Gaussian models for anthropogenic CO2 emissions consistent with prescribed climate targets
⁎Corresponding author. nizar.jaoua@enis.rnu.tn (Nizar Jaoua)
-
Received: ,
Accepted: ,
This article was originally published by Elsevier and was migrated to Scientific Scholar after the change of Publisher.
Abstract
Objectives: The purpose of this paper is to provide global and national climate policy makers with smooth patterns of carbon dioxide (CO2) emissions that better fit prescribed climate targets, in comparison with existing mitigation models.
Methods: Based on an accessible mathematical analysis, a linearly-increasing relative rate of reduction is considered for the emissions, and therefore, Gaussian modelling appears as a perfect tool for such an improvement.
Results: Among the designed models, a flexible pattern, composed of a half-bell-shaped decline preceded by a parabolic slowdown, is found to be ideal for bringing the emissions to ‘zero’ as soon as possible without direct removal of CO2. It is shown, in particular, that a global mitigation, based on this pattern, consistent with the 1.5 °C target and starting in 2020, will help to achieve a global ‘zero’ emission in 2050, as urged by the United Nations (UN), earlier in the mid 2040s, or later in the mid-late 2050s for more feasibility with an average annual reduction in the range 2.46–3.19 GtCO2 (which includes each of the EU and USA annual records of about 2.8 GtCO2) from a peak projected in the late thirties.
Conclusion: Based on a mathematical approach to CO2 emissions modelling, the study reveals a parametrised collection of feasible and flexible pathways, with the advantage of bringing the emissions smoothly to an earlier or similar ‘zero’ timing, with, unlike UN models, no target overshooting nor need for negative-emission technology.
Keywords
Climate target
CO2 emissions
Emissions peaking
Gaussian models
Remaining CO2 budget
Zero emission timing
1 Introduction
The 2015 Paris Agreement on Climate Change aimed to ‘hold the rise in global annual average temperature above the pre-industrial level well below 2 °C and pursue efforts to limit the increase to 1.5 °C’ ((UNF, 2015), Art. 2). Such threshold was known as UN climate target. It also stressed the urgency to ‘project global peaking of greenhouse gases emissions as soon as possible along with their rapid reduction’ ((UNF, 2015), Art. 4). Recently, the year 2050 was set up by the UN as the deadline for closing ‘a resilient neutral-carbon world’, as reminded by its Secretary-General at Climate Action Summit held in New York, September 2019 (UN, 2019). Both targets, for global warming and zero-carbon timing, were based on scientific investigations reporting that increasing anthropogenic CO2 emissions have made this gas significantly surpass the other greenhouse gases over the past three decades (C2ES, 2018; IPCC, 2014). The climate inaction, in particular regarding these emissions, has been studied also in the realm of physics research (see for example (Pacheco et al., 2014; Perc et al., 2017)). Climate mitigation scenarios would, therefore, include a substantial reduction of CO2 emissions. For technical details on carbon capture and storage, see for example (Fattahi, 2014) or more recently (Vo Thanh et al., 2019; Vo Thanh et al., 2020b; Vo Thanh et al., 2020a).
Such scenarios have been produced mostly by climatologists using computer simulations. Considered as the best known in literature are the Representative Concentration Pathways (RCPs; IPCC, 2014; Jubb, 2016; Knutti, 2013; Vuuren et al., 2011), the Coupled Carbon Cycle Climate Model Inter-comparison Project (C4MIP); as a part of the Coupled Model Inter-comparison Project (CMIP) providing a set of earth system models involving the carbon cycle (Jones et al., 2016), both adopted by the Intergovernmental Panel on Climate Change (IPCC) (AR5, WG I), and the mixed models; recently developed by a combination of simulation climate and socio-economic models (Rogelj et al., 2018).
In contrast, mathematical modelling of climate mitigation can hardly be found in literature, even though quite recently, future trends of global warming and atmospheric CO2 were projected, based on a mathematical approach, to meet the climate target as defined in the 2015 Paris agreements (see Jaoua, 2020). In the same setting, this work suggests a better match for a given climate target, in a sense that the emissions will be brought smoothly to an earlier or similar ‘zero’ timing without missing the target or removing CO2 from the air. The main idea behind this improvement consists of considering a linear relative rate of emissions reduction. This leads to Gaussian models whose integrals, involved in the remaining CO2 budget equation, can be determined in terms of the well-known tabulated standard normal cumulative distribution. For such models, three categories are considered: Gaussian with no transition, Gaussian with Gaussian transition, then Gaussian with quadratic transition. Whereas the second category will help to advance the ‘zero’ timing predicted by the first, at the expense of a high emissions peak and the miss of low climate targets, the third pattern will not only cover all climate targets and bring the emissions peak at a lower level, but will also nearly end the emissions earlier than expected from the second and other models commonly in use (e.g. RCPs), with more feasibility due to the transitional slowdown. Considering global emissions, graphical illustrations are presented for comparison purposes. The designed models also apply to national emissions by considering the national estimations of the level of emissions, their rate of growth, as well as the remaining CO2 budget in the beginning of their mitigation.
