)	MS	Angiotensin	Withoutauthor details	12	02	24
	11/13	Anulotensin	williouldullior uelans	12	υz	24

Date: 2	202	4-02-14 13:11 UTC
≭ All s	sou	rces 50 Solution Internet sources 46 Cover documents 4
I [0	D]	 ♥ www.nature.com/articles/s41392-023-01430-7 【4.6%】36 matches
V [1	1]	 www.manualslib.com/manual/1260537/Bd-Facscalibur.html 14 matches
v [2	2]	 ♥ www.nature.com/articles/s41401-019-0224-x 2.5% 32 matches
R [3	3]	 ♥ www.nature.com/articles/s41598-020-67993-5 2.1% 25 matches
V [4	4]	"life-13-02254.pdf" dated 2023-11-28 1.9% 25 matches
№ [:	5]	"toxics-11-00980.pdf" dated 2023-12-03 1.6% 27 matches
V [6	6]	♥ www.ncbi.nlm.nih.gov/pmc/articles/PMC7319515/ 1.6% 22 matches
	7]	www.nature.com/articles/s41420-022-00924-7 1.7% 20 matches
3] 💟	8]	♥ www.nature.com/articles/s43587-021-00098-4 1.2% 18 matches
₽ [9	9]	"toxins-15-00663.pdf" dated 2023-11-17 1.3% 15 matches
P [10	D]	• www.researchgate.net/publication/366192628_The_Role_of_Apoptosis_and_Autophagy_in_the_HypothalamicPituitary-Adrenal_HPA_
7 [11	1]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC8147027/ 17 matches
7 [12	2]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC9778890/ 15 matches
7 [13	3]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC8811286/ 1.2% 11 matches
₽ [19	5]	 ♥ www.ncbi.nlm.nih.gov/pmc/articles/PMC8231964/ ●.6% ● matches
V [16	6]	 www.nature.com/articles/cdd2009195 0.7% 9 matches
P [17	7]	• www.researchgate.net/publication/367193137_Cancer-associated_fibroblasts_produce_matrix-bound_vesicles_that_influence_endotheli 0.5% 13 matches
7 [18	8]	 www.nature.com/articles/srep34393 9 matches
V [19	9]	 www.frontiersin.org/articles/10.3389/fendo.2019.00570/full 0.7% 8 matches
V [20	D]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC9273387/ 0.6% 7 matches
V [21	1]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC9448300/ 0.5% 10 matches
P [22	2]	 ♥ www.ncbi.nlm.nih.gov/pmc/articles/PMC6343665/ 0.7% 6 matches
P [23	3]	 www.nature.com/articles/srep04698 0.4% 7 matches
V [24	4]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC8064120/ 0.4% 5 matches

2 [25]	• Autorize_1 ocus.put dated 2020 12 24 0.3% 6 matches
2 [26]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC5799081/ 0.4%) 4 matches
2 [27]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC4565609/ 0.4%) 5 matches
7 [28]	www.bing.com/ck/a?!&&p=7f37683ae9a9ccdbJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0wNjk1MmRhMi04MmRiLTYxNzMtMGUyYi0zO 0.4% 4 matches
7 [29]	 link.springer.com/article/10.1007/s10863-023-09965-8 0.3% 5 matches
7 [30]	 journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008624 3 matches
[31]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC7712457/ 0.3%) 2 matches
[32]	 link.springer.com/article/10.1007/s13365-019-00725-2 0.2%) 2 matches
Z [33]	www.bing.com/ck/a?!&&p=4aa1b1915c55ea00JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0wNjk1MmRhMi04MmRiLTYxNzMtMGUyYi0zC
2 [34]	assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0011851_Pierce_LDH_Cytotoxicity_Asy_UG.pdf 02% 3 matches
7 [35]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC6048464/ 02% 3 matches
7 [36]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC9120324/ 0.0% 4 matches
7 [37]	 www.ncbi.nlm.nih.gov/pmc/articles/PMC7610698/ 02%) 2 matches
[38]	Pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches
▼ [38]▼ [39]	 pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches
♥ [38] ♥ [39] ♥ [40]	 pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches
 ♥ [38] ♥ [39] ♥ [40] ♥ [41] 	 pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJlN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn
 ♥ [38] ♥ [39] ♥ [40] ♥ [41] ♥ [42] 	 pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJlN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches www.bing.com/ck/a?!&&p=a711841e415b58bfJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJlN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches link.springer.com/chapter/10.1007/978-3-031-31557-2_1 0.1% 1 matches
 ☑ [38] ☑ [39] ☑ [40] ☑ [41] ☑ [42] ☑ [43] 	 pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches www.bing.com/ck/a?!&&p=a711841e415b58bfJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches ink.springer.com/chapter/10.1007/978-3-031-31557-2_1 0.1% 1 matches www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches
 ♥ [38] ♥ [39] ♥ [40] ♥ [41] ♥ [42] ♥ [43] ♥ [44] 	 pubmed.ncbi.nlm.nih.gov/28224799/ 1 matches www.nature.com/articles/nprot.2007.54 imatches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn
 ♥ [38] ♥ [39] ♥ [40] ♥ [41] ♥ [42] ♥ [43] ♥ [44] ♥ [45] 	 pubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches www.bing.com/ck/a?!&&p=a711841e415b58bfJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches link.springer.com/chapter/10.1007/978-3-031-31557-2_1 0.1% 1 matches www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches www.graphpad.com/guides/prism/latest/user-guide/citing_graphpad_prism.htm 0.1% 1 matches www.bdbiosciences.com/content/dam/bdb/marketing-documents/facscalibur_brochure.pdf 0.1% 1 matches
 ♥ [38] ♥ [39] ♥ [40] ♥ [41] ♥ [41] ♥ [42] ♥ [43] ♥ [44] ♥ [45] ♥ [46] 	 Dubmed.ncbi.nlm.nih.gov/28224799/ 0.1% 1 matches www.nature.com/articles/nprot.2007.54 0.1% 1 matches www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches www.bing.com/ck/a?!&&p=a711841e415b58bfJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.1% 1 matches link.springer.com/chapter/10.1007/978-3-031-31557-2_1 0.1% 1 matches www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.3% 1 matches www.bing.com/guides/prism/latest/user-guide/citing_graphpad_prism.htm 0.3% 1 matches www.bdbiosciences.com/content/dam/bdb/marketing-documents/facscalibur_brochure.pdf 0.3% 1 matches assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0001620_HUVEC_PI.pdf 0.3% 1 matches
 ☑ [38] ☑ [39] ☑ [40] ☑ [41] ☑ [42] ☑ [42] ☑ [43] ☑ [44] ☑ [45] ☑ [46] ☑ [47] 	Q pubmed.ncbi.nlm.nih.gov/28224799/ 0.3% 1 matches W www.nature.com/articles/nprot.2007.54 0.3% 1 matches W www.bing.com/ck/a?!&&p=00ce79f3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.3% 1 matches W www.bing.com/ck/a?!&&p=a711841e415b58bfJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.3% 1 matches W www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.3% 1 matches 0.4% 1 matches www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.3% 1 matches www.graphpad.com/guides/prism/latest/user-guide/citing_graphpad_prism.htm 0.4% 1 matches www.bdbiosciences.com/content/dam/bdb/marketing-documents/facscalibur_brochure.pdf 0.3% 1 matches www.bing.com/ck/a?!&&p=8184605be9917a34JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn 0.3% 1 matches
 ☑ [38] ☑ [39] ☑ [40] ☑ [41] ☑ [42] ☑ [42] ☑ [42] ☑ [43] ☑ [44] ☑ [45] ☑ [46] ☑ [47] ☑ [48] 	<pre></pre>
 ☑ [38] ☑ [39] ☑ [40] ☑ [41] ☑ [42] ☑ [42] ☑ [42] ☑ [42] ☑ [43] ☑ [44] ☑ [44] ☑ [45] ☑ [46] ☑ [47] ☑ [48] ☑ [49] 	@ pubmed.ncbi.nlm.nih.gov/28224799/ @1% @ www.nature.com/articles/nprot.2007.54 @1% @ www.bing.com/ck/a?!&&p=00ce79/3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn @1% @ www.bing.com/ck/a?!&&p=00ce79/3cb82499eJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn @1% @ www.bing.com/ck/a?!&&p=a711841e415b58bfJmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn @1% @ link.springer.com/chapter/10.1007/978-3-031-31557-2_1 @1% @ www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn @1% @ www.bing.com/ck/a?!&&p=f8479eb39aa39043JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZjJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn @1% @ www.graphpad.com/guides/prism/latest/user-guide/citing_graphpad_prism.htm @1% @ www.bioisciences.com/content/dam/bdb/marketing-documents/facscalibur_brochure.pdf @1% @1% @ assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN001620_HUVEC_PI.pdf @1% @ www.bing.com/ck/a?l&&p=8184605be9917a34JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZJJIN2ZmMS05YzU2LTY4NGQtMjgyNC02Yn @1% @ www.bing.com/ck/a?l&&p=8184605be9917a34JmltdHM9MTcwNzg2ODgwMCZpZ3VpZD0zZJJIN2ZmMS05YzU2LTY4NGQtMjgy

