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Copper and chromium binding by Pseudomonas aeruginosa strain PA01 for implications

of heavy metal detoxification and soil remediation: A computational approach

ABSTRACT

Heavy metal pollution poses significant environmental and health risks due to the toxic effects
of metals like copper and chromium at elevated concentrations. Despite their essential roles in
trace amounts, these metals can be highly toxic. Bacteria such as Pseudonionas a%gmam are
promising candidates for bioremediation due to their robustness and adaptability. The objective
of this study was to analyze and identify potential copper and chromium binding genes
involved in metal detoxification in Pseudomonas aeruginosa PAO1. The heavy metal binding
protein identified as ferredoxin using MALDI-TOF/PMF-MS analysis was further
characterized. The structure of the ferredoxin protein was eluciwed using the SWISS-
MODEL tool. Metal-binding domains were validated through a pattern search against
UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases using the ScanProsite tool.
Comparative sequence alignments were conducted between the copper-binding NosD gene
of P. aeruginosa, the ferredoxin gene of P. aeruginosa PAO1, and the chromium-binding iron
hydrogenase 1 gene of Clostridium c‘%miiredm‘ens. The SWISS-MODEL analysis revealed
alpha helices and beta sheets with key metal-coordinating amino acids (cysteine, glutamic ﬁid,
aspartic acid, histidine, and methionine). The ScanProsite tool confirmed the presence of a 4Fe-
48 ferredoxin-type iron-sulphur binding domain essential for coordinating chromium and
copper ions. Sequence alignments showed a 64.29% similarity between the NosD gene and
ferredoxin gene, and a 67% identity between the iron hydrogenase 1 gene and ferredoxin gene,
with correlations in amino acid residues involved in metal binding. These findings suggest that
the ferredoxin gene could effectively bind heavy metal ions, offering potential applications in
bioremediation of metal-polluted soils using Pseudomonas species. This study contributes to
sustainable agricultural productivity by facilitating the targeted remediation of heavy metal-

contaminated soils through biological means.

Keywords: Copper, Chromium, Pseudomonas aeruginosa PAO1, Ferredoxin, NosD, Iron

hydrogenase 1, Pollution Remediation
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1. Introduction
Heavy metals exist naturally with high atomic weight, have a specific density of more than
5 g/cm® and detrimentally affect the environment and living organisms. Heavy metals like

cobalt, copper, iron, chromium, nickel, magnesium, selenium, manganese, and zinc are the
essential micronutrients that source various physiological and biochemical processes in plants
and animals. However, they become toxic due to an excessive supply of these micronutrients
beyond their threshold concentration, resulting in various diseases or disorders. Based on the
high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury are ranked among the
prioritized toxic heavy metals that have a significant concern for public health (Tchounwou et
al., 2012; Jaishankar et al., 2014; Yap et al., 2023). For instance, copper is essential but
becomes toxic at concentrations above 20-30 uM in plants (Yruela, 2005) and around 100 pM
in humans (Linder and Hazegh-Azam, 1996; Mitra et al., 2022). Chromium, another essential
micronutrient, is toxic in aquatic organisms at concentrations above 100 pM (Katz and Salem,
1993; Naseri et al., 2021). Similarly, nickel becomes harmful in plants at concentrations
exceeding 10-20 uM (Seregin and Kozhevnikova, 2006; Mitra et al., 2022).

The conventional remediation methods, including flocculation, solvent extraction,
precipitation, coagulation, and ozonation, are widely adopted to recover and restore metal-
contaminated effluent. Nevertheless, these methods are expensive and unreliable in removing
heavy metals to attain expected effluent quality standards (Dawodu et al., 2020).
Microorganisms play a pivotal role in detoxifying and removing avy metals from the polluted
ecosystem (Quintelas et al., 2008; Jobby et al., 2018). Heavy metal resistance genes of
microbes are diverse and beneficial for heavy metal remediation from metal-polluted

environments. Many biological and chemical processes require metal ion-binding proteins

called metalloproteins. These genes play a significant role in the structural and functional

stability of protein molecules. Understanding the metal binding motifs using an in-silico
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approach could help us to better understand the gene expression of microorganisms in heavy

metal remediation (Akcapinar and Sezerman, 2017).

