increases as well as the significance level increases for censoring rations p = 1.0, 0.8, 0.6.

3.2

3.2 Test for the three-parameter case

Let X1:n, … , Xnr:n denote a Type-II right-censored sample from the distribution in (1.1), and let Zi = Xi+1 − X1:n and Ui = μi+1:n − μ1:n, i = 1, 2, … , n − r − 1, where μ i : n be the corresponding moments of order statistics obtained from Gamma(0, 1, α) given in (1.3). The correlation goodness-of-fit test in this case may be formed as follows:

  • H0: F is correct, that is X1, X2, … , Xn have Gamma(θ, λ, α) given in (1.1) versus,

  • H1: F is not correct, that is X1, X2, … , Xn have another pdf.

The statistic used to run the test is given by:

(3.5)
T 2 = i = 1 n - r - 1 Z i U i i = 1 n - r - 1 Z i 2 i = 1 n - r - 1 U i 2 . The statistic given in (3.5) represents the correlation between Zi:n and Ui:n, i = 1, 2, … , n − r. Once again, by using the formula of the moments μi:n, i = 1, 2, … , n − r given in (3.3), the statistic T2 is simulated through Monte Carlo method based on 10,001 simulations. Table 2 represents the percentage points of T2 for sample sizes n = 10, 20, 30, 40, 50 and different censoring ratios p.
Table 2 The lower percentage points of T2.
α p n 0.5% 1% 2% 2.5% 5% 10% 20% 30% 40% 50%
2 1.0 10 0.901 0.914 0.929 0.934 0.947 0.960 0.971 0.977 0.981 0.985
20 0.928 0.940 0.953 0.955 0.967 0.975 0.982 0.985 0.988 0.990
30 0.944 0.956 0.964 0.967 0.975 0.981 0.986 0.989 0.991 0.992
40 0.956 0.963 0.971 0.974 0.979 0.984 0.989 0.991 0.992 0.994
50 0.962 0.969 0.975 0.977 0.982 0.987 0.990 0.992 0.994 0.995
3 10 0.905 0.917 0.934 0.938 0.952 0.963 0.973 0.979 0.983 0.986
20 0.935 0.947 0.958 0.961 0.970 0.978 0.984 0.987 0.989 0.991
30 0.950 0.961 0.969 0.972 0.978 0.983 0.988 0.990 0.992 0.993
40 0.961 0.969 0.975 0.977 0.982 0.987 0.990 0.992 0.994 0.995
50 0.967 0.973 0.978 0.980 0.985 0.989 0.992 0.994 0.995 0.995
4 10 0.904 0.921 0.936 0.941 0.955 0.965 0.975 0.980 0.983 0.986
20 0.942 0.952 0.962 0.964 0.972 0.979 0.985 0.988 0.990 0.992
30 0.954 0.964 0.972 0.973 0.980 0.985 0.989 0.991 0.993 0.994
40 0.964 0.971 0.977 0.979 0.984 0.988 0.991 0.993 0.994 0.995
50 0.971 0.977 0.981 0.983 0.987 0.990 0.993 0.994 0.995 0.996
5 10 0.910 0.926 0.940 0.944 0.956 0.967 0.975 0.980 0.984 0.987
20 0.945 0.954 0.963 0.966 0.974 0.980 0.985 0.988 0.990 0.992
30 0.957 0.966 0.972 0.975 0.981 0.986 0.990 0.992 0.993 0.994
40 0.966 0.974 0.979 0.980 0.985 0.988 0.992 0.993 0.995 0.995
50 0.972 0.978 0.982 0.983 0.987 0.990 0.993 0.994 0.995 0.996
2 0.8 10 0.906 0.922 0.936 0.941 0.953 0.964 0.974 0.979 0.983 0.986
20 0.953 0.961 0.967 0.969 0.975 0.981 0.986 0.989 0.991 0.992
30 0.971 0.975 0.979 0.980 0.984 0.988 0.991 0.993 0.994 0.995
40 0.977 0.981 0.984 0.986 0.988 0.991 0.993 0.995 0.996 0.996
50 0.983 0.986 0.988 0.989 0.991 0.993 0.995 0.996 0.996 0.997
