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Decomposed Channel based Multi-Stream Ensemble: improving consistency targets in semi-
supervised 2D pose estimation

Abstract

Objectives: In pose estimation, semi—supervisedéeaming is a crucial approach to overcome the lack of
information problem of labeled data. However, for semi-supervised learning, the insufficient number of
labeled samples also severely affects its functionality. The fewer labeled the data, the less stable the
prediction. Deep ensemble is a good way to improve model accuracy and stability. However, the training
time of model ensemble is long and the resource consumption is high, so it cannot be applied in many
practical scenarios. Therefore, the methods we propose the Decomposed Channel based Multi-Stream
Ensemble (DCMSE) network, which can extend a single model to a stream-ensemble structure and
generate the ensemble prediction to solve the large variance of prediction from the lack of labeled data,
and improve the performance. The Channel Deconstruction and Ensembling (CDE) module makes the
network benefits from both diversity and commonality by implementing ensemble without increasing the
size of parameters. The output features are split into two parts, common-channels and private-channels. In
feature sampling, on the one hand, common channels can provide commonality between streams. On the
other hand, private channels can provide diversity for each stream and avoid homogenization of the
predictions for each stream. Both diversity and commonality allow the network to not only gain in the
ensemble of streams, but also improve the prediction accuracy of each stream itself. Results: Moreover,
we propose mean-stream consistency constraints and cross-stack consistency constraints to obtain gains
from unlabeled data. The Mean-Stream (MS) consistency constraint uses multi-stream ensemble
prediction to additionally supervise each stream. Based on the characteristics of the Stacked Hourglass
model, the Cross-Stage consistency constraint (CS) uses the forecasting results of later stages to supervise
the forecasting of previous stages from the perspective of stages.Conclusion: Our approach achieves
better results than SOTAs on the FLIC and Openfield-Pranav and our Sniffing data-set. Specifically, on
the MSE, our method achieves at least 0.88, 0.13, and 0.08 improvements over the SOTA method on the

FLIC, Openfield-Pranav, and our Sniffing datasets, respectively.
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1. Introduction

Pose estimation is an essential subject in computer vision, and it has achieved many outstanding results,
such as (Newell al., 2016; Sun et al., 2019; Tompson et al., 2014; Wei et al., 2016; Xiao et al., 2018).
All the above methods achieve excellent results with sufficient labeled data. However, these methods are

highly sensitive to the amount of labeled data. Manual annotation of poses is complex and costly.

Therefore, reducing the amount of labeled data has become a focus of research.

Currently, unsupervised pose estimation based on transfer learning has achieved exciting results. The
main idea of UDA-AP (Li et al., 2021) is to gain knowledge from synthetic animal data and apply this
knowledge to target domain recognition using transfer learning. However, due to the great difficulty of
pose estimation, when the difference between source and target domains is large, a few of labeled data is
still needed to guide the model training. Therefore, semi-supervised pose estimation based on few labeled

samples still plays an essential role.

The main role of semi-supervised learning is to use a small amount of labeled data and a large amount of
unlabeled data simultaneously, so that the model can achieve better predictive performance. Currently,
semi-supervised learning methods are mainly applied to classification tasks. In general, there are two

categories of semi-supervised learning: consistency-based and pseudo-label-based method.
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The idea of consistency-based methods (Berthelot et al., 2019; Laine and Aila, 2016; Sajjadi et al., 2016;
Sohn et al., 2020; Tarvainen and Valpola, 2017) is that the model should have consistent predictions for
different augmented samples of the same sample. Therefore, the main approach of such methods is to

construct long-term stable and effective consistency-based supervision, thereby obtaining additional

supervision from unlabeled data.

In pseudo-label-based methods (Arazo et al., 2020; Berthelot et al., 2019; Lee et al., 2013; Radosavovic et

al., 2018; Wang et al., 2018; Xie et al., 2020; Zhai et al., 2019), an initial model is first trained using
labeled data, and then use the initial model predicts the unlabeled data to generate pseudo-labels. Finally,
using pseudo-labels to train the initial model itself. The bottleneck of this approach is that the quality of
the generated pseudo-labels deeply depends on the initial model, and the noise of the pseudo-labels can

easily degrade the model performance.

