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Abstract 

Introduction: Systemic Lupus Erythematosus (SLE) is a complex, multisystem autoimmune 

disorder characterized by extensive inflammation that affects nearly all organ systems in the 

body. It is primarily mediated by auto-antibodies and immune complexes, and it predominantly 

affects women more than men. This study employs an in-silico approach to identify key genes 

potentially involved in the pathogenesis of SLE. 

Objectives: To identify key genes potentially involved in SLE pathogenesis using in-silico 

approach. 

Methods: High-throughput sequencing dataset GSE97264, from the Gene Expression 

Omnibus (GEO) database, which contains RNA transcriptome data from CD8+ T-cells of 18 

SLE patients and 14 healthy controls was utilized for the analysis. Differentially expressed 

genes (DEGs) were identified using the Bioconductor DESeq2 package in R platform. Gene 

Ontology (GO) and pathway enrichment analyses were performed using the ToppGene suite. 

Motif analysis of the genes' promoter regions was conducted using HOMER software. Protein-

protein interaction (PPI) and Reactome functional interaction (FI) networks were created using 

Cytoscape plugins StringApp and ReactomeFIViz, and analysed to identify hub genes. 

Results: Our analysis identified 931 DEGs, with 577 upregulated and 354 downregulated. GO 

and pathway enrichment analyses indicated that upregulated genes were associated with 

immune responses, including cytokine production and receptor activation. Motif analysis 

identified key regulatory motifs linked to immune regulation in upregulated genes and T-cell 

activation in downregulated genes. PPI and FI networks analyses revealed 29 cell cycle-

associated hub genes, with 10 genes—CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, 

AURKA, KIF2C, PLK1, and CDCA8—common to both biological networks, suggesting their 

crucial role in SLE pathogenesis.  

Conclusion: This study suggests that dysregulation of the identified 10 genes may impact 

immune responses and contribute to the autoimmune-like conditions observed in SLE. Several 

1

1

1

1

3

5

5

6



of these genes are also implicated in other autoimmune diseases, highlighting their potential as 

SLE biomarkers. Despite their known roles in other immune-related diseases involving CD8+ 

T cells, their direct association with SLE had not been previously established. This novel 

finding underscores the potential of these genes as therapeutic targets and may contribute to 

the development of diagnostic tools. 

Keywords: Systemic Lupus Erythematosus (SLE), CD8+ T cells Transcriptomics, Gene 

Expression Analysis, Biological Networks, Biomarkers for SLE 

 

Introduction 

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by the 

immune system's attack on its own tissues, which can affect both sexes. This leads to 

inflammation and, in some cases, permanent tissue damage affecting various body parts 

including the skin, joints, heart, lungs, kidneys, and brain [1]. The exact causes of SLE remain 

largely unknown; however, scientists have identified several potential triggers, such as genetic, 

environmental, and inflammatory factors [2]. It is postulated that an impairment in the normal 

clearance of apoptotic and necrotic cells may result in immune system dysregulation, whereby 

the immune system is misled into fighting itself, leading to SLE [2]. The course of disease 

progression is not linear, often characterized by relapse and remission phases, leading to 

considerable variability among patients, which presents significant difficulties in diagnosis and 

therapeutic interventions [1]. 

The pathophysiology of SLE is mediated by autoantibodies and immune complexes. A 

deficiency in complement proteins (C1, C2, C3, C4) impairs the efficient removal of apoptotic 

cells by macrophages, resulting in the exposure of nuclear material and internal proteins 

(antigens). These antigens are captured by Antigen-Presenting Cells (APCs) and presented to 

naive T-helper cells, triggering their activation and differentiation. In SLE, IL-4 secretion 

favors T-helper 2 cell maturation, which in turn promotes antibody-mediated immune 

responses. Autoantibody production, particularly anti-nuclear antibodies (ANA) and anti-

double-stranded DNA (anti-dsDNA) antibodies, is attributed to activated B-cells that evolve 

into plasma cells, which remember the antigen and secrete more autoantibodies. [2].  

