Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations
⁎Corresponding author. pshtiwansangawi@gmail.com (Pshtiwan Othman Mohammed),
-
Received: ,
Accepted: ,
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Peer review under responsibility of King Saud University.
Abstract
We consider a class of uncertain fractional difference equation of the Liouville-Caputo type (UFLCDE). An equivalent uncertain fractional sum equation is found to the UFLCDE by using the basic properties. The successive Picard iteration method for finding a solution to the UFLCDE is introduced. Using the theory of Banach contraction under the Lipschitz constant condition, we investigate the structure of algebras of existence and uniqueness of the UFLCDE. The article finally exhibits three examples to show the effectiveness of the proposed investigation.
Keywords
Riemann-Liouville fractional calculus
Fractional-order ODEs and PDEs
Liouville-Caputo fractional difference
Uncertainty theory
Existence and uniqueness
Banach contraction mapping theorem
Primary 39A70
39A12
Secondary 34A12

1 Introduction
In recent years, many experiments and theories have shown that a large number of abnormal phenomena that occurs in the engineering and applied sciences can be well described by using discrete fractional calculus. Especially, fractional difference equations have been found to be powerful tools in the modeling of various phenomena in many different fields of engineering and science, for example, in physics, fluid mechanics and heat conduction (see, for example, Bohner and Peterson, 2003; Srivastava et al., 2019; Liu, 2010; Kilbas et al., 2006; Srivastava, 2020; Srivastava, 2020; Goodrich and Peterson, 2015; Atici and Eloe, 2007; Atici and Eloe, 2009; Goodrich, 2011; Wu and Baleanu, 2015; Wu et al., 2017; Suwan et al., 2018; Mohammed and Abdeljawad, 2020; Zhu, 2015; Zhu, 2015; Lu and Zhu, 2019 and the references which are cited therein).
In the last few years, considerable attention has been given to the subject of fractional difference equations on the finite time scales. There are a few papers which investigate the existence and uniqueness of fractional difference equations in the sense of the Riemann–Liouville (RL) fractional calculus (see, for example, He et al., 2018 (2018),; Mohammed, 2019; Lu and Zhu, 2020; Srivastava and Mohammed, 2020; Mohammed et al., 2020; Lu et al., 2019; see also several recent developments Srivastava and Saad, 2020; Khader et al., 2020; Srivastava et al., 2020; Izadi and Srivastava, 2020; Srivastava and Saad, 2020; Singh et al., 2021 on the theory and applications of fractional-order ODEs and PDEs modelling various real-world situations). In particular, Lu et al. (2019) investigated the existence and uniqueness of the following uncertain fractional forward difference equation (UFFDE):
To the best of our knowledge, there are few studies that consider the existence and uniqueness of the RL fractional difference equations. Therefore, in the sense of the Liouville-Caputo fractional calculus, it is generally important to study this kind of difference equations by using the uncertainty theory, which extends and enriches the existing body of literature. Motivated by the above-cited investigations, in this article, we study the existence and uniqueness of the following uncertain fractional Liouville-Caputo like difference equation (UFLCDE):
The rest of this article is organized as follows. In Sections 2.1 and 2.2, we revisit some necessary definitions, lemmas and axioms in the context of discrete fractional calculus and the uncertainty theory, respectively. In Section 3, we state the main result. Finally, we give some examples of applications in Section 4.
2 Preliminaries
In this section, we revisit notations, definitions, and preliminary facts associated with the discrete fractional calculus and the uncertainty theory, which are used throughout this article.
2.1 Discrete fractional calculus
Here, in this subsection, we recall some basics from discrete fractional calculus for later use in the following sections (see, for details, Goodrich and Peterson, 2015; Abdeljawad, 2013; Abdeljawad et al., 2017; Abdeljawad, 2018). The functions we consider are always defined on the isolated time scale
Definition 1 see Goodrich and Peterson, 2015
Suppose that
Lemma 1 see Goodrich and Peterson, 2015
Suppose that
Lemma 2 see Atici and Eloe, 2007; Atici and Eloe, 2009; Abdeljawad, 2013; Abdeljawad et al., 2017; Abdeljawad, 2018
For any function
-
(i)
for . -
(ii)
. -
(iii)
. -
(iv)
for and
Lemma 3 see Abdeljawad, 2011
Suppose that
Definition 2 see Abdeljawad, 2018
Let
Recently, Lu et al. (2019) introduced the
Definition 3 see Lu et al., 2019
For any
We now define the
For any
Definition 5 see Lu et al., 2019
For any
Next, we recall the definition of delta discrete Mittag–Leffler (delta-ML) functions.