In the above semi-supervised methods, the model predictions are prone to fluctuation when there is less
labeled data. The less labeled data, the less stable the prediction. As shown in Fig. 1, the predictions of
single-model-based methods are prone to fluctuations and have large variance. This can lead to a
reduction in accuracy. In extreme cases, the semi-supervised framework breaks down, as the model fails
to provide valid predictions. The model collapse mentioned in (Xie et al., 2021) occurs, that is, the
prediction accuracy of semi-supervised leaming is lower than that of supervised one.

In this work, we propose a “no-cost” stream-based ensemble method to solve the problem of unstable

prediction, in the case of few labeled data. The Channel Deconstruction and Ensembling (CDE) can
sample the output features on the channel dimension, form multiple different features, and predict them
through the corresponding FC layer. The output features are split into two parts, common-channels and
private-channels. In feature sampling, on the one hand, the common channel can provide commonality

between streams. On the other hand, the private channels can provide diversity for each stream and avoid




the homogenization of the predictions of each stream. Both diversity and commonality can not only make

the network gain in stream ensembling, but also improves the prediction accuracy of each stream itself.

In addition, we propose two consistency constraints to further improve the accuracy of the ensemble
prediction of multiple stream. The Mean-Stream (MS) consistency constraint uses multi-stream ensemble
prediction to additionally supervise each stream. Based on the characteristics of the Stacked Hourglass
model, the Cross-Stage consistency constraint (CS) uses the forecasting results of later stages to supervise

the forecasting of previous stages from the perspective of stages. The project code and Sniffing dataset

are publicly available on https://github.com/Qi2019KB/DCM SE/tree/master.
Summary of our main contributions:

. We propose a simple structure, named Decomposed Channels based Multi-Stream Ensemble
(DCMSE), to extend a model to an ensemble form easily. In DCMSE, the private channel groups of
each stream can improve the diversity, which can accelerate the performance of multi-stream
ensemble. Moreover, the co-channel group allows the model to learn common features from all

streams, which can improve the performance of each stream itself.

. We propose the Mean-Stream Consistency Loss based on the multi-stream ensemble and the Cross-
Stage Consistency Loss based on the cascade structure of the pose estimation model. Both of them

allow the model to efficiently gain additional supervision from unlabeled data.

3
. With a few labeled data, our method achieves better results than the state-of-art pose estimation
method. We implemented this result on the public data-set FLIC ( Sapp and Taskar, 2013),

Openfield-Pranav (Mathis et al., 2018), and our own Sniffing data-set.

2. Related Work
Semi-supervised learning. Semi-supervised learning (SSL) (Higuchi et al., 2022; Li et al., 2022; Njima
et al., 2022; Xu et al., 2022) focus on reducing the need for labeled data. The main idea is to use a small




amount of labeled data and a large amount of unlabeled data simultaneously, so that the model can

achieve better predictive performance. In general, there are two categories of semi-supervised learning.

One popular approach is based on the pseudo-labeling (Arazo et al., 2020; Lee et al., 2013; Radosavovic

et al., 2018). Labeled data is used to train initial model as per-trained model, and the model generates
pseudo-labels from unlabeled data, then the model is trained with artificial labels and pseudo-labels.
Another one is the consistency regularization. It encourages the model have consistent predictions for

different augmented samples of the same sample.

Deep Ensemble. Training multiple deep neural networks (DNNs) is to improve the predictive
performance. Wang et al., 2021 is to average the parameters stored at multiple checkpoints to obtain a
new model. The advantage of this ensemble approach is that the training cost is low, but the prediction

accuracy barely increases due to the lack of diversity.

Another approach is to ensemble multiple deep models and take the average prediction as the final output.

This approach can improve performance, but is costly to train.
3. Method
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Figure 2. Overview of the proposed Decomposed Channel based Multi-Stream Ensemble (DCMSE)

network.
3.1 2D Pose Estimation with Multi-Stage Model

In 2D Pose estimation, the main task is to predict the accurate position of K key points which are
predefined manually in the input Image I. Most recent approaches transform this problem into predicting
K Gaussian heat-maps H that encode the probability of each key point at each spatial location in I.
Therefore,Gaussian kernel function is used to transform the coordinate values into Gaussian heat maps,
where one key point corresponds to one heat-map, and the heat maps are used as ground-truth for model
training. During prediction, location with the highest response value is selected from the heat-map
generated by the model as the predicted location of the key point. Denote the labeled training data-set as
L= {(II,HI)}P‘;. To train the 2D pose estimation model f(-, ), we write simply f(-). we minimize the