When autoantibodies bind to nuclear proteins, they trigger inflammation through various 

mechanisms. Immune complexes may deposit on organs or bind to Fc receptors on immune 
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cells, leading to complement activation and the release of pro-inflammatory cytokines like 

interferons and TNF-alpha [2]. After surrounding immune cells become sensitized to the 

antigens, they release cytokines upon recognizing the nuclear antigen through the TOLL-like 

receptor, exacerbating the inflammatory response and further damaging nearby cells. The 

inflammation eventually subsides due to the immune system's innate regulation  [2]. 

CD8+ cytotoxic T cells, part of the host defence mechanism, are activated by APCs presenting 

antigens via MHC-I molecule. Several studies have reported varied functions of CD8+ cells in 

SLE. In SLE patients, systemic CD8+ T cells demonstrate diminished effector functions and 

cytolytic activity, which compromises their ability to efficiently clear infections and 

autoreactive B-cells. These cells also demonstrate increased infiltration capacity, especially in 

the kidneys, contributing to organ damage [3]. Despite various assumptions about the role of 

CD8+ T cells in SLE, the precise scenario remains unclear, warranting further exploration. 

In this study, we have utilised the dataset from Buang et al., deposited in the Gene Expression 

Omnibus Database, containing mRNA samples from blood CD8+ T cells of SLE patients and 

healthy controls [4]. We identified Differentially Expressed Genes (DEGs) between the SLE 

and control samples using the DESeq tool and categorized the upregulated and downregulated 

genes. To understand the functional and biological significance of these genes, we performed 

Gene Ontology (GO), Gene Family, and Reactome Pathway Enrichment analysis using the 

ToppGene Suite server. We also built a Reactome Functional Interactome Network and a 

STRING protein-protein interaction (PPI) network to identify hub genes in both networks. This 

study aims to unveil previously unexplored pathogenic genes, enhancing understanding of 

SLE's genetic-environmental interplay, aiding in diagnosis and treatment. 

Methods and Materials 

RNA-Seq Data from SLE Patients and Healthy Controls  

The raw data for this study were sourced from the RNA transcriptome deposited by Buang et 

al., [4] in the Gene Expression Omnibus (GEO) under entry GSE97264. The transcriptome was 

obtained from the blood CD8+ T cells of SLE patients and healthy controls. The study included 

16 SLE patients with active disease, 18 with less active disease, and 14 healthy controls. The 

British Isles Lupus Assessment Group (BILAG) and Systemic Lupus Erythematosus Disease 

Activity Index (SLEDAI score) were used to classify the patients. For this study, we selected 

data from patients with active SLE and healthy controls from the GSE97264 dataset. 
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Differential Gene Expression Analysis 

The differential gene expression (DGE) analysis was conducted using DESeq2, a Bioconductor 

package, in R platform. Initially the count data was converted into “DESeqDataSet” object 

using the function ‘DESeqDataSetFromMatrix’ from DESeq2 package v 1.40.2. Then the DGE 

analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) distribution was performed 

using the ‘DESeq’ function. The function followed a default workflow of estimating size 

factors, estimating dispersions, fitting model and testing (replacing outliers and refitting genes). 

The Wald test was employed to evaluate the significance of DEGs. The resulting p-values were 

then adjusted for multiple testing using the Benjamini-Hochberg (BH) method to control for 

the false discovery rate (FDR). Finally, the genes that have log2FC > |1| and padj (FDR) < 0.05 

were considered as DEGs. 

Gene Ontology and Pathway Enrichment Analyses 

GO functional and pathway analyses was performed using the ToppGene Suite server. GO 

analyses (biological process, molecular function, cellular component), gene family, and 

pathway enrichment analyses were executed using the ToppFun function. The probability 

distribution function was selected for the p-value method, and a cut-off criterion of Gene count 

< 2 and FDR B&H q value < 0.05 was applied in the ToppFun function for these analyses [5].  

Motif Analysis 

The Homer v4.11 software was used to identify gene-based motifs in the promoter regions of 

the DEGs. For this study, the promoter regions were defined as 2,000 bp upstream and 200 bp 

downstream of the transcriptional start sites based on RefSeq genes (Hg38)).  Motifs with a 

maximum length of 12 bases were probed, with a Benjamini-Hochberg-corrected p-value 

threshold of < 0.05 [5]. 

STRING protein-protein network analysis 

The STRING database was used to construct the PPI network for the identified DEGs. The 

Cytoscape plugin stringApp v2.0.1 was employed to generate the PPI interaction network, 

setting the highest confidence interaction score at 0.900 to refine the network [5]. 