20 pages, 5884 words

PlagLevel: 14.0% selected / 14.9% overall

115 matches from 51 sources, of which 47 are online sources.

Settings

Data policy: Compare with web sources, Check against my documents

Sensitivity: High

Bibliography: Bibliography excluded

Citation detection: Highlighting only

Whitelist: --

¹ The angiotensin II type 1 receptor mediates the induction of oxidative stress,

² apoptosis, and autophagy in HUVECs induced by angiotensin II

3

4 Short title: Mechanisms of the effect of Angiotensin II

5

6 Abstract

Angiotensin (Ang) II, which is the central effector of the renin-angiotensin system 7 8 (RAS), is one of the principal mediators of vascular dysfunction in hypertension and cardiovascular diseases. Proper vascular function is mediated by oxidative stress, cell 9 apoptosis, and autophagy. However, the underlying signaling pathways and the major 10 RAS components involved in this process are still not fully understood.^[2] In the present 11 12 study, the effect of Ang II on reactive oxygen species (ROS) production, apoptosis 13 induction, and autophagy in human umbilical vein endothelial cells (HUVECs) was investigated.^[2] An Annexin V kit was used for the apoptosis analysis, and caspase-3/7 14 activities were measured with the Caspase-Glo 3/7 Assay Kit. ROS production was 15 measured using a 2,7-dichlorodihydrofluorescein diacetate probe whereas detection of 16 autophagy was performed using acridine orange staining.^[2] We found that Ang II 17 18 increases oxidative stress via ROS production, cell apoptosis via caspase 3/7, and the mitochondrial membrane potential (MMP).^[0]. Interestingly, losartan, being an antagonist 19 of the angiotensin II type 1 receptor (AT1R), has demonstrated the ability to restore 20 autophagy levels to that of the control group subsequent to its induction by Ang II^[28]. 21 latter can thus induce endothelial cell damage, through excessive oxidative stress and 22 defective autophagy-related apoptosis, which can be inhibited by losartan. These 23 findings reinforce the pivotal role played by the Ang II/AT1R axis in the pathogenesis 24

25	of vascular damage and bolster our knowledge of the role played by ROS/autophagy-
26	related apoptosis via AT1R in the pathogenesis of hypertension and vascular diseases.
27 28	Keywords: Endothelial cells; angiotensin II; oxidative stress; autophagy; apoptosis
29 30	1. Introduction
31	Dysregulation of the renin-angiotensin system (RAS) is associated with
32	inflammation, oxidative stress, and vascular damage (Almutlaq et al. 2022).
33	Furthermore, endothelial dysfunction triggers vascular injury and cardiovascular
34	diseases. Local endothelial RAS components are involved in cellular homeostasis and in
35	biological function, structure, and proliferation (Barhoumi et al. 2021). Hyperactivation
36	of the RAS via the angiotensin (Ang) II/angiotensin II type 1 receptor (AT1R) axis is
37	balanced by the Ang 1-7/MAS receptor (MASR) regulatory axis (Almutlaq et al. 2021).
38	The active form of the latter is mainly modulated by Ang II, which is the main
39	component of the RAS (O'Connor et al. 2022). Ang II receptors can be found are
40	present in several cells, including endothelial cells. Thus, Hhigh plasma levels of Ang II
41	thus stimulate endothelial cells and trigger vascular dysfunction through different
42	pathways (Chrysanthopoulou et al. 2021). Given the significant rise in cardiovascular
43	diseases globally and the correlation between RAS and the onset of cardiovascular
44	diseases, potential treatment options have been proposed. ^[0] One of these alternatives
45	targets, angiotensin receptor blockers (ARBs) exert their pharmacological effects
46	through the inhibition of Ang II, a hormone that has a pivotal pathophysiological role in
47	renal and cardiovascular diseases. The competitive antagonism of Ang II receptors has
48	been hypothesized to result in the selective suppression of Ang II, potentially leading to
49	a decrease in negative effects and a potential enhancement in therapeutic effectiveness