MSE loss between the prediction and ground-truth heat map. Therefore, the Pose loss, as Lps., can be

expressed as:
Lpose = Egec 1 (1) — H 2, (D)

The M stage pose estimation model g(-, 8), we write simply g(-), such as Stacked Hourglass (Newell et
al., 2016), stacks multiple modules with the same structure end to end, and feeds the previous model’s
predictions and features to the next. There is supervised learning at each stage, called intermediate
supervision, to ensure performance at each stage. So, for image I, the input X!, of the m-th stage can be
expressed as:

I m=1
1+P 1 +eha otherwise,

X}, = { (2)

where P},_; = gn_1(X},_1) is the prediction in the (m — 1)-th stage of the model g(-), @),_; is the

feature extracted by the feature extraction module in the (im — 1)-th stage of the model g(-).




3.2 Channel Deconstruction and Ensembling

In each stage of the multi-stage network, the Channel Deconstruction and Ensembling (CDE) module is
located behind the feature extraction (FE) module. The CDE deconstructs the features extracted by FE in
the channel dimension and forms n new features corresponding to n streams. We assume that the feature
extracted from a sample by the FE is of C X H X W dimension, where H, W, C denote the height, width
and number of channels, respectively. Specifically, the CDE extracts n features with channel €’ from the
C-channels in the input feature according to the splitting factor « as the private features of streams. The
feature corresponding to the remaining channels is treated as common feature and shared by all streams.

Each private feature is concatenated with the common feature and passed to the regressor of each stream
. . . =1 . . .
for prediction. In the m-th stage, consider the ensemble output P, of the image I by averaging each

N - 1 .
stream’s prediction Py, ;. i.e.,

~I 1
Pn=-3N_Pl . (3)

n
At the same time, we pass the full features extracted by feature extraction module with the ensemble

output to the next stage. So, for image I, the input X, of the m-th stage can be rewritten as:

X! I m=1 @
= ~1
m I+P,q+ (p!n_l otherwise,

3.3 Mean-Stream Consistency Constraint

The M stage pose estimation model g(-) also learns about unlabeled data. Denote the unlabeled training

data-set as U = {I*}V, .

Several studies (Ren et al., 2016; Zhang and Suganthan, 2017) have demonstrated that the performance of
a single model is inferior than that of an ensemble of models. Therefore, in each stage, we minimize the

MSE loss between the ensemble output and each stream’s prediction. Denote the prediction of the n-th




stream to sample I, 1 € U in the m-th stage as P,',Ln, the ensemble output to sample I, I € U in the m-th
=I . .
stage as P,,,. Therefore, the mean-stream consistency loss, as L,,., can be expressed as:

11 P |
= ——Ym=12n=1 Ereu | Phn — Pp I%, (5)

L
ms = 7

Note that the consistency constraint affects both parties. To avoid a negative effect on the model
performance, we compute this loss using a replica of the ensemble output with the gradient information

removed, so that the model is not updated from the ensemble output.

3.4 Cross-Stage Consistency Constraint

As stated in Newell et al., 2016, in multi-stage pose estimation model, subsequent stages allow the high-
level features, extracted by previous stage, to be processed again to make the network to best refine
predictions. Moreover, the more accurate the prediction at the front stage, the more accurate the
prediction at the back stage, which is in line with the goal of intermediate supervision. Therefore, we
minimize the MSE loss between the ensemble output of the first stage and the ensemble output of the last

stage. Therefore, the cross-stage consistency loss, as L., can be expressed as:

<
Les = Exeqouny | Py = Pry 112, (6)

Note that the cross-stage consistency constraint can work on both labeled and unlabeled data. For the

same reason as in L,,., we compute this loss using a replica of the final-stage ensemble output with the

gradient information removed.
3.5 Total Loss

We summarize the objective function as follows:

L= flposel‘pose + flmsLms + flcchs- (7

where Apgse > Ams» Acs are the weights to balance all losses.




4. Experiment
We evaluate our model on three datasets. FLIC ( Sapp and Taskar, 2013) data-set, an public human pose
data-set; Openfield-Pranav (Mathis et al., 2018) data-set, an public mouse data-set; Sniffing data-set, a

mouse data-set collected by ourselves.

4.1 Implementation Details

We use Stacked Hourglass (Newell et al., 2016) with a stack number of 3 as the pose estimation model.