Reactome functional interaction network analysis 

ReactomeFIViz v8.0.6, a Cytoscape tool, was used to create networks using the Reactome 

functional interaction (FI) network. The tool utilizes Reactome, a biological pathway database, 
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to derive interaction information. The FI network for our DEGs was built using the 2022 

version of the Reactome FI network [5].  

Network analysis and hub gene identification 

Hub genes in the PPI and FI networks were identified using the Cytohubba v0.1 plugin. They 

were ranked according to six topological centralities and algorithms, including Maximal Clique 

Centrality (MCC), Maximum Neighbourhood Component (MNC), Density of Maximum 

Neighbourhood Component (DMNC), Degree, Closeness, and Betweenness [5]. 

Results 

Identification of DEGs in SLE CD8+ T cells 

The DGE analysis identified 931 genes as DEGs with, 354 genes downregulated and 577 

upregulated in CD8+ T cells from active SLE patients compared to healthy controls 

(Supplementary I). The top 10 upregulated and downregulated genes are shown in Figure 1. 

Additionally, the DEGs identified in our analysis are statistically depicted using a volcano plot 

in Figure 1. 

Gene Ontology and Pathway enrichment Analyses 

Gene family enrichment analysis revealed that the upregulated DEGs are associated with 

immunoglobulins and CD molecules, while down-regulated DEGs are linked to keratins, 

collagens, fibronectin (Supplementary II-1). GO functional enrichment analysis (Figure 2, 

Supplementary II-2) showed distinct profiles for DEGs in SLE. Upregulated genes were 

predominantly associated with inflammation-related GO terms across three categories: 

molecular function (MF), biological process (BP), and cellular component (CC). Specifically, 

the enriched GO MF terms included antigen binding and toll-like receptor binding. In the CC 

category, terms like the IgA and IgG immunoglobulin complexes were prominent. Meanwhile, 

BP terms highlighted were adaptive immune response, chronic inflammatory response, 

cytokine production, innate immune response, interferon-mediated signaling pathway, and 

leukocyte migration involved in the inflammatory response  (Figure 2, Supplementary II-2). 

These terms collectively suggest a heightened inflammatory activity consistent with the clinical 

manifestations typically observed in SLE [6].  

Conversely, downregulated genes were enriched with GO MF terms such as oxidoreductase 

activity, and BP terms like G protein-coupled receptor signaling pathway, Wnt signaling 
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pathway, and cell-cell signaling by Wnt  (Figure 2, Supplementary II-2). The enrichment of 

these GO terms for downregulated DEGs reflects disrupted immune responses characterized 

by altered chemotaxis, impaired adhesion, and modified CD8+ T cell function, a known feature 

of SLE pathology [6]. 

Pathway enrichment analysis enriched Reactome pathways such as FCGR3A mediated IL-10 

synthesis, activation of B cell receptor, and several cell cycle associated pathways for 

upregulated DEGs. On the other hand, pathways related to matrisome, basement membrane 

and collagen were enriched for the downregulated DEGs (Supplementary II-3).  

Motif Analysis of dysregulated genes in SLE 

The motif enrichment analysis on the promoter regions of DEGs provided insights on the 

potential transcription factors that might play a significant role in SLE pathogenesis (Figure 3, 

Supplementary II- 4&5). Downregulated genes had motifs for transcription factors such as 

MyoG, ASCL1, LRF, Gata1, EGR1, E2A, and NFAT (Figure 3). MyoG, a basic helix-loop-

helix (bHLH) family member, is involved in MEF2's immune response in T lymphocytes [7]. 

ASCL1, also a bHLH factor, plays a role in T-cell development and the Wnt/β-catenin pathway 

[8]. LRF, a Kruppel family member, is crucial for T cell differentiation [9], while GATA1, a 

zinc finger transcription factor, is linked with T-cell differentiation [10]. EGR1, another zinc 

finger transcription factor, activates macrophage transcription and is associated with immune 

response genes, including Tumor Necrosis Factor [11]. E2A, a bHLH member, is essential for 

early B and T cell development [28]. NFAT, a redox-dependent factor, affects CD8+ T cell 

cytotoxicity and metabolism [12]. The enrichment of these transcription factor motifs in the 

down-regulated genes suggests immune system aberration in SLE. 