(Abraham et al., 2015). The Food and Drug Administration (FDA) in the United States 50 51 has approved several ARBs for the treatment of hypertension. These ARBs, namely 52 irbesartan, valsartan, losartan, and candesartan, are classified as non-peptide compounds. They are distinguished by the presence of biphenyl, tetrazole, 53 54 benzimidazole, or nonbiphenyl nontetrazole moieties (Abraham et al., 2015). These 55 ARBs exhibit a higher binding affinity towards ATR1 compared to ATR2, hence 56 enabling them to effectively inhibit the actions of Ang II on ATR1. 57 Although it is known that Ang II induces endothelial dysfunction, the underlying 58 pathways and cell responses to excessive Ang II levels are still not fully understood. 59 Autophagy is involved in vascular biology and in cardiometabolic diseases (Yu et al. 60 2022). However, the signaling pathways responsible for these cellular effects are poorly understood. Autophagy induction in endothelial cells is a popular area of research due to 61 62 the sensitivity of these cells to signal transduction and targeted therapies in 63 cardiovascular diseases. Like any regulator of physiologic homeostasis such as reactive oxygen species (ROS), autophagy activation is not typically protective in that excessive 64 autophagy worsens biological effects (An et al. 2019). Although Ang II induces ROS 65 66 production in endothelial cells, the synergistic effect of Ang II-induced oxidative stress induced by Ang II- and detrimental autophagy is unclear. 67 68 In the present study, we used an in vitro model of endothelial cells to test the effect of 69 Ang II and related mechanisms. We found that Ang II increases cell autophagy, which could stimulate apoptosis via the caspase 3/7 pathway. Furthermore, autophagy 70 71 activation can trigger ROS production as a hallmark of endothelial dysfunction. All Ang II effects are dependent on the AT1R axis. Our results highlight the role of autophagy in 72

- 73 Ang II-induced endothelial dysfunction and emphasize the crucial function played by
- ⁷⁴ AT1R antagonists and the RAS as targets for treating endothelial dysfunction.
- 75
- ⁷⁶ 2. Materials and Methods
- ⁷⁷ 2.1.^[2] Human umbilical vein endothelial cell (HUVEC) cultures
- 78 HUVECs were procured urchased from ATCC (CRL-1730 USA) and cultured in
- 79 DMEM/F12 medium supplemented with containing 10% FBS and 1% penicillin-
- ⁸⁰ streptomycin.^[3] The cells were seeded and incubated at 37°C in a humidified 5% CO2
- atmosphere with 5% CO2. The complete medium was replenished every 2 days by
- ⁸² discarding the old medium and discarded and replacinged it with fresh complete medium
- 83 every 2 days. The cells were treated for 24 h or 48 h with 100 nM Ang II or were
- ⁸⁴ pretreated for 1 h with 100 μM losartan (Sigma Cat# 61188-100MG) prior to the Ang II
- 85 treatment.
- 86
- 87 2.2. Cytotoxicity assay
- ⁸⁸ LDH release by HUVECs was measured after a 48-h treatment with 100 μ M losartan,
- ⁸⁹ with 100 μ M Ang II, or in combination to study their cytotoxicity (LDH assay kit,
- ⁹⁰ Abcam, Cambridge, UK).
- 91 2.3. Apoptosis assay
- 92 | For apoptosis analysis, an Annexin V kit obtained from BD Biosciences (San Diego,
- ⁹³ CA, USA) was utilized. Following treatment with 100 nM Ang II or a 1-hour pre-
- ⁹⁴ <u>treatment with 100 μM losartan (Sigma), the cells were washed twice with cold PBS.</u>
- ⁹⁵ ^[3] Subsequently, they were resuspended in binding buffer and incubated with annexin V.
- 96 conjugated to FITC and propidium iodide (PI).^[1] After a 15-minute incubation period, the

97	cells were assessed within 1 hour using a BD FACS Calibur® flow cytometer (BD
98	Biosciences, San Jose, CA, USA). The acquired data were analyzed using Cell Quest®.
99	Pro software (BD). An Annexin V kit from BD Biosciences (San Diego, CA, USA) was
100	used for the apoptosis analysis. After a treatment with 100 nM Ang II or a 1-h pre-
101	treatment with 100 µM losartan (Sigma), the cells were washed twice with cold PBS
102	and were then resuspended in binding buffer before being incubated with annexin V
103	conjugated to FITC and propidium iodide (PI). After a 15-min incubation, the cells were
104	analyzed within 1 h using a BD FACS Calibur® flow cytometer (BD Biosciences, San
105	Jose, CA, USA), and the data were evaluated using Cell Quest® Pro software (BD). A
106	gating strategy was used to exclude doublet cells and to separate early and late apoptotic
107	populations. To confirm the flow cytometry results, fluorescence microscopy was used
108	to study apoptosis. Caspase 3/7 activity was measured in HUVECs to evaluate apoptosis
109	signaling pathways.
109 110	signaling pathways.
109 110 111	signaling pathways. ^[2] The activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA). ^[4]
109 110 111 112	signaling pathways. ^[2] The activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA). ^[4] according to the manufacturer's protocol. ^[7] HUVECs were distributed into a 96-well plate at a density of
109 110 111 112 113	signaling pathways. ^[2] he activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA). according to the manufacturer's protocol. ^[7] HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48
109 110 111 112 113 114	signaling pathways. ^[2] The activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA). ^[4] manufacturer's protocol. ^[7] HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48 h. Then, the treated cells were exposed to 10 μl of the assay reagent at room temperature
109 110 111 112 113 114 115	 signaling pathways. ^[2] he activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA).^[4] according to the manufacturer's protocol.^[7] HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48 h.^[11] hen, the treated cells were exposed to 10 µl of the assay reagent at room temperature for 1 h, and.^[4] huminescence was quantified to determine the levels of caspase-
109 110 111 112 113 114 115 116	 signaling pathways. ^[2] The activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA).^[4] according to the manufacturer's protocol. ^[7] HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48 h.^[11] then, the treated cells were exposed to 10 µl of the assay reagent at room temperature for 1 h, and ^[4]. Finally, luminescence was quantified to determine the levels of caspase-3/7 activity.
109 110 111 112 113 114 115 116 117	 signaling pathways. ^[2]The activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA).^[4] according to the manufacturer's protocol.^[7] HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48 h.^[11] Then, the treated cells were exposed to 10 µl of the assay reagent at room temperature for 1 h, and.^[4] Finally, luminescence was quantified to determine the levels of caspase-3/7 activity. Detection of Apoptotic nuclear morphological Changes by fluorescence imaging.
109 110 111 112 113 114 115 116 117 118	 signaling pathways. ^[2]The activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA).^[4] according to the manufacturer's protocol.^[7] HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48 h.^[11]Then, the treated cells were exposed to 10 µl of the assay reagent at room temperature for 1 h, and ^[4]. Juminescence was quantified to determine the levels of caspase-3/7 activity. Detection of Apoptotic nuclear morphological Changes by fluorescence imaging. Hoechst 33342 staining was utilized to monitor changes in the morphology of HUVECs
109 110 111 112 113 114 115 116 117 118 119	 signaling pathways. ^[2] he activities of Ccaspase-3/7 activities in the HUVECs were evaluated measured with Caspase-Glo 3/7 Assay Kit (Promega, Madison, WI, USA). according to the manufacturer's protocol. HUVECs were distributed into a 96-well plate at a density of 10,000 cells per well and subsequently exposed to losartan and Ang II for a period of 48 h. Then, the treated cells were exposed to 10 µl of the assay reagent at room temperature for 1 h, and. Finally, luminescence was quantified to determine the levels of caspase-3/7 activity. Detection of Apoptotic nuclear morphological Changes by fluorescence imaging. Hoechst 33342 staining was utilized to monitor changes in the morphology of HUVECs undergoing apoptosis. Initially, cells were seeded onto coverslips placed within a six-