The rest of the paper is organized as follows: a definition and integrals of Gaussian models are presented in Section 2, Section 3 is dedicated to the elaboration and discussion of Gaussian models for CO2 emissions, and the results are summarized in Section 4.
2 Materials and methods
From a mathematical viewpoint, a rapid reduction of CO2 emissions can be modelled with exponential functions, whose relative rate of change is rather constant. For even faster decline, bell-shaped functions will help with an increasing relative rate of reduction. However, to ensure a smooth transition from the current trend to a rapid decline, a non-linear interpolation will be of great use.
2.1 Quadratic interpolation
Classically, a quadratic interpolation consists of determining a quadratic function using the values that it takes on at exactly three particular values of its variable. The following result provides an original quadratic interpolation using also three given data on the parabola representing the function: its axis of reflection, one of its points (other than the vertex), and the slope of the tangent line at that point. This technique will be used to add a smooth transition to a Gaussian decline of CO2 emissions.
If a parabola is symmetric about the line:
2.2 Gaussian models and their integration
Gaussian models were introduced in probability theory by C. F. Gauss; considered as one of the greatest mathematicians of all time, for real-valued random variables “normally” distributed with mean
Compared with exponential models, which are of the form
The special case where
Such formulation will be used to design and refine Gaussian pathways for CO2 emissions consistent with a prescribed climate target.
2.3 No-mitigation scenario and remaining CO2 Budget
The consistency of future CO2 emissions with a prescribed climate target (defined as a target limit to the rise in temperature) and their rapid reduction, as urged by the UN, are crucial in the elaboration of suitable pathways for the emissions. Prior to their modelling, however, three predictions in the beginning of the mitigation (at time
Such linear regression was found to be statistically highly significant (
In particular, the remaining CO2 budgets from 2020, to meet the targets 1.5 °C and 1.8 °C, will be estimated at 1155 and 2929 (GtCO2 respectively, and these represent about 63
3 Results and discussion
Three categories of models will be designed progressively depending on whether or not transitional emissions will be projected prior to a Gaussian reduction, and if so, whether these emissions will have a Gaussian or quadratic pattern to ensure a smooth transition from a linear to a Gaussian trend.
3.1 Gaussian model without transition
Graphically, the right-half of a suitable bell can be suggested as a possible smooth pathway for CO2 emissions reduction regardless of the ‘zero’ timing, which will limit the rise in annual temperature to below the prescribed climate target. This gives a Gaussian model without transition, consistent with that target, defined by:
Despite the consistency of the model

- Gaussian and exponential models, for global CO2 emissions, consistent with the 1.8 °C target (mitigation starting in 2020).