Upregulated genes were enriched with motifs for IRF4, T1SRE, E2F7, E2F3, E2F1, IRF1, 

ISRE, IRF3, and IRF2 (Figure 3). The Interferon Regulatory Factor family members (IRF1, 

IRF2, IRF3, and IRF4) were notably enriched, suggesting their involvement in SLE's pro-

inflammatory processes [13]. IRF1 is involved in pro-inflammatory transcription, 

characteristic of SLE pathology [13], while IRF2 responds to persistent IFN signaling, leading 

to CD8+ T cell exhaustion [14]. IRF3 activation is associated with increased type I interferon 

expression in dendritic cells [15] , and IRF4 overexpression is linked to CD8+ T cell exhaustion 

[16]. The presence of T1ISRE hints at increased type 1 interferon gene expression. E2F1's role 

in T cell apoptosis and its association with T cell cycle progression [17],  alongside E2F7 and 

E2F3's links to CD8+ T cell infiltration, further reveal SLE's complex cellular mechanisms 
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[18]. ISRE motifs in cytokine genes contribute to heightened type 1 interferon production, 

reflecting altered mitochondrial state of CD8+ T cells in SLE patients [4]. 

Construction and Investigation of STRING protein-protein interaction network for the 

identification of hub genes 

The primary PPI network, after discarding the disconnected nodes, constructed by the 

StringApp had 249 nodes (215 upregulated genes, 26 downregulated genes, and 8 linker genes) 

and 1478 edges (Figure 4). Topological analysis revealed a clustering coefficient of 0.531, 

network diameter of 12, network density of 0.048, characteristic path length of 4.302, and an 

average of 11.871 neighbors per node. The nodes were further subjected to functional 

enrichment analysis by utilizing the STRING plugin available within the StringApp. This 

analysis enriched pathway terms related to cell cycle checkpoints, interferon alpha/beta 

signaling, cytokine signaling, IL-24 signaling and type II interferon signaling (Supplementary 

II-6). While GO analysis linked the PPI network genes to processes associated with cell cycle 

and immune system, such as apoptosis, chromosome segregation, DNA damage response, 

cytokine-mediated signaling pathway, and interleukin 27 signaling (Supplementary II-6).  

To identify central or 'hub' genes in the PPI network, we applied four topological analysis 

methods- MCC, DMNC, MNC, and Degree - along with two measures of centrality, Closeness 

and Betweenness [5]. The top 20 hub nodes (genes) identified for each category in the PPI 

network are listed in Table 1. Genes appearing in at least three of categories are considered 

significant and they are CDK1, KIF11, BUB1, KIF20A, TOP2A, KIF2C, BUB1B, CCNB1, 

DLGAP5, CDC20, CDCA8, UBE2C, TPX2, CENPF, CCNA2, NUSAP1, CCNB2 and BIRC5. 

Construction and Investigation of Reactome Functional Interaction Network for the 

Identification of Hub genes 

The primary FI network, after discarding the disconnected nodes, generated using the 

ReactimeFIViz tool comprised of 361 nodes (278 up-regulated and 83 downregulated genes) 

and 4081 edges (Figure 5).  Topological analysis of this FI network revealed an average node 

count of 22.609, a network diameter of 14, a characteristic path length of 3.958, a clustering 

coefficient of 0.481, and an average network density of 0.0653 neighbors. Pathway enrichment 

and Gene Ontology biological process analyses were conducted using the inbuilt network 

function plugin in ReactomeFIViz. This analysis highlighted terms predominantly related to 

the cell cycle, such as mitotic cell cycle, cell division, chromosome segregation, cell cycle 

checkpoint, mitotic prometaphase and G1/S transition (Supplementary II-7). 
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Similar to the PPI network, the top 20 hub nodes (genes) for each category in the FI network 

were identified using four topological analysis methods and two centralities. These hub nodes 

are detailed in Table 2. Genes appearing in at least three categories are considered significant 

and they are CDK1, CCNA2, AURKA, CDCA5, NDC80, CDCA8, CENPE, ZWINT, CCNB2, 

SPC25, BUB1, BUB1B, PLK1, EXO1, FOXM1, NEK2, TPX2, KIF2C and BIRC5. 