Bioremediation research is still hampered in the current scenario due to an incomplete
understanding of the genome characterization of the microbes used in metal adsorption. Hence
in this work, an attempt was made to identify the copper and chromium binding motifs that are
responsible for the metal uptake in Pseudomonas aeruginosa PAO1L.

2. Experimental details

2.1. Identification of metal binding protein in P. aeruginosa PAOI using MALDI-TOF/PMF-
MS

The protein spots were excised and shed twice with 100 mM ammonium bicarbonate
and 100% acetonitrile (ACN) and reduced. Then it was kylatcd using 25 mM dithiothreitol
(DTT) and 55 mM iodoacetamide and incubated with 200 ng of trypsin gold (Promega) in 25
mM ammonium bicarbonate for 3 h at 37 °C. After digestion, the samples were aspirated and
eluted once with 50% acetonitrile and % trifluoroacetic acid (TFA) to stop the digestion
process. The samples were spotted and overlaid on a MALDI matrix containing 15 mg/mL of
a-cyano-4-hydroxycinnamic acid and 10 mM ammonium monobasic phosphate. The peptide
mass spectrometric data were obtained using ABI 4800 MALDI-TOF/TOF tandem mass
spectrometry (MS) (plied Biosystems Inc., Foster City, CA). The data was acquired in
reflector mode with a mass range of 600-4000 Daltons. The obtained protein spectra were
submitted for database searching using the online MASCOT program (Matrix Science, Boston,
MA) against databases like SwissProt and NCBI (National Centre for Biotechnology
Information) (Zhang et al., 2016). Further, the structure of ferredoxin was elucidated using
ISS-MODEL software (https://swissmodel.expasy .org/interactive) and visualized in

RasMol software (http://www umass.edu/microbio/rasmol/index2 .htm).
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2 2. Validation of copper and chromium binding domain in ferredoxin of P. aeruginosa PAOI

The metal ion binding domain in the ferredoxin of P. aeruginosa PAO1 was validated using
the ScanProsite tool (https:/prosite.expasy.org//) at the PROSITE database ajnst the
UniProtKB/SwissProt (Release 50.0) and UniProtKB/TrEMBL (Release 33.0) databases
(Gattiker, 2002; Richard Thilakaraj et al., 2007; Tian et al., 2019).
2.3. In-silico analysis of copper binding motif in P. aeruginosa PAOI

scd on a gene name search, the NosD (copper-binding gene sequence) of P. aeruginosa
was retrieved from the UniProtKB 2022_03 database. The gene sequence alignment was
performed between the NosD gene of P. aeruginosa and ferredoxin of P. aeruginosa PAO1
using BLAST (Basic Local Alignment Search Tool) to identify the copper-binding motif. The
correlation of amino acid residues of copper-binding motifs was determined for NosD and
ferredoxin genes (Gattiker, 2002; Richard et al., 2007; Tian et al., 2019).
24. In-silico analysis of chromium binding motif in P. aeruginosa PAOI

The chromium-binding gene sequence, iron hydrogenase 1 of Clostridium chromiiredicens
was retrieved from the UniProtKB 2022_03 database based on a gene name search. The gene
sequence alignment was carried out between the iron hydrogenase 1 of C. chromiireducens and
the ferredoxin of P. aeruginosa PAO1 using BLAST (Basic Local Alignment Search Tool) to
identify the chromium-binding motif. The correlation of amino acid residues of chromium
binding motifs was determined for iron hydrogenase 1 and ferredoxin genes (Gattiker, 2002;
Richard et al., 2007; Tian ?ﬂl., 2019).

3. Results and discussion

3.1 Identification of metal binding protein in P. aeruginosa PAOI using MALDI-TOF/PMF-
MS

The peak values for individual peptides were obtained through MALDI-TOF/TOF studies
(Fig. 1). The manual interpretation of MS/MS data on charges ions at m/z 1534.7808 (MALDI),

m/z 1858.8228 (MALDI), m/z 18748125 (MALDI), m/z 2236.2629 (MALDI), m/z 2298.0432

4
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(MALDI) defined the partial peptide sequences. Based on the MASCOT search, the metal-
binding protein of P. aeruginosa PAO1 was identified as ferredoxin (Fig. 2), which was found
to have an accession number of gi/15599966, the mass of 103928, a score of 26, matched
queries of 5 with the sequence coverage of 23 %. Similarly, Yi-Min She et al. (2003) identified
copper-binding proteins, namely histone H2B, S100 calcium-binding protein, peroxiredoxin,
and histone with sequence coverage of 28, 12,30, and 22 %, respectively.

