7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Correspondence
Corrigendum
Editorial
Full Length Article
Invited review
Letter to the Editor
Original Article
Retraction notice
REVIEW
Review Article
SHORT COMMUNICATION
Short review
7.2
CiteScore
3.7
Impact Factor
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT
Case Study
Correspondence
Corrigendum
Editorial
Full Length Article
Invited review
Letter to the Editor
Original Article
Retraction notice
REVIEW
Review Article
SHORT COMMUNICATION
Short review
View/Download PDF

A new weighted Ostrowski type inequality on arbitrary time scale

Department of Mathematics, Tuskegee University, Tuskegee, AL 36088, USA
Disclaimer:
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.

Peer review under responsibility of King Saud University.

Abstract

In this paper, we prove a new weighted generalized Montgomery identity and then use it to obtain a weighted Ostrowski type inequality for parameter function on an arbitrary time scale. In addition, the real, discrete and quantum cases are considered.

Keywords

Montgomery’s identity
Ostrowski’s inequality
Time scales
1

1 Introduction

The following result is known in the literature as Ostrowski’s inequality (see for example page 468 of Dragomir (1999)).

Theorem 1

Let f:[a,b]R be a differentiable mapping on (a,b) with the property that |f(t)|M for all t(a,b) . Then f(x)-1b-aabf(t)dt14+(x-a+b2)2(b-a)2(b-a)M, for all x[a,b] . The constant 14 is the best possible in the sense that it cannot be replaced by a smaller constant.

Hilger (1988) initiated the theory of time scales (see Section 2 for definition) which unifies the difference and differential calculus in a consistent way. In the bid to continue in the development of this theory, Bohner and Matthews (2008) extended Theorem 1 to time scales by proving

Theorem 2

Let a,b,s,tT,a<b and f:[a,b]R be a differentiable. Then

(1)
f(t)-1b-aabfσ(s)ΔsMb-a(h2(t,a)+h2(t,b)), where M=supa<t<b|fΔ(t)| and h2(·,·) is defined in item (a) of Remark 11.

Since the advent of the above result, many Ostrowski and weighted Ostrowski type results on time scales have been published. In order to prove Theorem 2, one needs the so-called Montgomery identity. In the literature, there exist a lot of generalizations of this identity, see for example Karpuz and Özkan (2008), Liu and Tuna (2012), Liu et al. (2014) and Liu et al. (2014). Lately, Liu and Ngô (2009) investigated Theorem 2 by introducing a parameter λ . Inspired by the later, Xu and Fang (2016) recently proved the following new generalization of the Montgomery identity.

Theorem 3

Suppose that a,b,s,tT , a<b , f:[a,b]R is differentiable, and ψ is a function of [0,1] into [0,1] . Then 1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+(1-ψ(1-λ))f(b)2=1b-aabfσ(s)Δs+1b-aabK(s,t)fΔ(s)Δs, where

(2)
K(s,t)=s-(a+ψ(λ)b-a2),s[a,t),s-(a+(1+ψ(1-λ))b-a2),s[t,b).

Using the above result, Xu and Fang (2016) also proved the following Ostrowski type inequality.

Theorem 4

Suppose that a,b,s,tT , a<b , f:[a,b]R are differentiable, and ψ is a function of [0,1] into [0,1] . Then the following inequality holds 1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+(1-ψ(1-λ))f(b)2-1b-aabfσ(s)ΔsMb-ah2a,a+ψ(λ)b-a2+h2t,a+ψ(λ)b-a2+h2t,a+(1+ψ(1-λ))b-a2+h2b,a+(1+ψ(1-λ))b-a2, for all λ[0,1] such that a+ψ(λ)b-a2 and a+(1+ψ(1-λ))b-a2 are in T , and ta+ψ(λ)b-a2,a+(1+ψ(1-λ))b-a2 , where M=supa<t<b|fΔ(t)|< .

In this paper, we prove a new weighted generalized Montgomery identity and then use it to obtain a weighted Ostrowski type inequality for parameter function on an arbitrary time scale. Theorems 3 and 4 are special cases of our results.

The paper is organized as follows. In Section 2, we recall necessary results and definitions in time scale theory. Our results are formulated and proved in Section 3.

2

2 Time scale essentials

To make this paper self contained, we collect the following results that will be of importance in the sequel. For more on the theory of time scales, we refer the reader to the books of Bohner and Peterson (2001) and Bohner and Peterson (2003). We start with the following definition.