3 10 0.906 0.921 0.937 0.941 0.954 0.966 0.976 0.981 0.985 0.987
20 0.956 0.964 0.969 0.972 0.977 0.982 0.987 0.990 0.992 0.993
30 0.971 0.975 0.979 0.980 0.985 0.988 0.992 0.993 0.994 0.995
40 0.978 0.981 0.985 0.986 0.989 0.991 0.994 0.995 0.996 0.997
50 0.984 0.986 0.988 0.989 0.991 0.993 0.995 0.996 0.997 0.997
4 10 0.897 0.919 0.936 0.941 0.954 0.966 0.976 0.981 0.985 0.987
20 0.955 0.963 0.969 0.971 0.977 0.983 0.988 0.990 0.992 0.993
30 0.971 0.977 0.981 0.982 0.985 0.989 0.992 0.994 0.995 0.996
40 0.979 0.982 0.985 0.986 0.989 0.992 0.994 0.995 0.996 0.997
50 0.984 0.986 0.988 0.989 0.991 0.993 0.995 0.996 0.997 0.997
5 10 0.907 0.922 0.935 0.941 0.954 0.966 0.976 0.982 0.985 0.988
20 0.958 0.963 0.969 0.972 0.978 0.983 0.988 0.991 0.992 0.994
30 0.973 0.977 0.981 0.982 0.986 0.989 0.992 0.994 0.995 0.996
40 0.977 0.982 0.985 0.986 0.989 0.992 0.994 0.995 0.996 0.997
50 0.982 0.985 0.988 0.989 0.991 0.993 0.995 0.996 0.997 0.997
2 0.6 10 0.879 0.901 0.919 0.925 0.943 0.958 0.970 0.977 0.982 0.985
20 0.940 0.949 0.959 0.962 0.971 0.978 0.985 0.988 0.990 0.992
30 0.965 0.970 0.975 0.976 0.981 0.985 0.989 0.992 0.993 0.994
40 0.974 0.979 0.982 0.983 0.986 0.990 0.992 0.994 0.995 0.996
50 0.979 0.982 0.985 0.987 0.989 0.992 0.994 0.995 0.996 0.997
3 10 0.884 0.900 0.920 0.928 0.945 0.959 0.971 0.978 0.982 0.985
20 0.942 0.953 0.962 0.965 0.973 0.979 0.985 0.988 0.990 0.992
30 0.963 0.970 0.975 0.977 0.982 0.986 0.990 0.992 0.994 0.995
40 0.974 0.977 0.981 0.983 0.986 0.990 0.992 0.994 0.995 0.996
50 0.979 0.982 0.985 0.986 0.990 0.992 0.994 0.995 0.996 0.997
4 10 0.885 0.903 0.923 0.928 0.945 0.960 0.972 0.978 0.983 0.986
20 0.941 0.952 0.960 0.963 0.972 0.979 0.985 0.988 0.991 0.992
30 0.963 0.970 0.975 0.977 0.982 0.986 0.990 0.992 0.994 0.995
40 0.974 0.978 0.982 0.983 0.986 0.990 0.993 0.994 0.995 0.996
50 0.980 0.983 0.986 0.987 0.990 0.992 0.994 0.995 0.996 0.997
5 10 0.884 0.903 0.921 0.927 0.945 0.960 0.972 0.979 0.983 0.986
20 0.943 0.952 0.961 0.964 0.972 0.979 0.986 0.989 0.991 0.993
30 0.963 0.970 0.975 0.976 0.981 0.986 0.990 0.992 0.994 0.995
40 0.972 0.976 0.981 0.982 0.986 0.990 0.993 0.994 0.995 0.996
50 0.979 0.982 0.985 0.987 0.989 0.992 0.994 0.995 0.996 0.997

4

4 Power calculation

In this section, we calculate the power of the considered tests by replacing the Gamma(θ, λ, α) random variates generator in the simulation program with generators from the alternatives including; normal, lognormal, and the Weibull distributions. Based on different sample size, different censoring ratios and 10,001 simulations, the power is calculated to be Power = # of rejection of H 0 10 , 001 , where H0 is rejected if T1 (T2) ⩾ the corresponding percentage points given in Table 1 (Table 2), and T1 (T2) is evaluated from the alternative distributions.