The structure of ferredoxin elucidated through SWISS-MODEL was found to have alpha
helix and beta sheets (Fig. 3), which were responsible for the structural stability of the protein.
oteins with mainly local interactions (such as a-sheets) have rapid folding transitions,
whereas proteins with more complex topologies (such as p-helices) usually fold more slowly.
Thus, the protein folding helped to maintain the native topology and offered stability to the
protein, as indicated in the earlier work done by Fersht, (2000). Ferredoxin also has teine,
glutamic acid, aspartic acid, histidine, and methionine as predominant metal-coordinating
amino acid residues (Fig. 4). These metal-coordinating amino acids would play a paramount
role in copper and chromium binding in P. aeruginosa PAOL. Similarly, Sano et al. (2006)
reported that the isolated heavy metal binding protein of bacteria was known to contain several
tal-coordinating amino acids like aspartic acid, glutamic acid, serine, and methionine that
project from the water phase plays a significant role in the binding of metal ions.

3.2. Validation of copper and chromium binding domain in ferredoxin of P. aeruginosa PAOI

The metal binding motif of ferredoxin was validated, and it was observed to have aFe-4S
ferredoxin-type iron-sulphur binding domain (Suppl. Fig. 1) which was responsible for the
coordination of both copper and chromium ions. It was found that Iron-sulphur (Fe-S) domains
were responsible for protein folding and interaction of metallochaperones (deliver metal ions

directly to the target protein and detoxify the metals) in the biological system, as stated by

Ranawat et al. (2017). The earlier findings of Wittung-stashed, (2002) also indicated that 4Fe-
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48 iron sulphur binding domain has a significant effect on protein folding, and further, the beta
sheets of the 4Fe-4S cofactor offer stability for metal binding. Due to the stability of the 4Fe-
4s binding domain, the copper and chromium ions are so firmly bound to the binding sites of
ferredoxin through intact protein folding. Zheng et al. (2021) reported that the Fe-4S
ferredoxin-type iron-sulphur binding domain was associated with heavy metal resistance and
removal by Pseudomonas cashew SRB0O07. Thus, it could be stated that 4Fe-4S clusters in
ferredoxin of P. aeruginosa PAOl played a predominant role in protein folding and
coordination with copper and chromium ions.

3.3. In-silico analysis of copper binding motif in P. aeruginosa PAOI

There was a 67 % sequence similarity NosD gene sequence of P. aeruginosa (Suppl. Fig. 2)
and the ferredoxin of P. aeruginosa PAO1. This confirmed the existence of a copper-binding
motif in P. aeruginosa PAO1 (Suppl. Fig. 3). The correlation of copper binding motifs in the
NosD gene sequence and ferredoxin gene showed the presence of homologous amino acid
residues in them, which includes am'né:, arginine, asparagine, aspartate, cysteine, glutamate,
glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline,
serine, threonine, tryptophan, tyrosine, and valine which are responsible for copper ion
interaction (Table 1). Similarly, Acidophilus caldus SM-1 and Acidophilus caldus ATCC51756
showed a sequence similarity between 50 % and 90 %, respectively, for the putative copper
resistance proteins like CusABC, CopB, CopZ, CueO of Acidophilus ferroxidans (Navarro et
al., 2013). The comparison with these Acidithiobacillus caldus and Serratia sp. bacteria
highlights the diversity of metal resistance mechanisms and underscores the importance of
understanding these mechanisms at a molecular level. Further, by identifying conserved

domains and motifs, such as the 4Fe-4S ferredoxin-type iron-sulphur binding domain, and it

possible to develop more effective bioremediation strategies that control the natural abilities of
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various bacterial species to detoxify and remove heavy metals from contaminated
environments.
34. In-silico analysis of chromium binding motif in P. aeruginosa PAOI1