Definition 6 see Haider et al., 2020
Assume that
2.2 Uncertainty theory
In this subsection, we focus on the uncertainty theory concepts (see Liu, 2010). Let
[Normality axiom:]
for the universal set .[Duality axiom:]
for each event .[Subadditivity axiom:]
for each countable sequence of events .[Product axiom:] In view the above three axioms, it is clear that uncertain measure is a monotone increasing set function. The triplet
is called an uncertainty space.We now suppose that
are the uncertainty spaces and are any arbitrarily chosen events for . Then the product uncertain measure is an uncertain measure satisfying the following condition: where is the minimum operator.
Definition 7 see Liu, 2010
A function
Definition 8 see Liu, 2010
An uncertainty distribution
Definition 9 see Liu, 2010
Let
In the light of Definition 9, one can observe that
-
(i) The IUD of linear uncertain variable
is given by -
(ii) The IUD of a normal uncertain variable
is given by -
(iii) The IUD of a normal uncertain variable
is given by
Definition 10 see Liu, 2010
Let
From Definition (10, we can deduce that the symmetrical uncertain variable has the inverse uncertainty distribution
From Definition 10, we deduce that
-
The linear uncertain variable
is symmetrical for any positive real number a. -
The normal uncertain variable
is symmetrical.
Definition 11 see Liu, 2010
The uncertain variables
Definition 12 see Liu, 2010
(The IID) The uncertain variables
3 UFLCDE and the associated existence and uniqueness theorem
In view of the earlier works Lu et al., 2019 and Mohammed et al., 2020, we can state the definition of the UFLCDE as follows.
An uncertain fractional difference equation is a fractional difference equation which is driven by an uncertain sequence. Moreover, an uncertain fractional forward difference equation in the Liouville-Caputo sense (UFLCDE) is the uncertain fractional difference equation with the Liouville-Caputo forward difference.
The initial-value problem (1.3) with the initial conditions (1.4) is equivalent to the following uncertain fractional sum equation:
By applying
In this investigation, we focus now on the following special linear UFLCDE:
For any
Applying
To obtain an explicit solution, we use the method of the Picard approximation with a starting point
In addition, if we take
We now state the existence and uniqueness of the solution of UFLCDEs.
Theorem 2 Existence and Uniqueness
Let
Let us define
We now define the operator
4 Illustrative examples
In this section, we deal with some UFLCDE applications to confirm the validity our Theorem 2.
Consider the following UFLCDE:
According to Lemma 4 with
We consider the following UFLCDE:
According to Lemma 4 with
Consider the following UFLCDE:
According to Lemma 4 with
5 Conclusion
Our investigation in this article can be summarized as follows:
-
The basic concepts of the discrete fractional calculus and the uncertainty theory have been recalled and applied.
-
A certain UFLCDE (uncertain fractional forward difference equation in the Liouville-Caputo sense) has been introduced and investigated systematically.
-
An uncertain fractional sum equation, corresponding to the UFLCDE considered here, has been found.
-
The successive Picard iteration method has been successfully used for finding a solution to the UFLCDE investigated here.
-
The theory of Banach contraction under the Lipschitz constant condition has been used in order to investigate the existence and uniqueness of the solution of the UFLCDE studied here.
-
Three illustrative examples are presented to exhibit and verify the validity of the proposed investigations.
Data Availability
No data were used to support this study.
Funding
Not applicable.
Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Acknowledgements
This research was supported by Taif University Researchers Supporting Project (No. TURSP-2020/155), Taif University, Taif, Saudi Arabia, and it was supported by the National Research Foundation of the Republic of Korea (NRF) grant funded by the Government of the Republic of Korea government (MEST) (Grant No. 2017R1A2B4006092).
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
- On Riemann and Caputo fractional differences. Comput. Math. Appl.. 2011;62:1602-1611.
- [Google Scholar]
- Abdeljawad, T., 2013. On delta and nabla Caputo fractional differences and dual identities, Discr. Dynam. Nature Soc. 2013 (2013), Article ID 12.
- Different type kernel h-fractional differences and their fractional h-sums. Chaos Soliton Fract.. 2018;116:146-156.
- [Google Scholar]
- Fractional proportional differences with memory. Eur. Phys. J. Spec. Top.. 2017;226:3333-3354.