- 121 concentrations of losartan and Ang II for a 48-hour duration. After fixation with
- ¹²² formaldehyde, Hoechst 33342 dye was used to label the cells for a period of 10 minutes.
- ¹²³ Subsequently, the cells were rinsed washed with 1X PBS, and their nuclear
- 124 morphological changes were observed examined using a fluorescence microscope
- ¹²⁵ (Olympus BX41, Tokyo, Japan) equipped with a digital camera and appropriate filters.
- The excitation wavelength employed was 346 nm, and the emission wavelength was
 497 nm.
- **128** Since the Hoechst 33342 staining results were estimated non-qualitatively, the
- 129 reproducibility of results was maintained by performing the experiments at least three
- times, and all the slides were coded and observed by a single operator
- 131 2.4. Measurement of the mitochondrial membrane potential (MMP) to evaluate
- 132 mitochondrial function
- HUVECs were treated with 100 nM Ang II alone or in combination with 100 μM
- ¹³⁴ losartan for 48 h. The cells were washed with 1X PBS (Phosphate Buffered Saline, pH
- ¹³⁵ 7.4) and were stained with rhodamine 123. Images were captured at 200X magnification
- using a compound Olympus BX41 microscope (Tokyo, Japan) equipped with a CCD
- 137 camera and a fluorescence attachment.
- 138 2.5. Measurement of ROS production
- 139 To evaluate oxidative stress, ROS production was measured in cells using a 2,7-
- 140 dichlorodihydrofluorescein diacetate (DCFH2-DA) probe (Thermo Fisher Scientific,
- ¹⁴¹ Waltham, MA, USA) as described previously (Alamri et al. 2021).^[21] Briefly, the cell-
- 142 permeant indicator DCFH2-DA is cleaved by intracellular esterases and is oxidized by
- ¹⁴³ ROS to generate the fluorescent DCF form. After treatments with 100 nM Ang II alone
- or in combination with 100 µM losartan for 48 h, the cells were washed in 1X PBS

- solution and were resuspended in 200 µL (final volume) before being incubated for
- ¹⁴⁶ 30 min with 10 μM DCFH2-DA at 37°C. The cells were examined observed under using
- ¹⁴⁷ a fluorescence microscope (Olympus BX41, Tokyo, Japan) equipped with charge-
- ¹⁴⁸ coupled device (CCD) camera and appropriate filter.
- ¹⁴⁹ ¹⁴⁹
- ¹⁵⁰ in a 96-well plate with a black bottom and underwent the identical assay procedure
- explained earlier. The fluorescence intensity signal was captured using a microplate
- ¹⁵² reader (BioTek®, Winooski, VA, USA) with an excitation wavelength of 485 nm and
- an emission wavelength of 528 nm. Subsequently, the measurements were compared to
- ¹⁵⁴ untreated cells, which were utilized as a reference and set at 100%.
- 155
- 156 2.6. Detection of autophagy by acridine orange staining
- ¹⁵⁷ HUVECs were cultured with 5 μ g/mL acridine orange (AO) working solution for 15
- ¹⁵⁸ min in the dark after being exposed to the indicated amounts of losartan and Ang II for
- 159 12 and 24 h. The stained cells were mounted on glass slides, rinsed with PBS, and
- examined with a compound Olympus BX41 microscope equipped with a CCD camera
- ¹⁶¹ and a fluorescence attachment. For the relative quantification of acridine orange
- staining, we utilized the Zen 3.1 service (ZEN Light, Blue Edition, Germany) as the
- ¹⁶³ method. The quantification was performed using GraphPad Prism 9 software (GraphPad
- ¹⁶⁴ Software, San Diego, CA, USA).
- 165
- 166 2.7. Statistical analysis
- ¹⁶⁷ Data are expressed as means ± SEM. Comparisons between groups were performed
- using SPSS (version 17.0, SPSS) and GraphPad Prism 9.3.^[1] (463) softwires with a one-