3.2 Gaussian model with Gaussian transition
A portion of the left half of a suitable bell will be of great use to ensure a smooth transition to a Gaussian decline. More precisely, for a given climate target above a specific future warming level l expected to be hit due to a total amount r of unmitigated CO2 emissions from time
To fit the predicted level of emissions at
To determine the other parameter
The exact expression of p will be determined by solving the CO2 budget equation that corresponds to the transition period:
According to Eq. (2) for
By taking into account the expressions found for A and
The pathway G, as given in Eq. (6), reflects a better mitigation than
3.3 Gaussian models with quadratic transition
Following the same idea behind the previous modelling, a parameter
Indeed, let
By taking into account the expressions of A and B then simplifying, one gets the following equation:
The discriminant
In the limit case where
Notes
In the setting of moderate climate targets such as 1.8 °C, the flexible pathway
will permit to limit the emissions at a lower level than expected from the model G. For instance, as shown in Table 1, the emissions are projected to peak below 2.5 (2.65) times the record of the year 2000 for , compared to 2.9 times with the model G (see Fig. 1). In addition, the ‘zero’-emission timing (i.e., when the emissions will be brought to below 0.01 GtCO2) can be projected earlier than expected from the pathway G, e.g., before the year 2080 for the 1.8 °C target. According to Table 1, this is ensured by any model for . As for the class of s, the smaller the , the higher and later the peak, and the earlier the zero emission.For the 1.5 °C target, the models
, with , project low emissions (less than 1 GtCO2) by 2080, similarly to half of the RCP2.6 models ([, Rogelj et al.2018), with the advantage of reducing the emissions (almost immediately) smoothly and nearly ending them by 2090. On the other hand, Fig. 2 shows that the pathway will bring the emissions to ‘zero’ in 2050, that is, earlier than expected from the (IPCC) no/limited/higher overshoot models without CO2 removal as required in the latter to meet the climate target (IPCC, 2018). Moreover, will bring the emissions from a slightly higher peak ( 52.65 GtCO2) to ‘zero’ ( 2046) in only 4 years instead of about 10 years, which explains its lower feasibility (see Fig. 2). When considering a lower target such as 1.4 °C, as shown in Fig. 2, and will permit to advance the zero timing to the years 2040 and 2037 respectively, even though the former seems more realistic than the latter due to its longer period between the peak and ‘zero’ timings (7 years vs. 2 years). More generally, s reflect a better mitigation, not only for projecting a lower (and/or earlier) peaking (compared to G) and/or an earlier ‘zero’-emission (compared to IPCC models), but also for slowing the emissions smoothly before their reduction, which will help to ease the decarbonisation of the economy.When it comes to the ideal
s for a given climate target, their selection depends on specific criteria such as ‘zeroing’ the emissions before a prescribed year and/or limiting them below a certain level (compared to the record in the year 2000). The selection outcomes based on these criteria are presented in Table 1. According to this table, the s, for , are found to be an ideal match for the 1.8 °C target, as they will make the emissions peak below 2.65 times the 2000 level and bring them to nearly zero before the year 2080. For a climate target as close as 1.5 °C (resp. 1.4 °C), compared to a predicted warming of about 1.2 °C for 2020 (see Jaoua, 2020), another range of s is found to be the pattern that will help to limit the emissions below 2.15 times (resp. twice) the 2000 record and reduce them to almost zero before the year 2050 (resp. 2040).The feasibility of
can be improved by keeping the highest annual reduction below a sensible level, such as twice the average annual reduction already achieved by each of the EU and USA (since 2005), i.e., GtCO2 (see EESI, 2018). Given the Gaussian trend, the annual reduction will reach its maximum at the inflection time . Therefore, one may consider realistic whenever it satisfies the following condition: which sets in the interval for the 1.5 °C target. Among these models, would be the best fit for the earliest feasible zero-emission which will occur in 2058, with an average annual reduction of less than 2.5 GtCO2. More or less feasible pathways are presented in Table 2 in which three zero-emission timings are considered: 2050, 2055, and 2060.Limitations of the
s: although optimal peaks and zero timings for the emissions can be determined thanks to the flexibility of , these predictions could be improved with a lower estimation of the remaining budget of CO2 emissions. In fact, the estimation used in this study is based on an overestimation of the date h at which the prescribed climate target would be hit in the no-mitigation scenario, and this is due to the non consideration of further greenhouse gases in the global warming model used to predict this date. On the other hand, the s do not cover any failure of the associated climate action, due for example to the countries which are not part of or will cease their participation in the Paris agreement on climate change. This could ultimately lead to an extended networked version of the models.

- Gaussian models, with quadratic transition, for global CO2 emissions, consistent with the climate targets 1.5 °C and 1.4 °C and specific ‘zero’-emission timings mitigation starting in 2020.
‘Zero’ year | 2050 | 2055 | 2060 |
---|---|---|---|
Suitable |
|||
Peak (year) | 51.97 (2041) | 51.0962 (2039) | 50.236 (2037) |
Highest AR | 12.9470 (2043) | 7.6832 (2043) | 5.3648 (2042) |
Average AR | 5.5428 | 3.1912 | 2.165 |
4 Conclusions
Refined Gaussian models
It is shown that slowing the emissions before reducing them will help to advance their ‘zero’ timing by few to many decades. For instance, when considering a mitigation starting in 2020, the
In sum, half-bell-shaped patterns for CO2 emissions reduction, preceded by a suitable parabolic slowdown, provide more flexibility than the existing models, with the advantage of bringing the emissions smoothly to an earlier or similar ‘zero’ timing, with, unlike IPCC models, no target overshooting nor need for negative-emission technology.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
- C2ES, 2018. Center for Climate and Energy Solutions. Main Greenhouse Gases. Technical report, C2ES. URL:https://www.c2es.org/content/main-greenhouse-gases.