Prospective Genetic Markers of SLE pathology 

A total of 29 hub genes were identified from the analysis of PPI and FI networks, 

(Supplementary II-8). All these hub genes were found to be up-regulated. Among these, 10 

genes - CDK1, TPX2, BIRC5, CCNA2, BUB1, BUB1B, AURKA, KIF2C, PLK1 and CDCA8 

were found to be hub genes in both networks and are thus considered prospective genetic 

markers of SLE pathology. GO biological process and pathway enrichment analyses implicated 

these genes in several cell-cycle related processes (Supplementary II-9).  

CDK1, a serine-threonine kinase and part of the M phase-promoting factor, plays a pivotal role 

in the cell cycle, particularly at the G1-S and G2-M checkpoints. It is instrumental in the IFN 

type I induced phosphorylation of STAT-1 and elevating ISG expression, a process central to 

SLE prognosis and inflammation [19]. Inhibition of CDK1 has been linked to reduced 

expression of pro-inflammatory genes [20]. TPX2, a key protein in mitotic spindle 

development and function, is associated with increased expression of pro-inflammatory 

cytokines. Studies in CRS-affected mice suggest that silencing TPX2 diminishes inflammation, 

indicated by changes in GSK3β, IL-10, TNF-α, IL-6, and IL-8 levels [21]. BIRC5 which 

encodes the protein survivin, significant for immune system maintenance, shows enrichment 

in leukocytes accumulated in inflamed tissues, a common feature in autoimmune disorders. It 

particularly affects the activity threshold of cytotoxic T lymphocytes against other survivin-

expressing cells [22]. In rheumatoid arthritis, BUB1 is associated with abnormal cell 

proliferation, migration, invasion, PI3K/Akt pathway disruption, and pro-inflammatory 

cytokine release [23]. AURKA, found in psoriasis patients, promotes inflammation by 

impeding autophagy-mediated AIM2 inflammasome suppression and activating the 

Akt/mTOR pathway. It has also been linked to increased TNF- α expression in gastric mucosa 

of mice with gastrointestinal cancer [24]. KIF2C, coding for Mitotic centromere-associated 

kinesin, influences cell motility and migration by affecting the actin-MT cytoskeleton and FA 

turnover [25]. BUB1B, linked to exhausted T-cell signature and inflammatory CD8+ cells, has 

been shown to reduce invasion and proliferation in RCC cell lines upon knockdown [26]. 
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PLK1, increases the activity of the NLRP3 inflammasome, a critical component in SLE 

pathophysiology. It affects the microtubule-organizing centre architecture and activation of 

NLRP3 causes cell damage and death in lupus nephritis [27]. CDCA8, essential for mitosis and 

chromosome segregation, has shown a significant correlation with tumor purity and immune 

cell infiltration levels in a study [28].  CDCA5, AURKB, CCNB1, and FOXM1, enriched in 

the transcriptomes of SLE patients, correlate with autoantibody titers [29]. NDC80 and its 

constituent SPC25, were linked to increased levels pro-inflammatory cytokines and 

chemokines in RA and are involved in regulating cell proliferation through the 

PK/AKT/Notch1 signaling pathway [30]. CENPE, an autoantigen in systemic sclerosis, has 

been found to trigger the formation of specific autoantibodies [31]. ZWINT, significant for 

kinetochore and mitotic checkpoint function, is implicated in enhanced CD8+ T cell infiltration 

[32]. NEK2 overexpression affects IL-22 mediated inflammation and cytokine production in 

psoriasis patients [33]. KIF20A and DLGAP5, correlated with elevated pro-inflammatory 

cytokines in RA, along with CDC20, a hub gene in the disease, are integral to inflammatory 

processes [30]. CCNB2, positively correlated with various immune cells, plays a role in 

immune infiltration [34]. NUSAP1, causing aberrant mitosis, is positively correlated with 

inflammatory gene expression [35]. UBE2C, associated with regulating the expression of 

several immunological checkpoints including chemokines [36]. CENPF expression is closely 

tied with CD8+ T cell immunological infiltration [37]. Exo1, KIF11, and TOP2A, enriched in 

SLE and other autoimmune conditions, are critical in the disease's pathology [38].  