- 169 way ANOVA followed by Tukey's post hoc test (we considered p 0.05 as statistically170 significant).
- 171
- **172** 3. Results
- 173 3.1. Ang II cytotoxicity toward HUVECs
- 174 An LDH assay was used to evaluate the cytotoxicity of Ang II toward endothelial cells.
- 175 While no significant effect was found in the losartan group, LDH release was
- ¹⁷⁶ significantly higher in the Ang II group compared to the control group. This effect was
- significantly reduced when adding losartan to Ang II (Fig. 1).^[5] However, the level of
- 178 LDH in the (Los + Ang II) group was still significantly higher than that in the control
- ¹⁷⁹ group, which indicates the potential involvement of other pathways in addition to the
- 180 AT1R pathway.
- 181 3.2. Ang II triggers HUVEC apoptosis
- ¹⁸² HUVECs were used as an endothelial cell model.^[24] hey were treated for 48 h to
- ¹⁸³ investigate the effect of Ang II on apoptosis (Figs. 2, 3, and 4).^[23] Ang II significantly
- ¹⁸⁴ increased the number of apoptotic and necrotic cells (Figures 2A-E).^[7] To better explain
- ¹⁸⁵ apoptosis in response to the Ang II treatment, we performed flow cytometry to
- determine the percentages of early and late apoptotic cells.^[4] There was an increase in
- 187 early and late apoptotic Ang II-treated cells compared to the control group (Figure 3).
- ¹⁸⁸ Furthermore, Ang II-treated HUVECs stained with Hoechst 33324 nuclear dye showed
- ¹⁸⁹ a significant increase in piknotic nuclei (Fig. 4). Hoechst 33324 is a cell-permeant
- 190 fluorescent dye binds to structurally damaged DNA fragments and emits stronger blue
- 191 fluorescence. Hoechst 33324 is a cell-permeant fluorescent dye that attaches to
- 192 structurally damaged DNA fragments, resulting in a more intense blue fluorescence

193	emission. ^[25] elucidate the signaling pathway by which Ang II induces apoptosis, we
194	measured caspase 3/7 levels, which were significantly higher in the Ang II group than in
195	the control group (Fig. 5).
196	3.3. Assessment of mitochondrial depolarization using the rhodamine 123 dye
197	Rhodamine 123 is a fluorescent cationic dye frequently employed to investigate
198	mitochondrial function and membrane potential within cells. It was chosen for its
199	capacity to specifically accumulate in the mitochondria of living cells. The process of
200	mitochondrial energization leads to a reduction in rhodamine 123 fluorescence, and the
201	rate at which the fluorescence decreases is directly linked to the mitochondrial
202	membrane potential. To evaluate mitochondrial function, we analyzed MMP (Figs. 6A-
203	D), which was clearly affected by the Ang II treatment (Fig. 6C). This effect was
204	abrogated by blocking AT1R (Fig. 6B).
205	
206	3.4. Ang II induces ROS production
207	ROS production is a hallmark of endothelial dysfunction. Cell function is modulated by

- ²⁰⁸ ROS production, and abnormalities in this marker dysregulate metabolism and cell
- 209 homeostasis. To investigate the effect of Ang II on the cellular redox balance in
- 210 HUVECs, we analyzed DCF fluorescence (Fig. 7). Ang II significantly increased ROS
- ²¹¹ production in by HUVECs (Fig. 7C) through the AT1R pathway while losartan blocked
- 212 ROS production (Fig. 7B).
- 213
- **214 3.5**.^[1] Ang II stimulates autophagy in HUVECs
- 215 When observing HUVECs under fluorescence microscopy, it was observed that those
- 216 treated with losartan, with or without Ang II, displayed normal acidic vesicular

organelles (AVOs), which serve as an indicator of autophagy.^[4] This observation was in
comparison to the control group (Fig. 8). Notably, HUVECs treated solely with Ang II
exhibited a significant increase in AVOs, evident through the higher levels of green and
orange fluorescence. This indicates that Ang II induced autophagy, while losartan
restored autophagy levels to that of the control group.

222

223 4. Discussion

224 Endothelial dysfunction is a hallmark of vascular damage associated with cardiovascular diseases (Nukala et al. 2023). The RAS, which is a major regulator of 225 226 hypertension, is a fundamental system involved in all cardio-metabolic diseases, and RAS components are present in almost all tissues. Hyperactivation of the RAS in the 227 228 vasculature induces pathophysiological vasoconstriction, which, in turn, induces 229 vascular injury (Ting et al. 2023). We investigated the impact of Ang II on the cellular redox balance in HUVECs. Our findings revealed that when cells were exposed to Ang 230 II, there was a significant increase in reactive oxygen species (ROS) production through 231 232 the AT1R pathway because the introduction of losartan effectively inhibited ROS 233 production. These results align with previous research that has demonstrated the 234 involvement of various proinflammatory and proatherosclerotic factors, such as Ang II 235 and TNFa, in the intrinsic generation of ROS by endothelial cells (Dimmeler & Zeiher 2000). Additionally, they support the notion that Ang II-induced endothelial 236 237 dysfunction is influenced by oxidative stress, inflammation, and the immune system (Caillon et al. 2017).^[4] The overproduction of reactive oxygen species (ROS) results in an 238 imbalance between oxidation and antioxidation, which leads to oxidative stress. This 239 240 oxidative stress is implicated in the development of several cardiovascular illnesses,

²⁴¹ such as atherosclerosis, hypertension, and heart failure (Cai & Harrison 2000).

²⁴² Moreover, oxidative stress alters many endothelial functions by, for example,

²⁴³ modulating vasomotor tone (Versari et al. 2009).^[0] These effects are triggered by vascular

smooth muscle cells and endothelial cells via local RAS activation, which is associated

²⁴⁵ with changes in cell structure and function.

246 [Interestingly, ROS are known to cause programmed cell death apoptosis and other

²⁴⁷ | forms of cell death in a variety of cell types. Increased ROS production is an early sign

²⁴⁸ of atherogenesis, indicating a connection between ROS and apoptosis (Dimmeler &

249 Zeiher 2000).^[9] When compared to the control, our results show We found that Ang II

250 significantly increases the number of early and late apoptotic HUVECs compared to the

251 control group. This was likely due to a considerable increase in caspase 3/7 levels in the

Ang II group.^[0] The physiological significance of these findings is supported by studies

²⁵³ showing that ROS production and apoptosis can play physiological and

²⁵⁴ pathophysiological roles in vascular homeostasis through their many effects on smooth

²⁵⁵ muscle cells (Irani 2000; Ma et al. 2023). In fact, pathological endothelial cell apoptosis

²⁵⁶ is a major mechanism causing vascular damage. This process leads to a disarrangement

²⁵⁷ of the structure of the endothelial layer and vascular injury characterized by

²⁵⁸ pathological plasmatic protein infiltration due to vascular seepage, resulting in an

²⁵⁹ increase in cell adhesion, procoagulant factor accumulation, and prothrombotic

conditions (Rong et al. 2006; Zacharia et al. 2020).

²⁶¹ During physiological tissue and cell homeostasis, autophagy can modulate protein and

²⁶² organelle turnover by removing dysfunctional proteins and organelles (Madden et al.