Tables 3 and 4 represent the power of the test for the two-parameters and three-parameter cases, respectively. The different considered alternative distributions are:

  1. Normal distribution N(μ, σ).

  2. Lognormal distribution LN(μ, σ).

  3. Weibull distribution with shape α, scale parameter σ and location parameter μ, W(μ, σ, α).

  4. Chi-square distribution χ2(α).

  5. Cauchy distribution with scale parameter σ and location parameter σ, C(μ, σ).

  6. Mixtures of two exponential distribution MTE ( θ 1 , θ 2 , w ) = wf 1 ( θ 1 ) + ( 1 - w ) f 2 ( θ 2 ) .

Table 3 Power of the test based on the two-parameter case.
α p n N(0, 1) W(0, 1, 5) W(0, 1, 10) LN(0, 1)
5% 10% 5% 10% 5% 10% 5% 10%
2 1.0 10 0.994 0.997 0.939 0.987 1.000 1.000 0.371 0.456
20 1.000 1.000 1.000 1.000 1.000 1.000 0.566 0.657
30 1.000 1.000 1.000 1.000 1.000 1.000 0.693 0.769
40 1.000 1.000 1.000 1.000 1.000 1.000 0.793 0.853
50 1.000 1.000 1.000 1.000 1.000 1.000 0.859 0.908
3 10 0.999 0.999 0.748 0.915 1.000 1.000 0.603 0.685
20 1.000 1.000 0.997 1.000 1.000 1.000 0.828 0.885
30 1.000 1.000 1.000 1.000 1.000 1.000 0.937 0.963
40 1.000 1.000 1.000 1.000 1.000 1.000 0.976 0.989
50 1.000 1.000 1.000 1.000 1.000 1.000 0.992 0.997
4 10 0.999 0.999 0.534 0.766 0.998 1.000 0.772 0.832
20 1.000 1.000 0.958 0.993 1.000 1.000 0.945 0.968
30 1.000 1.000 0.999 1.000 1.000 1.000 0.989 0.996
40 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.999
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 10 1.000 1.000 0.361 0.601 0.993 1.000 0.867 0.908
20 1.000 1.000 0.852 0.957 1.000 1.000 0.982 0.991
30 1.000 1.000 0.988 0.999 1.000 1.000 0.998 0.999
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.8 10 0.999 0.999 0.695 0.867 0.998 1.000 0.206 0.287
20 1.000 1.000 0.995 0.999 1.000 1.000 0.301 0.394
30 1.000 1.000 1.000 1.000 1.000 1.000 0.402 0.501
40 1.000 1.000 1.000 1.000 1.000 1.000 0.472 0.575
50 1.000 1.000 1.000 1.000 1.000 1.000 0.554 0.642
3 10 0.999 0.999 0.426 0.651 0.979 0.997 0.452 0.545
20 1.000 1.000 0.936 0.976 1.000 1.000 0.680 0.756
30 1.000 1.000 0.997 0.999 1.000 1.000 0.812 0.867
40 1.000 1.000 1.000 1.000 1.000 1.000 0.894 0.929
50 1.000 1.000 1.000 1.000 1.000 1.000 0.941 0.967
4 10 1.000 1.000 0.261 0.464 0.917 0.984 0.648 0.725
20 1.000 1.000 0.774 0.892 1.000 1.000 0.876 0.915
30 1.000 1.000 0.960 0.985 1.000 1.000 0.962 0.976