- [Google Scholar]
- A transform method in discrete fractional calculus. Internat. J. Differ. Equ.. 2007;2:165-176.
- [Google Scholar]
- Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc.. 2009;137:981-989.
- [Google Scholar]
- Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simulat.. 2020;48:520-530.
- [Google Scholar]
- Advances in Dynamic Equations on Time Scales. Boston, Massachusetts, USA: Birkhäuser; 2003.
- Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput.. 2011;217:4740-4753.
- [Google Scholar]
- Discrete Fractional Calculus. Berlin: Springer; 2015.
- Haider, S.S., Rehman, M.U., Abdeljawad, T., 2020. On Hilfer fractional difference operator, Adv. Differ. Equ. 2020 (2020), Article ID 122.
- Existence of solutions for fractional difference equations via topological degree methods. Adv. Differ. Equ. 2018 (2018), Article ID 153
- [Google Scholar]
- Izadi, M., Srivastava, H.M., 2020. A discretization approach for the nonlinear fractional logistic equation, Entropy 22 (2020), Article ID 1328, 1–17.
- Khader, M.M., Saad, K.M., Baleanu, D., Kumar, S., 2020. A spectral collocation method for fractional chemical clock reactions, Comput. Appl. Math. 39 (2020), Article ID 324, 1–12.
- Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., 2006. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, The Netherlands, London, UK, New York, USA.
- Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Berlin: Springer; 2010.
- Numerical approach for solution to an uncertain fractional differential equation. Appl. Math. Comput.. 2019;343:137-148.
- [Google Scholar]
- Lu, Q., Zhu, Y., 2020. Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Comput. Appl. Math. 376 (2020), Article ID 112884.
- Lu, Q., Zhu, Y., Lu, Z., 2019. Uncertain fractional forward difference equations for Riemann-Liouville type, Adv. Differ. Equ. 2019 (2019), Article ID 147.
- A generalized uncertain fractional forward difference equations of Riemann-Liouville type. J. Math. Res.. 2019;11:43-50.
- [Google Scholar]
- Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems. Math. Meth. Appl. Sci. 2020:1-26.
- [CrossRef] [Google Scholar]
- Mohammed, P.O., Abdeljawad, T., Jarad, F., Chu, Y.-M., 2020. Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type, Math. Probl. Engrg. 2020 (2020), Article ID 6598682.
- Techniques of Functional Analysis for Differential and Integral Equations. London, UK: Academic Press; 2017.
- Singh, H., Srivastava, H.M., Hammouch, Z., Nisar, K.S., 2021. Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19, Results Phys. 20 (2021), Article ID 103722, 1–8.
- Fractional-Order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J.. 2020;60:73-116.
- [Google Scholar]
- Srivastava, H.M., 2020. Diabetes and its resulting complications: Mathematical modeling via fractional calculus, Public Health Open Access 4 (3) (2020), Article ID 2.
- Srivastava, H.M., Mohammed, P.O., 2020. A correlation between solutions of uncertain fractional forward difference equations and their paths, Front. Phys. 8 (2020), Article ID 280.
- Srivastava, H.M., Saad, K.M., 2020. Some new and modified fractional analysis of the time-fractional Drinfeld-Sokolov-Wilson system, Chaos 30 (2020), Article ID 113114, 1–10.
- Srivastava, H.M., Saad, K.M., 2020. A comparative study of the fractional-order clock chemical model, Mathematics 8 (2020), Article ID 1436, 1–14.
- Difference equations for a class of twice-iterated <texmath type=”inline”>Delta _h</texmath>-Appell sequences of polynomials. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM). 2019;113:1851-1871.
- [Google Scholar]
- Srivastava, H.M., Saad, K.M., Khader, M.M.,2020. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos Solitons Fract. 140 (2020), Article ID 110174, 1–7.
- Monotonicity analysis for nabla h-discrete fractional Atangana-Baleanu differences. Chaos Soliton Fract.. 2018;117:50-59.
- [Google Scholar]
- Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn.. 2015;80:1697-1703.
- [Google Scholar]
- Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl. Math. Comput.. 2017;314:228-236.
- [Google Scholar]
- Uncertain fractional differential equations and an interest rate model. Math. Meth. Appl. Sci.. 2015;38:3359-3368.
- [Google Scholar]
- Existence and uniqueness of the solution to uncertain fractional differential equation. J. Uncertain. Anal. Appl.. 2015;3:1-11.
- [Google Scholar]