Definition 5

A time scale T is an arbitrary nonempty closed subset of R . The forward jump operator σ:TT and backward jump operator ρ:TT are defined by σ(t)inf{sT:s>t} for tT and ρ(t)sup{sT:s<t} for tT , respectively. Clearly, we see that σ(t)t and ρ(t)t for all tT . If σ(t)>t , then we say that t is right-scattered, while if ρ(t)<t , then we say that t is left-scattered. If σ(t)=t , then t is called right dense, and if ρ(t)=t then t is called left dense. Points that are both right dense and left dense are called dense. The set Tk is defined as follows: if T has a left scattered maximum m , then Tk=T-m; otherwise, Tk=T . For a,bT with ab , we define the interval [a,b] in T by [a,b]={tT:atb} . Open intervals and half-open intervals are defined in the same manner.

Definition 6

The function f:TR , is called differentiable at tTk , with delta derivative fΔ(t)R , if for any given >0 there exist a neighborhood U of t such that f(σ(t))-f(s)-fΔ(t)(σ(t)-s)|σ(t)-s|,sU.

If T=R , then fΔ(t)=df(t)dt , and if T=Z , then fΔ(t)=f(t+1)-f(t) .

Definition 7

The function f:TR is said to be rd -continuous if it is continuous at all dense points tT and its left-sided limits exist at all left dense points tT .

Definition 8

Let f be a rd -continuous function. Then g:TR is called the antiderivative of f on T if it is differentiable on T and satisfies gΔ(t)=f(t) for any tTk . In this case, we have abf(s)Δs=g(b)-g(a).

Theorem 9

If a,b,cT with a<c<b , αR and f,g are rd -continuous, then

  • (i) ab[f(t)+g(t)]Δt=abf(t)Δt+abg(t)Δt .

  • (ii) abαf(t)Δt=αabf(t)Δt

  • (iii) abf(t)Δt=-baf(t)Δt

  • (iv) abf(t)Δt=acf(t)Δt+cbf(t)Δt .

  • (v) abf(t)Δtab|f(t)|Δt for all t[a,b] .

  • (vi) abf(t)gΔ(t)Δt=(fg)(b)-(fg)(a)-abfΔ(t)g(σ(t))Δt .

Definition 10

Let hk:T2T , kN be functions that are recursively defined as h0(t,s)=1 and hk+1(t,s)=sthk(τ,s)Δτ,foralls,tT.

In view of the above definition, we make the following remarks (see Example 1.102 in the book (Bohner and Peterson, 2001)).

Remark 11

(a) Using the fact that for all s,tT , h1(t,s)=t-s , we get that h2(t,s)=st(τ-s)Δτ.

(b) When T=R , then for all s,tT , hk(t,s)=(t-s)kk!.

(c) When T=Z , then for all s,tT , hk(t,s)=t-sk=i=1kt-s+1-ii.

(d) When T=qN0 with q>1 , then for all s,tT , hk(t,s)=(t-s)qk[k]!forkN0, where [k]qqk-1q-1 for qR{1} and kN0 , [k]!j=1k[j]q for kN0 , (t-s)qkj=0k-1(t-qjs)forkN0.

3

3 Main results

For the proof of our main result, we will need the following lemma.

Lemma 12

Lemma 12 (A weighted generalized Montgomery Identity)

Let ν:[a,b][0,) be rd- continuous and positive and w:[a,b]R be differentiable such that wΔ(t)=ν(t) on [a,b] . Suppose also that a,b,s,tT , a<b , f:[a,b]R is differentiable, and ψ is a function of [0,1] into [0,1] . Then we have the following equation

(3)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2abν(t)Δt=abK(s,t)fΔ(s)Δs+abν(s)f(σ(s))Δs, where
(4)
K(s,t)=w(s)-w(a)+ψ(λ)w(b)-w(a)2,s[a,t),w(s)-w(a)+(1+ψ(1-λ))w(b)-w(a)2,s[t,b].

Proof

Using item (vi) of Theorem 9, we obtain

(5)
atw(s)-w(a)+ψ(λ)w(b)-w(a)2fΔ(s)Δs+atν(s)f(σ(s))Δs=w(t)-w(a)+ψ(λ)w(b)-w(a)2f(t)-w(a)-w(a)+ψ(λ)w(b)-w(a)2f(a) and
(6)
tbw(s)-w(a)+(1+ψ(1-λ))w(b)-w(a)2fΔ(s)Δs+tbν(s)f(σ(s))Δs=w(b)-w(a)+(1+ψ(1-λ))w(b)-w(a)2f(b)-w(t)-w(a)+(1+ψ(1-λ))w(b)-w(a)2f(t).

Adding Eqs. (5) and (6), and using item (iv) of Theorem 9, gives

(7)
abK(s,t)fΔ(s)Δs+abν(s)f(σ(s))Δs=1+ψ(1-λ)-ψ(λ)2f(t)abν(t)Δt+ψ(λ)f(a)+1-ψ(1-λ)f(b)2abν(t)Δt.

Hence, Eq. (3) follows.  □

Remark 13

If w(t)=t , then Lemma 12 reduces to Theorem 3.