²⁶³ 2014). Studies in the past few years have shown that autophagy is a cellular death

²⁶⁴ mechanism and a response to various pathological effects Recent research has

265	demonstrated that autophagy serves as a cellular mechanism for cell death and a
266	response to different pathological conditions (Ravikumar et al. 2010). In particular,
267	there is an increasing body of evidence showing that there is a link between ROS and
268	autophagy and that ROS production can both trigger autophagy and be regulated by
269	autophagy Notably, emerging evidence suggests a connection between reactive oxygen.
270	species (ROS) and autophagy, indicating that ROS production can both initiate.
271	autophagy and be controlled by autophagy itself (Li et al. 2015). The consequences of
272	these interactions between ROS and autophagy can become evident in different clinical
273	circumstances. To further investigate the role of Ang II in endothelial cell dysfunction
274	and the mechanisms associated with cell apoptosis, oxidative stress, and autophagy, we
275	examined processes, including ROS production, apoptosis induction via caspase3/7, and
276	autophagy, in Ang II-treated HUVECs. Our results suggest that the induction of
277	autophagy by Ang II is a pathological condition rather than a regular physiological
278	process to clear abnormal proteins and inoperative organelles (Aghajan et al. 2012).
279	Indeed, Ang II induces several physiological reactions inside the human body,
280	encompassing the development of hypertension, renovascular hypertension, and renal
281	disorders (Vargas et al. 2022). Previous investigations have demonstrated the
282	pathogenic impact of Ang II, primarily through its interaction with the angiotensin
283	receptor 1 (AT1R), a G protein-coupled receptor. The Ang II-AT1R interaction has
284	been observed to elevate the intracellular calcium concentration in vascular smooth
285	muscle and various other tissues, resulting in vasoconstriction, inflammation, and
286	fibrosis (Kobori et al. 2007). This action can be inhibited by the angiotensin receptor
287	blocker, losartan, as shown by our results, and in accordance with previous studies.
288	Interestingly, we demonstrated that autophagy was highly induced after Ang II

289 treatment in accordance with the increase of ROS, apoptosis, and Caspases 3/7. 290 Therefore, it is plausible that the detrimental impact of Ang II is mediated by the 291 elevation of ROS, which subsequently triggers the autophagic pathway and autophagyrelated apoptosis. This process may contribute to the exacerbation of endothelial cell 292 293 damage and the development of pathological conditions, rather than promoting cell survival.⁸ Indeed, Excessive autophagy can lead to an increase in apoptotic cell death, 294 295 whereas an upregulation of autophagy in response to stress can mitigate apoptotic cell 296 death (Maiuri et al. 2007; Liu et al. 2015). Numerous studies have demonstrated that 297 oxidative stress can trigger apoptosis, autophagy, or both, thereby exerting adverse 298 effects on various tissues investigations have provided evidence that oxidative stress can 299 induce apoptosis, autophagy, or both, leading to detrimental impacts on different tissues (An et al. 2019; Zhu et al. 2019). Nevertheless, the potent induction of autophagy in 300 301 response to Ang II was effectively suppressed by losartan as the autophagy level was 302 restored to the baseline of control when this AT1R blocker was employed. Further 303 investigation into this dual mechanism should be explored in future research. The 304 effects of Ang II are mainly mediated by AT1/2 receptors, which are expressed in 305 almost all cells, including endothelial cells. To identify the signaling pathway by which 306 Ang II induces autophagy and cell damage, we treated cells with the AT1R antagonist 307 losartan prior to the Ang II treatment. As expected, the effect was completely reversed. 308 However, further studies to test the effect of AT2R inhibition and confirm the specific 309 signaling pathway by which Ang II/AT1R triggers autophagy, ROS production, and cell 310 apoptosis, and induces endothelial cell dysfunction would be of interest. 311 Our findings need to be confirmed through in vivo experiments using an animal model

³¹² infused with Ang II. Autophagy should be investigated in distinct organs implicated in

Ang II-induced hypertension and vascular damage. This will help us pinpoint the
precise role of Ang II-induced autophagy, unravel the associated signaling pathways,
and identify potential novel treatment targets.

The study has certain limitations that need to be acknowledged. Firstly, there remains a 316 317 lack of consensus regarding the suitability of the DCFH-DA assay for accurately 318 detecting reactive oxygen species (ROS), primarily due to inherent limitations such as the establishment of reliable positive controls. The second limitation includes the 319 320 examination of the signaling pathway associated with the pathogenic impact of Ang II in conjunction with the AT1R pathway. It is worth noting that previous studies have 321 322 suggested that inhibiting the PI3K/AKT/mTOR signaling pathway could potentially 323 result in excessive oxidative stress, impaired autophagy-related apoptosis, and subsequent cellular damage (Jalouli et al. 2022).^[9] Therefore, further examination of the 324 325 PI3K/AKT/mTOR pathway is required to evaluate whether Ang II inhibits this 326 pathway, thereby inducing autophagy and apoptosis. This may also provide insights into 327 the underlying mechanisms by which losartan mitigates apoptosis, autophagy and ROS. 328

329

330 5. Conclusions

³³¹ Endothelial dysfunction, a hallmark of vascular damage linked to cardiovascular

diseases, involves the Renin-Angiotensin System (RAS), a major regulator of

³³³ hypertension. RAS components are ubiquitous in tissues, and RAS hyperactivation in

334 the vasculature induces pathophysiological vasoconstriction and subsequent vascular

injury. Our study focused on Angiotensin II (Ang II) and its impact on cellular redox

balance in HUVECs. We found that Ang II significantly increased ROS production

337 through the AT1R pathway, which losartan treatment effectively mitigated. This aligns 338 with previous research implicating various factors, including Ang II and $TNF\alpha$, in ROS 339 production by endothelial cells, linking oxidative stress to cardiovascular diseases. 340 Excessive ROS contributes to endothelial dysfunction, affecting vasomotor tone and 341 initiating apoptosis. Ang II elevated apoptosis and caspase 3/7 levels in HUVECs, 342 highlighting its role in vascular damage. Furthermore, we explored the relationship between ROS and autophagy, revealing that Ang II-induced autophagy is pathological 343 344 rather than a routine cellular process. Excessive autophagy can exacerbate apoptosis and 345 ROS production. Further research is needed to pinpoint the specific Ang II/AT1R 346 signaling pathway driving these processes. These findings underscore the importance of 347 in vivo validation and exploring Ang II-induced autophagy in different organs to 348 identify potential treatment targets.