Since most of the hub genes are associated with cell-cycle functions, a single-sample Gene Set 

Enrichment Analysis (ssGSEA) of 16 gene sets related to cell-cycle processes and diseases 

(Supplementary II-10) obtained from the GSEA-MSigDB webserver was conducted on the 

samples using the GSVA v1.52.3 and GSEABase v1.66.0 Bioconductor packages. The ssGSEA 

heatmap (Figure 6) revealed that these 16 gene sets are up-regulated in SLE-active patients 

compared to healthy controls. This upregulation of cell-cycle-related gene sets suggests that 

the hub genes involved in cell-cycle functions likely play a significant role in SLE pathology. 

Therefore, these hub genes are proposed as potential biomarkers and therapeutic targets for 

further investigation in SLE. 

Discussion  

Our study identified 931 genes with differential expression between control and diseased 

samples, including 577 upregulated and 354 downregulated genes (Supplementary I). To 

elucidate the biological significance of these DEGs, we utilized the ToppGene Suite server. 
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The analysis revealed that the upregulated genes predominantly belong to immune-related gene 

families, such as immunoglobulins, C-type lectin domain family, and kinesins, among others 

(Supplementary II-1). These genes are crucial in various  immune responses, including toll-

like receptor binding and cytokine production, as indicated by Gene Ontology (GO) enrichment 

analysis (Figure 2). Pathway enrichment analysis further underscored their involvement in 

pathways such as FCGR3A-mediated IL-10 synthesis, B cell receptor activation, and several 

cell cycle-related pathways (Supplementary II-3). Conversely, the downregulated genes are 

associated with gene families including keratins, type II collagens, fibronectin type III domain-

containing proteins, receptor tyrosine kinases, FERM domain-containing proteins, low-density 

lipoprotein receptors, and fibulins (Supplementary II-1). These downregulated genes are linked 

to signaling pathways such as G protein-coupled receptors and Wnt signaling (Figure 4). 

Pathways related to the matrisome, collagen, basement membrane, and collagen were 

particularly enriched for the downregulated genes in pathway enrichment analysis 

(Supplementary II-3). 

Our investigation also identified several motifs in the promoter regions of both downregulated 

and upregulated genes. Downregulated genes exhibited motifs for transcription factors 

involved in T- cell activation (MyoG), T-cell differentiation (LRF, GATA1), regulation of T-

cell development (ASCL1), transcriptional activation, TNF signalling and maturation of 

immune cells (EGR1), B and T-cell development (E2A) and cell cytotoxicity (NFAT). Notably, 

GATA1 is linked to transcriptional regulation of dendritic cell development and lineage 

separation of dendritic cells and macrophages [39]. In contrast, upregulated genes had motifs 

for IRF1, IRF3, and IRF4 (immune regulatory transcription factors), as well as T1ISRE and 

ISRE. These motifs are associated with increased type 1 interferon production and expression. 

The binding of IRFs to ISRE motifs in the promoter regions of cytokine genes results in 

heightened type 1 interferon production and continuous exposure to IFNα in SLE patients. This 

may lead to alterations in mitochondrial metabolism of CD8+ T cells, contributing to their 

apoptosis [4].  

The analyses of two biological networks namely the String PPI and Reactome FI networks, 

identified 29 important genes. Among these, 10 genes—CDK1, TPX2, BIRC5, CCNA2, 

BUB1, BUB1B, AURKA, KIF2C, PLK1, and CDCA8—were found to be enriched in both 

networks. These common hub genes play significant roles in the abnormalities observed in 

CD8+ T cells in SLE. 
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CDK1 facilitates the phosphorylation of STAT-1, upregulates ISG expression and enhances 

type 1 IFN signalling, which has been linked to accelerated disease activity in SLE patients 

[19]. TPX2 wass associated with increased production of pro-inflammatory cytokines and 

could thus be contributing to the exaggerated inflammation seen in SLE patients [21]. BIRC5 

was associated with CD8+ T cell production, innate and adaptive immune responses and 

increased accumulation of defective CD8+ T cells in tissues. Moreover, cytotoxic T 

lymphocytes expressing this gene were found to have a lowered activity threshold against 

survivin expressing cells, implying that these cytotoxic T cells became increasingly active and 

attacked healthy cells expressing survivin, leading to autoimmune-like conditions [22].  