Corollary 14

For the case when T=R in Lemma 12, we get

(8)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2abν(t)dt=abK(s,t)f(s)ds+abν(s)f(s)ds, where ν(t)=w(t) on [a,b] and
(9)
K(s,t)=w(s)-w(a)+ψ(λ)w(b)-w(a)2,s[a,t),w(s)-w(a)+(1+ψ(1-λ))w(b)-w(a)2,s[t,b].

Corollary 15

If we consider ψ(λ)=λ in Corollary 14, then the equation becomes (1-λ)f(t)+λf(a)+f(b)2abν(t)dt=abK(s,t)f(s)ds+abν(s)f(s)ds, where ν(t)=w(t) on [a,b] and

(10)
K(s,t)=w(s)-w(a)+λw(b)-w(a)2,s[a,t),w(s)-w(b)-λw(b)-w(a)2,s[t,b].

Corollary 16

For the case when T=Z,a=0,b=n,f(k)=xk,s=j and t=i , Lemma 12 becomes

(11)
1+ψ(1-λ)-ψ(λ)2xi+ψ(λ)x0+1-ψ(1-λ)xn2j=0n-1ν(j)=j=0n-1K(j,i)Δxj+j=0n-1ν(j)xj+1, where ν(j)=w(j+1)-w(j) on [0,n-1] and
(12)
K(j,i)=w(j)-w(0)+ψ(λ)w(n)-w(0)2,j[0,i),w(j)-w(0)+(1+ψ(1-λ))w(n)-w(0)2,j[i,n-1].

Corollary 17

Let T=qN0 , with q>1 , a=qm and b=qn with m<n . For this case, σ(t)=qt and fΔ(t)=Dqf(t)f(qt)-f(t)(q-1)t . Using this information, Lemma 12 becomes

(13)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2qmqnν(t)dqt=j=mn-1K(qj,t)f(qj+1)-f(qj)(q-1)qj+qmqnν(t)f(qt)dqt, where ν(t)=w(qt)-w(t)(q-1)t on [qm,qn] and
(14)
K(qj,t)=w(qj)-w(qm)+ψ(λ)w(qn)-w(qm)2,qj[qm,t),w(qj)-w(qm)+(1+ψ(1-λ))w(qn)-w(qm)2,qj[t,qn].

Theorem 18

Let ν:[a,b][0,) be rd -continuous and positive and w:[a,b]R be differentiable such that wΔ(t)=ν(t) on [a,b] . Suppose also that a,b,s,tT , a<b , f:[a,b]R is differentiable, and ψ is a function of [0,1] into [0,1] . Then we have the following inequality

(15)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2abν(t)Δt-abν(s)f(σ(s))ΔsMab|K(s,t)|Δs, where K(s,t) is defined by (4) and M=supa<t<b|fΔ(t)|< .

Proof

The proof easily follows by applying the absolute value on both sides of Eq. (3) in Lemma 12 and then using item (v) of Theorem 9. □

Remark 19

Setting w(t)=t in Theorem 18 reduces to Theorem 4 where the equation ab|K(s,t)|Δs=h2a,a+ψ(λ)b-a2+h2t,a+ψ(λ)b-a2+h2t,a+(1+ψ(1-λ))b-a2+h2b,a+(1+ψ(1-λ))b-a2. holds for all λ[0,1] such that a+ψ(λ)b-a2 and a+(1+ψ(1-λ))b-a2 are in T , and ta+ψ(λ)b-a2,a+(1+ψ(1-λ))b-a2 .

We obtain the following corollary by taking w(t)=t2+c , cR in Theorem 18. For this, ν(t)=σ(t)+t , for t[a,b] .

Corollary 20

Let a,b,s,tT,a<b , f:[a,b]R is differentiable, and ψ is a function of [0,1] into [0,1] . Then we have the following inequality

(16)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2ab(σ(t)+t)Δt-ab(σ(s)+s)f(σ(s))ΔsMab|K(s,t)|Δs, where
(17)
K(s,t)=s2-a2+ψ(λ)b2-a22,s[a,t),s2-a2+(1+ψ(1-λ))b2-a22,s[t,b]
and M=supa<t<b|fΔ(t)|< .

Corollary 21

For the case when T=R in Theorem 18, we get

(18)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2abν(t)dt-abν(s)f(s)dsMab|K(s,t)|ds, where ν(t)=w(t) ,
(19)
K(s,t)=w(s)-w(a)+ψ(λ)w(b)-w(a)2,s[a,t),w(s)-w(a)+(1+ψ(1-λ))w(b)-w(a)2,s[t,b],
and M=supa<t<b|f(t)|< .