40 1.000 1.000 0.994 0.998 1.000 1.000 0.984 0.991
50 1.000 1.000 0.999 1.000 1.000 1.000 0.995 0.998
5 10 1.000 1.000 0.151 0.336 0.817 0.953 0.760 0.827
20 1.000 1.000 0.565 0.725 1.000 1.000 0.951 0.969
30 1.000 1.000 0.830 0.914 1.000 1.000 0.990 0.994
40 1.000 1.000 0.949 0.980 1.000 1.000 0.998 0.999
50 1.000 1.000 0.984 0.995 1.000 1.000 1.000 1.000
2 0.6 10 1.000 1.000 0.351 0.593 0.903 0.980 0.114 0.179
20 1.000 1.000 0.914 0.970 1.000 1.000 0.155 0.231
30 1.000 1.000 0.994 0.999 1.000 1.000 0.176 0.260
40 1.000 1.000 1.000 1.000 1.000 1.000 0.204 0.290
50 1.000 1.000 1.000 1.000 1.000 1.000 0.226 0.314
3 10 0.999 0.999 0.147 0.355 0.674 0.896 0.291 0.389
20 1.000 1.000 0.642 0.807 0.999 1.000 0.443 0.542
30 1.000 1.000 0.906 0.962 1.000 1.000 0.564 0.657
40 1.000 1.000 0.978 0.994 1.000 1.000 0.652 0.742
50 1.000 1.000 0.997 0.999 1.000 1.000 0.747 0.818
4 10 1.000 1.000 0.072 0.210 0.482 0.772 0.483 0.580
20 1.000 1.000 0.391 0.574 0.990 0.998 0.687 0.768
30 1.000 1.000 0.676 0.809 1.000 1.000 0.827 0.881
40 1.000 1.000 0.858 0.936 1.000 1.000 0.903 0.939
50 1.000 1.000 0.948 0.979 1.000 1.000 0.952 0.971
5 10 1.000 1.000 0.043 0.133 0.353 0.638 0.622 0.696
20 1.000 1.000 0.236 0.395 0.952 0.989 0.837 0.884
30 1.000 1.000 0.483 0.636 1.000 1.000 0.937 0.958
40 1.000 1.000 0.638 0.781 1.000 1.000 0.974 0.985
50 1.000 1.000 0.783 0.882 1.000 1.000 0.991 0.995
Table 4 Power of the test based on the three-parameter case.
α p n LN(0, 1) χ2(1) MTE(4, 2, 0.5) C(0, 1)
5% 10% 5% 10% 5% 10% 5% 10%
2 1 10 0.985 0.992 0.368 0.483 0.628 0.735 0.589 0.678
20 1.000 1.000 0.684 0.788 0.916 0.961 0.873 0.918
30 1.000 1.000 0.864 0.923 0.988 0.997 0.964 0.979
40 1.000 1.000 0.944 0.975 0.999 1.000 0.990 0.996
50 1.000 1.000 0.975 0.992 1.000 1.000 0.997 0.999
3 10 0.993 0.996 0.496 0.613 0.745 0.831 0.579 0.670
20 1.000 1.000 0.844 0.911 0.974 0.990 0.863 0.913
30 1.000 1.000 0.964 0.983 0.999 1.000 0.955 0.976
40 1.000 1.000 0.993 0.998 1.000 1.000 0.988 0.994
50 1.000 1.000 0.999 1.000 1.000 1.000 0.996 0.998
4 10 0.996 0.998 0.578 0.684 0.803 0.878 0.574 0.665
20 1.000 1.000 0.903 0.946 0.989 0.995 0.856 0.902
30 1.000 1.000 0.986 0.994 1.000 1.000 0.953 0.973
40 1.000 1.000 0.999 1.000 1.000 1.000 0.986 0.994
50 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.998