349

³⁵⁰ Author Contributions: Conceptualization, Maroua Jalouli; Formal analysis, Maroua

³⁵¹ Jalouli and Mohammed Al-zahrani; Investigation, Maroua Jalouli and Tlili Barhoumi;

352 Supervision, Mohamed Chahine; Validation, Mohammed Al-zahrani and Mohamed

³⁵³ Chahine; Visualization, Mohamed Chahine; Writing – original draft, Maroua Jalouli and
 ³⁵⁴ Tlili Barhoumi.

²⁹Funding: This work was supported and funded by the Deanship of Scientific Research

at Imam University (IMSIU) (grant number IMSIU-RP23099).

³⁵⁷ Data availability statement:^[24] The raw data supporting the conclusion of this article will

be made available by the authors, without undue reservation.

³⁵⁹ Acknowledgments:^[4] The authors extend their appreciation to the Deanship of Scientific

360 Research at Imam University (IMSIU) (grant number IMSIU-RP23099).

361 6. References

362	Aghajan, M., Li, N. & Karin, M. 2012. Obesity, autophagy and the pathogenesis of
363	liver and pancreatic cancers. J Gastroenterol Hepatol. 27 Suppl 2, 10-4.
364	Alamri, H.S., Alsughayyir, J., Akiel, M., Al-Sheikh, Y.A., Basudan, A.M., Dera, A.,
365	Barhoumi, T., Basuwdan, A.M. & Alfhili, M.A. 2021. Stimulation of calcium
366	influx and CK1alpha by NF-kappaB antagonist [6]-Gingerol reprograms red
367	blood cell longevity. J Food Biochem. 45, e13545.
368	Almutlaq, M., Alamro, A.A., Alamri, H.S., Alghamdi, A.A. & Barhoumi, T. 2021. The
369	Effect of Local Renin Angiotensin System in the Common Types of Cancer.
370	Front Endocrinol (Lausanne). 12, 736361.
371	Almutlaq, M., Mansour, F.A., Alghamdi, J., Alhendi, Y., Alamro, A.A., Alghamdi,
372	A.A., Alamri, H.S., Alroqi, F. & Barhoumi, T. 2022. Angiotensin II
373	Exaggerates SARS-CoV-2 Specific T-Cell Response in Convalescent
374	Individuals following COVID-19. Int J Mol Sci. 23.
375	An, J., Zhou, Q., Wu, M., Wang, L., Zhong, Y., Feng, J., Shang, Y. & Chen, Y. 2019.
376	Interactions between oxidative stress, autophagy and apoptosis in A549
377	cells treated with aged black carbon. Toxicology In Vitro. 54, 67-74.
378	Barhoumi, T., Alghanem, B., Shaibah, H., Mansour, F.A., Alamri, H.S., Akiel, M.A.,
379	Alroqi, F. & Boudjelal, M. 2021. SARS-CoV-2 Coronavirus Spike Protein-
380	Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-
381	Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme
382	Inhibitor (Perindopril). Front Immunol. 12, 728896.
383	Cai, H. & Harrison, D.G. 2000. Endothelial dysfunction in cardiovascular diseases:
384	the role of oxidant stress. Circulation research. 87, 840-4.
385	Caillon, A., Mian, M.O.R., Fraulob-Aquino, J.C., Huo, K.G., Barhoumi, T., Ouerd, S.,
386	Sinnaeve, P.R., Paradis, P. & Schiffrin, E.L. 2017. gammadelta T Cells
387	Mediate Angiotensin II-Induced Hypertension and Vascular Injury.
388	Circulation. 135, 2155-62.
389	Chrysanthopoulou, A., Gkaliagkousi, E., Lazaridis, A., Arelaki, S., Pateinakis, P.,
390	Ntinopoulou, M., Mitsios, A., Antoniadou, C., Argyriou, C., Georgiadis, G.S.,
391	Papadopoulos, V., Giatromanolaki, A., Ritis, K. & Skendros, P. 2021.
392	Angiotensin II triggers release of neutrophil extracellular traps, linking
393	thromboinflammation with essential hypertension. JCI Insight. 6.
394	Dimmeler, S. & Zeiher, A.M. 2000. Reactive oxygen species and vascular cell
395	apoptosis in response to angiotensin II and pro-atherosclerotic factors.
396	Regulatory peptides. 90, 19-25.
397	Irani, K. 2000. Oxidant signaling in vascular cell growth, death, and survival: a
398	review of the roles of reactive oxygen species in smooth muscle and
399	endothelial cell mitogenic and apoptotic signaling. Circulation research. 87,
400	179-83.

401	Jalouli, M., Mofti, A., Elnakady, Y.A., Nahdi, S., Feriani, A., Alrezaki, A., Sebei, K.,
402	Bizzarri, M., Alwasel, S. & Harrath, A.H. 2022. Allethrin promotes apoptosis
403	and autophagy associated with the oxidative stress-related PI3K/AKT/mTOR
404	signaling pathway in developing rat ovaries. International Journal of
405	Molecular Sciences. 23, 6397.
406	Kobori, H., Nangaku, M., Navar, L.G. & Nishiyama, A. 2007. The intrarenal renin-
407	angiotensin system: from physiology to the pathobiology of hypertension
408	and kidney disease. Pharmacological reviews. 59, 251-87.
409	Li, L., Tan, J., Miao, Y., Lei, P. & Zhang, Q. 2015. ROS and autophagy: interactions
410	and molecular regulatory mechanisms. Cellular and molecular
411	neurobiology. 35, 615-21.
412	Liu, Gy., Jiang, Xx., Zhu, X., He, Wy., Kuang, Yl., Ren, K., Lin, Y. & Gou, X.
413	2015. ROS activates JNK-mediated autophagy to counteract apoptosis in
414	mouse mesenchymal stem cells in vitro. Acta Pharmacologica Sinica. 36,
415	1473-9.
416	Ma, J., Ma, R., Zhao, X., Wang, Y., Liao, S., Nong, C., Lu, F., Liang, Z., Huang, J.,
417	Huang, Y., Zhu, Z. & Wang, J. 2023. Cyr61 Mediates Angiotensin II-Induced
418	Podocyte Apoptosis via the Upregulation of TXNIP. J Immunol Res. 2023,
419	8643548.
420	Madden, J.A., Hoyer, P.B., Devine, P.J. & Keating, A.F. 2014. Acute 7, 12-
421	dimethylbenz [a] anthracene exposure causes differential concentration-
422	dependent follicle depletion and gene expression in neonatal rat ovaries.
423	Toxicology and applied pharmacology. 276, 179-87.
424	Maiuri, M.C., Zalckvar, E., Kimchi, A. & Kroemer, G. 2007. Self-eating and self-
425	killing: crosstalk between autophagy and apoptosis. Nature reviews
426	Molecular cell biology. 8, 741-52.
427	Nukala, S.B., Jousma, J., Yan, G., Han, Z., Kwon, Y., Cho, Y., Liu, C., Gagnon, K.,
428	Pinho, S., Rehman, J., Shao, N.Y., Ong, S.B., Lee, W.H. & Ong, S.G. 2023.
429	Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction
430	of tyrosine kinase inhibitor. Cardiovasc Res. 119, 1997-2013.
431	O'Connor, A.T., Haspula, D., Alanazi, A.Z. & Clark, M.A. 2022. Roles of Angiotensin
432	III in the brain and periphery. Peptides. 153, 170802.
433	Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-
434	Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M. &
435	Luo, S. 2010. Regulation of mammalian autophagy in physiology and
436	pathophysiology. Physiological reviews. 90, 1383-435.
437	Rong, Y., Durden, D.L., Van Meir, E.G. & Brat, D.J. 2006.
438	'Pseudopalisading'necrosis in glioblastoma: a familiar morphologic feature
439	that links vascular pathology, hypoxia, and angiogenesis. Journal of
440	Neuropathology & Experimental Neurology. 65, 529-39.