Pathways such as E2F targets, interferon alpha response, G2M checkpoint, IL6-JAK-STAT 

signalling, interferon gamma response, and inflammatory response were all regulated by 

CCNA2, which also increases CD8+ T cell invasiveness [40]. BUB1 facilitates cytokine 

release, regulates the PI3K/Akt signaling pathway associated with autoimmune development, 

and enhances tissue infiltration [23]. AURKA promotes inflammation, activates the Akt/mTOR 

and is associated with increased TNF-α expression which may have an impact on inflammation, 

CD8+ T cell apoptosis, and the production of autoantigens [24]. KIF2C enrichment suggests a 

potential dysregulation of motility and migratory functions of the CD8+ T cells [25]. BUB1B 

is linked to exhausted T cell signature, inflammatory CD8+ and IFN-gamma signature, cell 

proliferation and invasion [26]. The activation of the NLRP3 inflammasome is crucial in 

autoimmune development by triggering the production of pro-inflammatory cytokines and 

inducing pyroptosis through GSMD. PLK1 enriched in our study is a major player in NLRP3 

inflammasome activation suggesting a central role of this gene in SLE pathogenesis [27]. 

Finally, CDCA8 may be involved in determining the immunological environment linked to 

SLE pathology because of the positive correlation found between CDCA8 expression and 

immune cell infiltration in SLE, including B cells, CD8+ T cells, CD4+ T cells, and 

macrophages [28].  

Our study aligns with the previously established role of CD8+ T cell in the clinical 

manifestation of SLE which indicated that these cells exhibit improper cytotoxic activity, 

increased infiltration in the sites of tissue damage and increased cytokine production [3]. 

Although this aspect of the disease had been previously explored, the specific genes responsible 

of these abnormalities were not well understood. In this study, we utilised computational 

methods to investigate the genes underlying these aberrations by analysing the RNA 

transcriptome from SLE patients. We identified genes such as CDK1, TPX2, BIRC5, CCNA2, 
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BUB1, BUB1B, AURKA, KIF2C, PLK1 and CDCA8 as biomarkers of dysfunctional CD8+ T 

cells in SLE patients. These genes may serve as potential therapeutic targets and warrant further 

investigation to elucidate their roles more comprehensively. 

 

Conclusion 

SLE represents a highly complex multigenic disorder characterized by its multifaceted nature 

and the diverse array of factors influencing its symptomatology. Despite extensive research, 

the precise mechanisms underlying its pathophysiology remain elusive. Our study leveraged 

bioinformatics tools to pinpoint genes potentially instrumental in the aberrant functioning of 

CD8+ T cells in SLE patients. We identified ten key genes - CDK1, TPX2, BIRC5, CCNA2, 

BUB1, BUB1B, AURKA, KIF2C, and PLK1, along with CDCA8 - as critical in this context. 

Although these genes are primarily recognized for their roles in cell cycle regulation, our 

analysis suggests they may also have a broader impact. Their dysregulation could influence 

immune responses, potentially contributing to the autoimmune-like conditions observed in 

SLE and similar disorders. Importantly, some of these genes have been implicated in other 

autoimmune diseases, indicating their potential as biomarkers for SLE. However, to fully 

understand their relevance and mechanism in SLE pathology, further targeted studies are 

necessary. This research represents a significant step toward unraveling the genetic 

underpinnings of SLE, and could guide future diagnostic and therapeutic strategies. 

  

 

 

 

 

 

 

 

 

 



Table 1. Top 20 hub genes determined using various topological methods and centrality 