5 10 0.996 0.999 0.623 0.726 0.835 0.902 0.565 0.660
20 1.000 1.000 0.938 0.968 0.994 0.998 0.853 0.899
30 1.000 1.000 0.993 0.998 1.000 1.000 0.951 0.971
40 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.993
50 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.998
2 0.8 10 0.947 0.967 0.389 0.492 0.662 0.745 0.491 0.592
20 0.999 1.000 0.740 0.818 0.961 0.974 0.868 0.907
30 1.000 1.000 0.916 0.952 0.996 0.998 0.969 0.980
40 1.000 1.000 0.976 0.989 0.999 1.000 0.993 0.995
50 1.000 1.000 0.995 0.999 1.000 1.000 0.999 1.000
3 10 0.964 0.978 0.471 0.585 0.729 0.806 0.432 0.546
20 1.000 1.000 0.852 0.903 0.980 0.988 0.825 0.872
30 1.000 1.000 0.971 0.987 0.998 0.999 0.948 0.965
40 1.000 1.000 0.996 0.999 1.000 1.000 0.986 0.991
50 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.998
4 10 0.969 0.982 0.512 0.624 0.757 0.827 0.390 0.510
20 1.000 1.000 0.888 0.935 0.986 0.993 0.786 0.847
30 1.000 1.000 0.984 0.993 0.999 0.999 0.929 0.951
40 1.000 1.000 0.999 0.999 1.000 1.000 0.979 0.986
50 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.996
5 10 0.972 0.985 0.536 0.649 0.774 0.844 0.363 0.485
20 1.000 1.000 0.913 0.951 0.989 0.995 0.765 0.828
30 1.000 1.000 0.991 0.996 0.999 0.999 0.918 0.939
40 1.000 1.000 0.999 1.000 1.000 1.000 0.970 0.981
50 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.994
2 0.6 10 0.786 0.858 0.299 0.407 0.388 0.481 0.299 0.438
20 0.993 0.996 0.655 0.751 0.704 0.777 0.780 0.851
30 1.000 1.000 0.859 0.909 0.855 0.895 0.944 0.964
40 1.000 1.000 0.946 0.968 0.932 0.957 0.987 0.993
50 1.000 1.000 0.983 0.992 0.969 0.981 0.998 0.999
3 10 0.833 0.889 0.361 0.477 0.442 0.541 0.250 0.388
20 0.996 0.998 0.755 0.828 0.781 0.839 0.722 0.793
30 1.000 1.000 0.924 0.957 0.912 0.942 0.904 0.939
40 1.000 1.000 0.978 0.989 0.969 0.982 0.968 0.980
50 1.000 1.000 0.997 0.998 0.990 0.995 0.991 0.996
4 10 0.850 0.903 0.389 0.509 0.466 0.566 0.211 0.354
20 0.997 0.999 0.782 0.859 0.803 0.863 0.659 0.756
30 1.000 1.000 0.946 0.970 0.933 0.957 0.873 0.913
40 1.000 1.000 0.988 0.994 0.980 0.989 0.952 0.970
50 1.000 1.000 0.998 0.999 0.995 0.997 0.986 0.991
5 10 0.861 0.908 0.404 0.523 0.479 0.580 0.186 0.328
20 0.998 0.999 0.818 0.884 0.827 0.881 0.635 0.734
30 1.000 1.000 0.957 0.976 0.944 0.966 0.844 0.893
40 1.000 1.000 0.991 0.997 0.986 0.993 0.935 0.962
50 1.000 1.000 0.999 1.000 0.996 0.998 0.979 0.988