When the CDE is created, the number of streams, N, is 3 and the splitting factor, «, is 0.2.

All input images are resized to 256 X 256 pixels. And we use the data augmentation that includes

random rotation (4/—30 degrees), and random scaling (0.75 — 1.25) and random horizontal flip.

1
The initial value of A is the constant 10. The initial value of A, is 0 and after 50 epochs rises to a

pose
maximum of 50. The initial value of A, is 0 and after 50 epochs rises to a maximum of 5.

4.2 FLIC Dataset

The FLIC ( Sapp and Taskar, 2013) dataset is a publicly available human pose dataset consisting of 5003

images taken from movies, including 3987 training data and 1016 test data.
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Figure 3. Comparison to the baselines with 500 training samples with 30% labeled data on the FLIC
dataset. Supervised learning is training with Newell et al., 2016. And, DNCL (Shi et al., 2018), Mean
Teacher (Tarvainen and Valpola, 2017), ESCP (Xie et al., 2021) and ours are semi-supervised learning.

The MSE and PCK @0.2 are reported (see results in Fig. 3 and Table. 1).

Table 1. Comparison to the baselines on the FLIC dataset. The 500%0.3 means that there are 500 samples

in the training set, of which 30% are labeled samples and 70% are unlabeled samples.

500%0.3 500%0.5
Method

MSE PCK@0.2 MSE PCK@0.2
HG

37.27 0.436 3336 0.516
(Newell et al., 2016)
DNCL

35.56 0.456 3022 0.535
(Shi et al., 2018)
MT

35.58 0.448 28.68 0.551
(Tarvainen and Valpola, 2017)
ESCP

39.57 0.390 3506 0.486
(Xieet al., 2021)
Ours 32.26 0.490 2780 0.574

4.3 Openfield-Pranav Data-set

The Openfield-Pranav data-set is a publicly available mouse data-set consisting of 1000 images with one

instance per image.
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Figure 4. Error and accuracy curves for each baseline with 100 training samples with 30% labeled data

on the Openfield-Pranav dataset.

The MSE and PCK@().2 are reported (see results in Fig. 4 and Table. 2). Our method achieves the best

results on the Openfield-Pranav dataset in both cases 100#0.3 and 100*0.5, and the increase amount is

1.8% and 0.7% respectively.

Table 2. Comparison to the baselines on the Openfield-Pranav dataset. 100%0.3 means that there are 100

training samples and 30% of them are labeled.

100%0.3 100%0.5
Method

MSE PCK@0.2 MSE PCK@0.2
HG 8.54 0.565 4.34 0.725
DNCL 5.56 0.647 4.13 0.756
MT 5.89 0.635 436 0.739
ESCP 5.87 0.617 425 0.717

Ours 5.50 0.665 4.00 0.763




4.4 Sniffing Dataset
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Figure 5. Error and accuracy curves for each baseline with 100 training samples with 30% labeled data

on the Sniffing dataset.

The Sniffing dataset was captured by ourselves from real experimental environments. The MSE and

PCK @0).2 are reported (see results in Fig. 5 and Table. 3). Our method achieves the best results on the

Sniffing dataset in both cases 100*0.3 and 100*0.5, and the increase amount is 0.9% and 0.3%

respectively.

Table 3. Comparison to the baselines on our Sniffing Data-set. 100%0.3 means that there are 100 training

samples and 30% of them are labeled.

100%0.3
Method

MSE
HG 5.18
DNCL 4.47
MT 473
ESCP 5.03

Ours 4.26

PCK@0.2

0.602

0.634

0.613

0.596

0.643

100%0.5

MSE

4.26

3.89

393

3.81

PCK@0.2

0.663

0.698

0.676

0.675

0.701




5. Ablation Study

We perform ablation studies on the FLIC and Openfield-Pranav datasets.

In the CDE ablation experiments, we evaluate the role of CDE in terms of ensembling. We construct two
simple models. HG-Ensemble is a simple parallel ensembling of the Stacked Hourglass (HG), taking the
average predicted values of three HG as the output of the entire model. In addition, we remove the CDE
module from our network (stream count is 3), which means that the regressors of all three streams share
the same features as the input. Finally, we use Stacked Hourglass for supervised learning and evaluate

their predictive performance.

Table 4. The result of Openfield-Pranav dataset. The CDE is evaluated from an ensemble perspective.