Corollary 22

For the case when T=Z , a=0,b=n,f(k)=xk,s=j and t=i , Theorem 18 amounts to

(20)
1+ψ(1-λ)-ψ(λ)2xi+ψ(λ)x0+1-ψ(1-λ)xn2j=0n-1ν(j)-j=0n-1ν(j)xj+1Mj=0n-1|K(j,i)|, where ν(j)=w(j+1)-w(j) ,
(21)
K(j,i)=w(j)-w(0)+ψ(λ)w(n)-w(0)2,j[0,i),w(j)-w(0)+(1+ψ(1-λ))w(n)-w(0)2,j[i,n-1],
and M=sup0<i<n|Δxi|< .

Corollary 23

Let T=qN0 , with q>1 , a=qm and b=qn with m<n . Then we have

(22)
1+ψ(1-λ)-ψ(λ)2f(t)+ψ(λ)f(a)+1-ψ(1-λ)f(b)2qmqnν(t)dqt-qmqnν(t)f(qt)dqtMj=mn-1|K(qj,t)|, where ν(t)=w(qt)-w(t)(q-1)t on [qm,qn] ,
(23)
K(qj,t)=w(qj)-w(qm)+ψ(λ)w(qn)-w(qm)2,qj[qm,t),w(qj)-w(qm)+(1+ψ(1-λ))w(qn)-w(qm)2,qj[t,qn],
and M=supqm<qj<qnf(qj+1)-f(qj)(q-1)qj< .

Corollary 24

For ψ(λ)=λ2 , the inequality in Theorem 18 boils down to

(24)
(1-λ)f(t)+λ2f(a)+2λ-λ2f(b)2abν(t)Δt-abν(s)f(σ(s))ΔsMab|K(s,t)|Δs, where
(25)
K(s,t)=w(s)-w(a)+λ2w(b)-w(a)2,s[a,t),w(s)-w(a)+(λ2-2λ+2)w(b)-w(a)2,s[t,b]
and M=supa<t<b|fΔ(t)|< .

Remark 25

  1. Putting λ=0 in Eq. (24) gives |f(t)abν(t)Δt-abν(s)f(σ(s))Δs|Mab|K(s,t)|Δs, where K(s,t)=w(s)-w(a),s[a,t),w(s)-w(b),s[t,b].

  2. For λ=1/2 in Eq. (24) we obtain the following inequality f(t)2+f(a)+3f(b)8abν(t)Δt-abν(s)f(σ(s))ΔsMab|K(s,t)|Δs, where K(s,t)=w(s)-7w(a)+w(b)8,s[a,t),w(s)-3w(a)+5w(b)8,s[t,b].

  3. If we take λ=1 in Eq. (24), we obtain f(a)+f(b)2abν(t)Δt-abν(s)f(σ(s))ΔsMab|K(s,t)|Δs, where K(s,t)=w(s)-w(a)+w(b)2s[a,b].

4

4 Conclusion

In this work, a new weighted Montgomery identity is established. Using this identity, a new weighted Ostrowski type inequality is also obtained. Our results reduce to results due to Xu and Fang (2016) if w(t)=t . In addition, the continuous, discrete and quantum cases are considered as drop-outs of our results.

Acknowledgment

Many thanks to the anonymous referees for their valuable comments and suggestions.

References

  1. , , . Ostrowski inequalities on time scales. J. Inequal. Pure Appl. Math.. 2008;9(1) Art. 6.
    [Google Scholar]
  2. , , . Dynamic Equations on Time Scales. Boston, MA: Birkhäuser Boston; .
  3. , , . Advances in Dynamic Equations on Time Series. Boston, MA: Birkhäuser Boston; .
  4. , . Grüss inequality in inner product spaces. The Australian Math Soc. Gazette.. 1999;26(2):66-70.
    [Google Scholar]
  5. , . Ein Ma β kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Würzburg, Germany: Universität Würzburg; . (Ph.D. thesis)
  6. , , . Generalized Ostrowski inequality on time scales. J. Inequal. Pure Appl. Math.. 2008;9(4) Art. 112
    [Google Scholar]
  7. , , . A new generalization of Ostrowski type inequality on time scales. An. St. Univ. Ovidius Constanta. 2009;17(2):101-114.
    [Google Scholar]
  8. , , . Weighted Ostrowski, trapezoid and Grüss type inequalities on time scales. J. Math. Inequal.. 2012;6(3):281-399.
    [Google Scholar]
  9. , , , . On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales. Appl. Anal.. 2014;93(3):551-571.
    [Google Scholar]
  10. , , , . New weighted Ostrowski and Ostrowski-Grüss type inequalities on time scales. Ann. Alexandru Ioan Cuza Univ. Math.. 2014;60(1):57-76.
    [Google Scholar]
  11. , , . A new Ostrowski type inequality on time scales. J. Math. Inequal.. 2016;10(3):751-760.
    [Google Scholar]
Show Sections