Tables 3 and 4 indicate that the correlation test has good power to reject sample from the chosen alternative distributions. Also, the power increases as the sample sizes increase for all given censoring ratios p = 1.0, 0.8, 0.6 as well as the significance level increases.

4.1

4.1 Examples

In order to illustrate and show the performance of the correlation coefficient goodness-of-fit test for gamma distribution in both cases (two-parameter and three-parameter), we simulate four sets of order statistics each of size 20; they are

  1. Sample from LN(0, 1): one-parameter case of the lognormal distribution with μ = 0 and σ = 1.

  2. Sample from Gamma(0, 1, 2): two-parameter gamma distribution with location parameter is equal to 0, scale parameter is equal to 1 and shape parameter is equal to 2.

  3. Sample from Gamma(1, 5, 3): three-parameter cases of gamma distribution with location parameter is equal to 1, scale parameter is equal to 3 and shape parameter is equal to 3.

  4. Sample from LN(1, 5): two-parameter lognormal distribution with μ is equal to 1 and scale σ is equal to 5.

The above four order statistics samples are used with the analogous moments of order statistics from Gamma(0, 1, α), Tables 1 and 2 to run the test. The results of the tests at 5% significance level are shown in Table 6.

5

5 Applications

5.1

5.1 Application 1

The following data are given in Lowless (2003). The data represents the survival times in weeks for 20 males rats that were exposed to a high level radiation. The data are due to Furth, Upton and Kimball (1959) and have been discussed by Engelhardt and Bain (1977) and others. The order statistics of the data are: 40, 62, 69, 77, 83, 88, 94, 101, 109, 115, 123, 125, 128, 136, 137, 152, 152, 153, 160, 165.

By using the above data and the moments of order statistics of Gamma(1, 1, 5), we calculate T1(calculated) = 0.98690, T2(calculated) = 0.97950. Hence from Tables 1 and 2, we recommend the gamma distribution for the given data at 5% level of significance.

5.2

5.2 Application 2

In this application, we use some collected data from Dalla hospital, Riyadh, Saudi Arabia. The data represents the cost (in SR) of 50 patients from each different ages they already have visited the outpatients clinic during one year. The summary of the data is given in Table 5. The values of λ ˆ and α ˆ in Table 5 are estimated by using the mean and variance of the original data.

Table 5 The real data in application 2.
Age (year) Mean StDev Min. Median Max. λ ˆ α ˆ
<1 851.2 407.2 100 824.6 1521.5 195 4
1–5 159.43 52.77 50 162.03 255 17 9
6–15 172.16 57.79 49.5 168.7 276.6 19 9
16–20 967.5 629.4 86.2 860.8 2319.1 409 2
21–30 282.4 153.6 100 262.5 599.5 84 3
31–40 348.9 203.2 100 295.4 821.1 118 3
41–50 348.9 203.2 100 295.4 821.1 118 3
>50 319.1 145 100 292.5 601.2 66 5
Age α T1(calculated) Decision T1(calculated) Decision
<1 4 0.9908 A 0.9852 A
1–5 5 0.8136 R 0.7902 R
6–15 5 0.7594 R 0.7259 R
16–20 2 0.7917 R 0.7716 R
21–30 3 0.7924 R 0.7604 R
31–40 3 0.8028 R 0.7667 R
41–50 3 0.8129 R 0.7741 R
>50 5 0.8162 R 0.7753 R

A: Accept and R: Reject.

By using the original data and the moments of order statistics of Gamma(0, 1, 5), we calculate T1(calculated) and T2(calculated). Next, we use the corresponding values and at 1% level of significance. We have the decisions in Table 6. From Table 6, we recommend gamma distribution for the age less than one year.

Distribution Test statistic Ti Decision
Gamma(0, 1, 3) T1 = 0.99633 A
LN(0, 1) T1 = 0.95277 R
Gamma(1, 5, 3) T2 = 0.99339 A
LN(0, 1) T2 = 0.704667 R

A: Accept and R: Reject.

Acknowledgements

The authors would like to thank the referees for their helpful comments. Also, the author would like to thank the Research Center, College of Science, King Saud University for funding the project (Stat/2005/21).