measures in the String's protein-protein interaction network 

Topological Algorithms Centralities 

MCC MNC DMNC DEGREE BETWEENNESS CLOSENESS 

CDK1 CDK1 PBK  CDK1 FN1 CDK1 

KIF11 CCNA2 NEK2  CCNA2 AURKA CCNA2 

BUB1 CCNB1 AURKA CCNB1 BRCA1 CCNB1 

KIF20A CDC20 MKI67  CDC20 STAT1 BUB1B 

TOP2A BUB1 PTTG1 BUB1 CXCL10  CDC20 

KIF2C BUB1B TTK KIF11 ISG15 BUB1 

BUB1B KIF11 CEP55 BUB1B PCNA KIF11 

CCNB1 KIF20A CENPE KIF20A LCN2  TOP2A 

DLGAP5 TOP2A NUSAP1 TOP2A EGF KIF20A 

CDC20 DLGAP5 NCAPG DLGAP5 IL10 DLGAP5 

CDCA8  KIF2C PRC1 KIF2C CCNA2 PLK1 

UBE2C CENPF CDCA8  CENPF CDK1 TPX2  

TPX2  CCNB2  ASPM CCNB2  LTF CCNB2  

CENPF TPX2  MELK  TPX2  CENPA  UBE2C 

CCNA2 CDCA8  KIF15 PLK1 ITGA2B AURKA 

CEP55 AURKB BIRC5  CDCA8  BUB1B KIF2C 

MELK  PLK1 CENPF BIRC5  TYMS CENPF 

NUSAP1 BIRC5  CDCA3 AURKB RAD51 AURKB 

TTK NUSAP1 GBP4 NUSAP1 CD40LG CDCA8  

CCNB2  UBE2C UBE2C ASPM MMP9  BIRC5  

 

The colour code designates the presence of the highlighted genes in more than two columns—red indicates 

presence in five columns, violet indicates presence in four columns, blue indicates presence in three columns, and 

green indicates presence in two columns 

  

1

1

2



Table 2. Top 20 hub genes determined using various topological methods and centrality 

measures with in the FI network. 

 

The 

colour code designates the presence of the highlighted genes in more than two columns—red indicates presence in five 

columns, violet indicates presence in four columns, blue indicates presence in three columns, and green indicates presence in 

two columns. 

 

Figure 1. Volcano plot depicting the distribution of the DEGs identified in the SLE 

samples with the cut-off values log2FC>|1| and q-value < 0.05 and top 10 Up-Regulated 

and Down-Regulated DEGs Identified in the Study . 

Figure 2. Gene Ontology analysis result of DEGs (FDR< 0.05) using ToppGene Suite 

Figure 3. Motif enrichment analysis result 

Figure 4. Protein-Protein interaction network built using stringApp 

The circles are designated for the genes (nodes) while the lines represent the edges. The downregulated genes are represented 

using the red nodes while the upregulated genes are represented using the green nodes. Linker genes have been represented 

using blue nodes.  

Figure 5. Reactome functional interaction network created using ReactomeFIViz 

Topological Algorithms Centralities 

MCC MNC DMNC DEGREE BETWEENESS CLOSENESS 

ZWINT CDK1 SGO1 CDK1 STAT1 CDK1 

CDK1 CCNA2 SPC24 CCNA2 BRCA1 CCNA2 

CCNB2 PLK1 KNL1 PLK1 FCGR1A PLK1 

SKA1 CDCA8 CDCA3 CDCA8 BIRC5 AURKA 

SPC25 EXO1 CENPN EXO1 TEAD3 EXO1 

NDC80 CCNB2 IGHV2-26 AURKA GLIS1 FOXM1 

SKA3 AURKA IGHV1-24 CCNB2 HLA-DRA NEK2 

CCNA2 FOXM1 IGHV1-69D FOXM1 GLIS2 STAT1 

AURKA NEK2 IGHV3-43 NEK2 KIT CDCA8 

BUB1 NDC80 IGHV5-51 NDC80 E2F1 CENPE 

BUB1B ZWINT IGHV6-1 ZWINT CHEK1 NDC80 

CDCA5 CDCA5 OIP5 CDCA5 PLCB1 BRCA1 

CCNB1 CENPE IGKV1-27 CENPE CDK1 CDCA5 

CDC20 BUB1B IGKV1-8 BUB1B CTBP2 KIF11 

SGO1 SPC25 IGKV1-6 SPC25 CDKN1A KIF2C 

AURKB TPX2 CENPM TPX2 CCR5 CENPF 

CDC25C KIF2C CKS2 KIF2C MET CCNB1 

CENPE BUB1 PTTG1 BUB1 VEGFA TPX2 

CDCA8 CENPA SKA3 CENPA EGF CDC20 

1

1
1

1

1

1

4



The circles are designated for the genes (nodes) while the lines represent the edges. The downregulated genes are represented 

using the red nodes while the upregulated genes are represented using the green nodes.  

Figure 6. single sample Gene Set Enrichment Analysis (ssGSEA) of Cell Cycle related 

Gene sets on the samples 
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