The sequence alignment between the iron hydrogenase 1 gene sequence of C.
chromiireducens (Suppl. Fig. 4) and the ferredoxin gene of P. aeruginosa PAO1 showed an
alignment score of 64.29 %, which revealed the existence of a chromium-binding motit in P.
aeruginosa PAOl (Fig. 5). The correlation between the chromium-binding motif of iron
hydrogenase 1 gene sequence and ferredoxin gene showed the presence of homologous amino
acid residues of alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine,
glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine,
threonine, tyrosine, and valine which are responsible for chromium ion interaction (Table 2).
Deng et al. (2015) reported that the chromium-binding flavoprotein (ChrT) of Serratia sp.
CQMUS2 had a sequence similarity of 85.6 % to ChrR gene of E. coli with homologous amino
acid residues like Tyr128, Glul46, Argl25, and Tyr85, which were responsible for chromium
ion interaction. Similarly, Sreeshma and Sudandiradoss (2021) have also observed that metal-
coordinating amino acid residues like histidine, aspartic acid, and glutamic acid play a
prominent role in Chromium VI biosorption by the potent strains like E. coli and
Saccharomyces cerevisiae.

An alignment score of 64.29% between the copper-binding NosD gene and the ferredoxin gene,
and a 67% identity between the chromium-binding iron hydrogenase | gene and the ferredoxin gene,
indicate a significant level of sequence similarity. In general, an alignment score above 50% is
considered to be indicative of functional or structural conservation. The presence of conserved domains,

such as the 4Fe-4S ferredoxin-type iron-sulphur binding domain identified by ScanProsite, further

supports the functional relevance of these alignment scores. This domain is critical for coordinating
chromium and copper ions, suggesting that the ferredoxin gene in P.aeruginosa PAO1 may have similar

metal-binding capabilities. A high degree of sequence identity (e.g.,64.29% or 67%) often implies that
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the proteins share common ancestors and may perform similar functions. For metal-binding proteins,
this similarity can indicate that they bind metals using similar mechanisms and structures. The
alignment scores also suggest structural conservation between these proteins and also indicators of
potential functional conservation.

The findings from the study on the copper and chromium binding capabilities of P.
aeruginosa PAOL, particularly through the ferredoxin protein, have significant implications for
practical applications in metal-contaminated environments. Further, this strain used in
bioaugmentation to enchases the natural bioremediation process. Finally, it contributes
significantly to the development of effective, sustainable and cost-efficient bioremediation
strategies for heavy metal contaminates environments
4. Conclusions

The expression of metal-binding proteins in bacteria enhances heavy metal biosorption, and
hence it plays a greater potential in metal binding. The heavy metal binding protein was isolated
and identified as ferredoxin through MALDI-TOF/PMF-MS analysis. The protein sequence of
ferredoxin validated in the PrositeScan tool revealed the presence of a 4Fe-4S cluster domain
involved in the structural stability and coordination of copper and chromium with ferredoxin.
Moreover, a comparative sequence alignment between the copper-binding NosD gene
sequence and ferredoxin gene showed a sequence similarity of 67 %, and the sequence
alignment of the chromium-binding iron-hydrogenase 1 gene sequence and ferredoxin gene
showed a similarity of 64.29 %. Based on the sequence alignment, it was conferred that P.
aeruginosa PAO1 has both copper and chromium binding motifs, so it could be potentially
exploited for enhanced coordination of copper and chromium ions from metal-polluted sites.
Furthermore, it was observed that amino acids present in the ferredoxin of P. aeruginosa PAO1
play a paramount role in copper and chromium binding. Thus, it could be concluded that
acquiring heavy metal binding proteins like ferredoxin could be an ideal way to establish

copper and chromium binding in a metal-polluted environment.
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317  Figure Legends

318  Fig. 1. Identification of heavy metal binding protein of P. aeruginosa PAO1 (Key: MALDI-
319  TOF results showing the peak value for individual peptides present in heavy metal binding

320  protein of P. aeruginosa PAO1).
321

322 Fig. 2. MASCOT search results indicating heavy metal binding protein as ferredoxin.

323 Fig. 3. Structure of Ferredoxin present in Pseudomonas aeruginosa PAO1 obtained through
324  SWISS-MODEL (Key: White — alpha helices; Orange — beta sheets; No coils found).