References

  1. , , , . A First Course in Order Statistics. New York: John Wiley and Sons; .
  2. , . A test of discriminating between models. Biometrika. 1969;56:337-341.
    [Google Scholar]
  3. , . A method for discriminating between models. J. Roy. Statist. Soc. B.. 1970;32:323-352. with discussions
    [Google Scholar]
  4. , , . Probability of correct selection of Weibull versus gamma based on likelihood ratio. Commun. Stat.-Theory Methods. 1980;9:375-381.
    [Google Scholar]
  5. , . Weighted Kolmogrov–Smirnov type tests for grouped Rayleigh data. Appl. Math. Model.. 2006;5:437-445.
    [Google Scholar]
  6. , , . Discriminating between alternative binary response models. Biometrika. 1967;54:573-578.
    [Google Scholar]
  7. , . On the separate families of hypotheses with small sample size. J. Statist. Comput. Simul.. 1980;2:183-187.
    [Google Scholar]
  8. , . Tests of fit for the three-parameter lognormal distribution. Comput. Stat. Data Anal.. 2006;50:1418-1480.
    [Google Scholar]
  9. , . Tests of separate families of hypotheses. In: Proceedings of the Fourth Berkeley Symposium in Mathematical Statistics and Probability. University of California Press; . p. :105-123.
    [Google Scholar]
  10. , . Further results on tests of separate families of hypotheses. J. Roy. Stat. Soc. B. 1962;24:406-424.
    [Google Scholar]
  11. , , . Goodness-of-Fit Techniques. New York: Marcel Dekker; .
  12. , . Order Statistics (second ed.). New York: John Wiley and Sons; .
  13. , , . Order Statistics (third ed.). New York: John Wiley and Sons; .
  14. , , . Discriminating between the log-normal and Weibull distribution. Technometrics. 1973;15:923-926.
    [Google Scholar]
  15. , . Discrimination procedure for separate families of hypotheses. J. Amer. Stat. Assoc.. 1973;68:970-974.
    [Google Scholar]
  16. , , . Uniformity most powerful unbiased tests on the scale parameter of a gamma distribution with a nuisance shape parameter. Technometrics. 1977;19:77-81.
    [Google Scholar]
  17. , , . On the maximum likelihood ratio method of deciding between the Weibull and gamma distribution. Commun. Stat.-Theory Methods. 1991;20:579-593.
    [Google Scholar]
  18. , . The probability plot correlation confident test for normality. Technometrics. 1975;17:111-117.
    [Google Scholar]
  19. , , . Closeness of gamma and generalized exponential distributions. Commun. Stat.-Theory Methods. 2003;32:705-721.
    [Google Scholar]
  20. , , . Discriminating between Weibull and generalized exponential distributions. Comput. Stat. Data Anal.. 2003;43:179-196.
    [Google Scholar]
  21. , , . Discriminating between gamma and generalized exponential distributions. J. Stat. Comput. Simul.. 2004;74:107-121.
    [Google Scholar]
  22. Huber-Carol, C., Balakrishnan, N, Nikulin, M. S., Mesbah, M. (Eds.), 2002. Goodness-of-Fit Tests and Model Validity. Birkhauser, Bostron.
  23. , . Fitting a gamma or lognormal distribution to fibre-diameter measurements on wool tops. Appl. Stat.. 1969;8:70-75.
    [Google Scholar]
  24. , , , . Continuous Univariate Distributions Vol vol. 1. (second ed.). New York: John Wiley and Sons; .
  25. , . Applied Extreme Value Statistics. New York: Macmillan; .
  26. , . Correlation coefficient goodness-of-fit test for the extreme-value distribution. Amer. Stat.. 1989;43:98-100.
    [Google Scholar]
  27. , , . Use of the correlation coefficient with normal probability plots. Amer. Stat.. 1985;39:75-79.
    [Google Scholar]
  28. , . Correlation goodness of fit test for the logarithmically decreasing survival distribution. Biometrical J.. 2001;43:1027-1035.
    [Google Scholar]
  29. , . When log-normal and gamma models give different results: A case study. Amer. Stat.. 1999;53:89-93.
    [Google Scholar]

Further reading

  1. , . Statistical Models and Methods for Lifetime Data (second ed.). New York: John Wiley and Sons; .
Show Sections