- EESI, 2018. US leads in GHG. Reduction. Environmental Energy Study Institute. URL:https://www.eesi.org/articles/view/u.s-leads-in-greenhouse-gas-reduction-but-some-states-are-fallingbehind.
- An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium-graphene catalyst aiming at minimizing of COx species. Chem. Eng. J.. 2014;250(15):14-24.
- [CrossRef] [Google Scholar]
- IPCC, 2014. Intergovernmental Panel on Climate Change. Climate Change 2014, The Fifth Assessment Report, AR5-SPM. Cambridge University Press, Cambridge and New York.
- IPCC, 2018. Summary for Policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Masson-Delmotte, J. et al. (editors)]. World Meteorological Organization, Geneva, 32.
- Climate Mitigation Mathematical Models Consistent with the 2015 Paris Agreement. Int. J. Global Warming. 2020;21(3):287-298.
- [CrossRef] [Google Scholar]
- Jones, C.D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V., Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J.G., Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz, T., Randerson, J.T., Zaehle, S., 2016. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 9 (8), 2853–2880.
- Jubb, I., 2016. Representative Concentration Pathways (RCPs). Australian Climate Change. Science Program. URL:http://www.cawcr.gov.au/projects/Climatechange/wp-content/uploads/2016/11/ACCSP.
- Knutti, R., 2013. Relationship between Global Emissions and Global Temperature Rise. Climate Change 2013: The Physical Science Basis. WG1 Contribution to IPCC-AR5, Chapter 12. URL:https://unfccc.int/sites/default/files/7_knutti.reto.3sed2.pdf.
- Marland, G., Boden, T., Andres, B., 2016. Global CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751–2013. CDIAC (Carbon Dioxide Information Analysis Center). Technical report, Research Institute for Environment, Energy, and Economics, USA. URL:https://cdiac.ess-dive.lbl.gov/ftp/ndp030/global.1751_2013.ems.
- Climate change governance, cooperation and self-organization. Phys. Life Rev.. 2014;11(4):573-586.
- [CrossRef] [Google Scholar]
- Scenarios towards limiting global mean temperature increase below 1.5 C. Nat. Clim. Change. 2018;8
- [Google Scholar]
- Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., Vilariño, M.V., Calvin, K., Edelenbosch, O., Emmerling, J., Fuss, S., Gasser, T., Gillet, N., He, C., Hertwich, E., Isaksson, L.H., Huppmann, D., Luderer, G., Markandya, A., McCollum, D., Millar, R., Meinshausen, M., Popp, A., Pereira, J., Purohit, P., Riahi, K., Ribes, A., Saunders, H., Schadel, C., Smith, C., Smith, P., Trutnevyte, E., Xiu, Y., Zickfeld, K., Zhou, W., 2018b. Mitigation Pathways Compatible with
C in the Context of Sustainable Development. Global Warming of C. An IPCC Special Report on the impacts of global warming of C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [V. Masson-Delmotte, P. Zhai, H.O. Prtner, D. Roberts, J. Skea, P.R. Shukla,A. Pirani, W. Moufouma-Okia, C.Pan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield(eds.)], in press. - UN, 2019. 09-23 Climate Action Summit. Technical report, UN (United Nations). URL:https://www.un.org/en/climatechange/9.
- UNF, 2015. (United Nations Framework Convention on Climate Change). Paris Agreement. URL:http://unfccc.int/paris.
- Integrated workflow in 3D geological model construction for evaluation of CO2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam. Int. J. Greenhouse Gas Control. 2019;90
- [CrossRef] [Google Scholar]
- Robust optimization of CO2 Sequestration through a water alternating gas process under geological uncertainties in Cuu Long Basin, Vietnam. J. Natural Gas Sci. Eng.. 2020;76
- [CrossRef] [Google Scholar]
- Impact of a new geological modelling method on the enhancement of the CO2 storage assessment of E sequence of Nam Vang field, offshore Vietnam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020;42(12):1499-1512.
- [CrossRef] [Google Scholar]
- Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S., Rose, S., 2011. The representative concentration pathways: an overview. Climatic Change. This issue. Climatic Change, 109, 5–31.