325

326 Fig. 4. Structure of ferredoxin containing metal coordinating amino acids (Key: Predominant

327 metal coordinating amino acids —  Pink-Cysteine, White-Glutamic  acid;
328  Aspartic acid, Histidine, Methionine).
329

330  Fig. 5. Sequence alignment of Iron hydrogenase 1 and ferredoxin.

331

332

333

334  Table Legends

335  Table 1. Correlation of copper binding motifs in NosD and ferredoxin.

336  Table 2. Correlation of chromium binding motifs in iron hydrogenase 1 and ferredoxin.
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21|15599966 Mass: 103928 Score: 26 Expect: 18 Queries matched: 5

Ferredoxin [Pseudomonas aeruginosa PAO1)
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1858.8228 1857.81551857.9056-0.0901 624 - 640 1 R HAEGATWLARNFAGAMR.A
1874.81251873.80521873.8879-0.0827713 - 729 1 RAMGPAFGDEEREPLLDK.T
2236.26292235.25562235.10720.1484359 - 376 1 K.QVDFSEDPAVYNQLWRIR . K
2298.04322297.03592297.0932-0.0572703 - 723 1 RVVYLAACVSRAMGPAFGDEER.E
No match to: 1025.4427.1036.4319. 1118.4030, 1247.4999, 1345.6191. 1493.6067. 1507.8097.
1522.6642,1533.6703,1555.5970,1571.5687, 1581.5925, 1597.5697.1687.7052, 1773.7579,
1841.8247,2008.8032,2281.0535,2284.0391,2300.0266, 2315 9888

Fig. 2. MASCOT search results indicating heavy metal binding protein as ferredoxin
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370
371

372

373

374

375

376

377

378

379

380

381

382

383
384

¥4 RasMol - MODEL_1-1.PDB THEORE MODEL [SWISS-MODEL SERY
Fie Edt Displey Colows Options Settings Export Help

Fig. 3. Structure of Ferredoxin present in Pseudomonas aeruginosa PAO1 obtained through

SWISS-MODEL (Key: White — alpha helices; Orange — beta sheets; No coils found).
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385

¥4 Rashol - MODEL_1-1,PDB THEORETICAL MODEL (SWISS-MODEL SERV

Fle Edt Display Colours Options Settngs Export Help
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405  Fig. 4. Structure of ferredoxin containing metal coordinating amino acids (Key: Predominant
406 metal coordinating amino acids —  Pink-Cysteine, = White-Glutamic  acid;
407  Aspartic acid, Histidine, Methionine).

408
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Job tithe: Protein Sequence

o
uiery 10
Description
Molecule type
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Fig. 5. Sequence alignment of Iron hydrogenase 1 and ferredoxin.
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433 Table 1l

434  Correlation of copper binding motifs in NosD and ferredoxin.

Name of the Number of residues Number of residues”
residue in NosD in ferredoxin 436
Alanine 16 104
Arginine 4 77 437
Asparagine 2 23 438
Aspartate 4 58
Cysteine 5 24 439
Glutamate 4 59 440
Glutamine 8 33
Glycine 11 72 441
Histidine 2 21
Isoleucine 6 41 442
Leucine 13 111
Lysine 1 31 443
Methionine 4 11 444
Phenylalanine 1 30
Proline 6 54 445
Serine . 5 49 246
Threonine 6 47
Tryptophan 2 9 447
Tyrosine 2 20
Valine 7 64 448

449

450

451

452

453

454

455

456

457

458

18




459
460

Table 2

Correlation of chromium binding motifs in iron hydrogenase 1 and ferredoxin.

Name of the Number of residues Number of residtils
residue in iron hydrogenase 1 in ferredoxin
Alanine 48 104
Arginine 13 77
Asparagine 23 23
Aspartate 27 58
Cysteine 23 24
Glutamate 44 59
Glutamine 16 33
Glycine 33 72
Histidine 5 21
Isoleucine 29 41
Leucine 27 111
Lysine 48 31
Methionine 17 11
Phenylalanine 19 30
Proline 18 54
Serine 23 49
Threonine 24 47
Tryptophan - 9
Tyrosine 16 20
Valine 43 64
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