Stream Predictions is a list of the prediction performance of all streams.

Stream PCK@ Stream’s Predictions
Method MSE

Count 0.2 MSE PCK@0(.2
Supervised - 6.78 0.571 - -
HG-Ensemble 3 6.34 0.600 7.30,699,8.74 0.569,0.574,0.553
Ours

3 5.89 0.637 594,592,595 0.626,0.628,0.625
(without CDE)

As shown in Table. 4, our network achieved significant performance gains despite the removal of CDE.
This is because the prediction accuracy of the regressors for each stream in our network is significantly
improved compared to HG-Ensemble. Multiple streams share the same feature, so that the feature
extraction module in the network can learn to extract the common feature of higher dimensions, which

can improve the accuracy of each stream’s regress.

We also performed ablation experiments on the Mean-Stream(MS) and Cross-Stage (CS) consistency

constraint, shown in Table. 5.




Table 5. The ablation experiments on the Mean-Stream (MS) and Cross-Stage (CS) consistency

constraint. "Y" and "N mean "using" and "not using", respectively.

Method Dataset MS CS MSE PCK@0.2
N N 45091 0.284
FLIC
Y N 4547 0.288
100#0.3
Y Y 44 .42 0.297
Ours
N N 6.28 0.643
Openfield-Pranav
i N 5.88 0.651
100#0.3
Y Y 5.68 0.665

6. Discussions

After completing the above experiments and proving the effectiveness of our method, we discuss two
important parameters of the CDE module: the stream count N and the splitting factor & . We put different

values on each of these variables and see what they do. The experimental results are shown in Table. 6.

Table 6. Compare the influence of different values of stream count N and splitting factor o on the model

performance.

Stream Splitting PCK@ Stream’s Predictions
Method MSE

Count Factor 0.2 MSE PCK@0.2

3 0.1 6.22 0.629 6.28,6.26,625 0.618,0.623,0.622
Ours 3 0.15 5.78 0.637 5.82,5.84,584 0.632,0.627,0.634

3 0.2 5.78 0.648 5.78,5.90,583 0.641,0.644,0.638




2 0.2 6.41 0.630 645,645 0.620,0.623

3 0.2 5.85 0.657 5.73,5.98,600 0.640,0.643,0.648
Ours

0.630, 0.629, 0.634,
4 0.2 592 0.645 6.00, 6.00, 600, 6.01
0.631

First, we fix the stream count N to 3 and set the splitting factor « to 0.1, 0.15 and 0.2, respectively. It can
be seen that the prediction performance of the model gradually improves as the splitting factor
increases.This indicates that more private features contribute to the increase of the ensembling

performance.

Then, we fix the splitting factor « to 0.2 and set the stream count N to 2, 3 and 4, respectively. The results
show that more streams are not always better. This is because when the number of streams increases, the
size of the common features decreases, which adversely affects the model. Therefore, we need to balance

these two parameters. In all experiments, we used this optimal set of parameters.

7. Conclusion

The DCMSE offers a practical and efficient solution to enhance the accuracy and stability of semi-
supervised learning when labeled data is scarce. Its adaptability and superior performance make it a
promising tool for a wide range of real world applications. Semi-supervised learning is a crucial approach
to address the absence of labeled data, the insufficient number of labeled samples also severely affects its
functionality. Model ensembles are a useful way to improve model accuracy and stability. However,
model ensembles suffer from lengthy training times and extreme resource consumption, so they cannot be
applied in many real-world scenarios. The main aim of our study is to build an ensemble prediction
framework at a lower cost and use ensemble prediction to address inaccuracies and instabilities in semi-

supervised learning when labeled data is insufficient.




The DCMSE network transforms the traditional model ensemble idea into a flow ensemble inside the
model. On the one hand, it creates the multi-branch structure needed for ensemble prediction. On the
other hand, it does not increase the number of model parameters due to the feature sample-based
ensemble of streams. Therefore, it is easy to generalize to different tasks and to different models. With
few labeled data,r method achieves better results than state-of-the-art pose estimation methods. We
implement this result on the public datasets FLIC, Openfield-Pranav, and our own Sniffing dataset. In
terms of MSE, our method achieves at least 0.88,0.13 and 0.08 improvement over the SOTA method on
FLIC, Openfield-Pranav and our Sniffing dataset, respectively.
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