441	Ting, R., Dutton, H. & Sorisky, A. 2023. In vitro studies of the renin-angiotensin
442	system in human adipose tissue/adipocytes and possible relationship to
443	SARS-CoV-2: a scoping review. Adipocyte. 12, 2194034.
444	Vargas, R.A.V., Millán, J.M.V. & Bonilla, E.F. 2022. Renin–angiotensin system:
445	Basic and clinical aspects—A general perspective. Endocrinología, Diabetes
446	y Nutrición (English ed.). 69, 52-62.
447	Versari, D., Daghini, E., Virdis, A., Ghiadoni, L. & Taddei, S. 2009. The ageing
448	endothelium, cardiovascular risk and disease in man. Experimental
449	physiology. 94, 317-21.
450	Yu, Q., Liu, J.X., Zheng, X., Yan, X., Zhao, P., Yin, C., Li, W. & Song, Z. 2022. Sox9
451	mediates autophagy-dependent vascular smooth muscle cell phenotypic
452	modulation and transplant arteriosclerosis. iScience. 25, 105161.
453	Zacharia, E., Antonopoulos, A.S., Oikonomou, E., Papageorgiou, N., Pallantza, Z.,
454	Miliou, A., Mystakidi, V.C., Simantiris, S., Kriebardis, A. & Orologas, N.
455	2020. Plasma signature of apoptotic microvesicles is associated with
456	endothelial dysfunction and plaque rupture in acute coronary syndromes.
457	Journal of molecular and cellular cardiology. 138, 110-4.
458	Zhu, S., Zhou, J., Zhou, Z. & Zhu, Q. 2019. Abamectin induces apoptosis and
459	autophagy by inhibiting reactive oxygen species-mediated PI3K/AKT
460	signaling in MGC803 cells. Journal of Biochemical and Molecular
461	Toxicology. 33, e22336.
462	
4(0	
403	
464	
465	
466	
467	
140	
400	
469	
470	
471	
472	

473

- 474
- 475
- 476

477	Legend	to	figures
-----	--------	----	---------

478 Fig. 1. HUVEC cytotoxicity was measured by LDH release assays 48 h after treatments 479 with losartan and Ang II alone or in combination. The data are expressed as means \pm 480 SEM from three independent experiments. *Significant (p 0.05) compared with the 481 untreated control. 482 Fig. 2. Dual staining and analysis by fluorescence microscopy of apoptotic 483 morphological changes in HUVECs exposed to losartan and Ang II alone or in 484 combination. (A) Control, (B) Losartan (100 µM), (C) Angiotensin II (100 nM), (D) 485 Losartan + Ang II. Magnification: 200X, and (E) Quantification of apoptotic and 486 necrotic cells based on AO and ethidium bromide uptake in more than 300 cells. The 487 data are expressed as means ± SEM from three independent experiments. *Significant 488 (p 0.05) compared with the corresponding controls. 489 Fig. 3. Flow cytometry profile of annexin V-FITC/PI staining of HUVECs showing the 490 percentage of viable cells, early apoptotic cells, late apoptotic cells, and necrotic cells 491 after a 48-h exposure. (A) Control, (B) Losartan (100 µM), (C) Ang II (100 nM), (D) 492 Losartan + Ang II. 493 Fig. 4. Representative images of losartan- and angiotensin II-treated HUVEC cells 494 captured using a fluorescence microscope after staining with the nuclear dye Hoechst 495 33324. (A) Control, (B) Losartan (C) Ang II (D) Losartan + Ang II. Magnification 496 200X.

497	Fig. 5. The activities of caspases 3 and 7 were measured in HUVECs using a caspase
498	3/7 assay fluorometric kit after a 48-h exposure to losartan and Ang II alone or in
499	combination. The data are expressed as means \pm SEM from three independent
500	experiments (*Significant, p 0.05).
501	Fig. 6. Analysis of MMP in HUVECs exposed to losartan and Ang II alone or in
502	combination for 48 h and stained with rhodamine 123. (A) Control (B) Losartan (100
503	μM), (C) Ang II (100 nM), (D) Losartan + Ang II. Magnification 200X.
504	Fig. 7. ROS levels in HUVECs exposed to losartan and Ang II alone or in combination
505	for 48 h. The cells were observed by fluorescence microscopy after the cells were
506	stained with the fluorescence marker carboxy-H2DCFDA. Representative images of (A)
507	untreated control cells, (B) cells treated with 100 μ M Losartan, (C) cells treated with100
508	nM Ang II, (D) cells treated with Losartan + Ang II. Magnification 200X.
509	Quantification of the fluorescence intensity (%) of exposed cells relative to the
510	untreated control (E). The data are expressed as means \pm SEM from three independent
511	experiments (*Significant, p 0.05).
512	Fig. 8. Detection of autophagy in HUVECs after a 48 of exposure to losartan and Ang II
513	alone or in combination by AVO staining with AO. Representative fluorescence
514	microscopy images of the (A) Control, (B) Losartan (100 µM), (C) Ang II (100 nM),
515	and (D) Losartan + Ang II groups. Magnification 400X.
516	
517	
518	
519	