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Short-term wind power prediction based on IBOA-AdaBoost-

RVM

Abstract: This study introduces an innovative model, namely as IBOA-AdaBoost-
RVM, which leverages the Improved Butterfly Optimization Algorithm (IBOA),
Adapw Boosting (AdaBoost), and Relevance Vector Machine (RVM). This model is
used to solve the problem of low precision of wind power prediction. Initially,
normalization is applied to reduce the influence of varying data dimensions.
Subsequently, input variables are determined through Pearson correlation method.
Lastly, the efficacy of the introduced model is agjessed across four distinct seasonal
monthly data setggyThe observed outcomes indicate that the proposed model
outperforms other models in terms of evaluation metrics, with the average ﬁ RMSE,
MAE, and MAPE values across the four datasets being 0.954, 10.403, 7.032, and 0.645,
respectively, it shows that the proposed method has potential in the field of wind power
prediction.
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1 Introduction

The surge in worldwide economic growth coupled with a steady increase in
population figures has led to a growing need for energy, historically satisfied by the
consumption of fossil fuels [1]. However, the widespread utilization of conventional
energy sources in recent years has engendered increasingly severe issues such as
environmental degradation and climate change [2]. Consequently, promoting the
development of clean energy has become a global consensus. Clean energy refers to
forms of energy production and utilization that generate minimal to no pollutants, with
wind energy being a notable example. Owing to its renewable nature, environmental
friendliness, and abundant availability, the advancement of wind power has garnered
significant attention worldwide [3].

Numerous grgearchers have explored various methodologies to strengthen the
exactness of short-term wind power prediction, including physical, statistical and
artificial intelligence methods [4]. While physical prediction methods necessitate
solving complex partial differential equations, rendering them computationally
intensive [5], statistical methods entail simpler modeling through statistical regression
fitting of historical data but exhibit significant prediction errors when confronted with
nonlinear and non-stationary wind power series [60]. Artificial intelligence, particularly
deep learning methocmooted in machine learning, has arisen as a promising avenue
[7]. Techniques like Convolutional Neural Networks (CNN) [8, 9] and Recurrem
Neural Networks (RNN) [10, 11] within deep learning have gained extensive usage in
the field of short-term wind energy forecasting.

In the field of machine learning, bias-variance tradeoff is a significant concept to
explain generalization effectiveness of an algorithm [12]. And emergence of ensemble
learning makes it possible to guarantee good generalization performance on complex
monitoring data of wind power. As one of the popular ensemble learning algorithms,
AdaBoost algorithm stands out for its capacity to mitigate bias and variance by




combining multiple weak learners, thereby improving the model’s capacity for
generalization. AdaBoost method has been commonly applied in various fields and has
shown excellent capabilities in classification and regression problems [13]. An et al.
[14] introduced a wind power forecasting model (AdaBoost-PSO-ELM), and verified
it through the data of wind turbines in Turkey. The findings from the experiment
indicate that AdaBoost-PSO-ELM achieves a supericmccuracy rate. Ren et al. [15]
introduced an improved genetic algorithm-assisted AdaBoost double-layer learner
(GA-ADA-RF) fcm)redicting oil temperature of tunnel boring machine, and the
experiment reveal that the GA-ADA-RF has better predictive capability.

While the aforementioned evidence highlights the efficacy of the AdaBoost
algorithm, it also underscores its inherent limitations, notably susceptibility to
overfitting and its constrained capability to address nonlinear challenges [16]. Hence,
this study introduces the Relevance Vector Machine (RVM) as a solution to mitigate
these drawbacks. RVM, a variant of SVM, exhibits inherent sparsity, thereby mitigating
overfitting during training [17]. Furthermore, RVM's utilization of kernel functions
enables effective handling of nonlinear problems, thereby compensating for AdaBoost's
deficiencies.

Given the AdaBoost algorithm's capacity to diminish both variance and bias while
enhancing model generalization, coupled with the intrinsic strengths of RVM that can
compensate for AdaBoost's limitations, this research integrates RVM as a weak learner
within the AdaBoost framework to advance model efficacy. Moreover, the selection of
hyperparameters holds paramount importance in influencing the performance of
machine learning algorithms, with an optimal combination significantly enhancing
model performance. Swarm intelligence optimization algorithms, simulating
population hunting behaviors in nature, demonstrate remarkable prowess in optimizing
hyperparameters and are frequently employed for this purpose [18-21]. However,
swarm intelligence algorithms frequently suffer from the drawbacks of a skewed
distribution in the initial population and a tendency to converge to local optima rather
than global sgftions [22-24]. Therefore, this study proposes an improved butterfly
optimization algorithm to determine the best combination of hyperparameters for
prediction model.

2 Related algorithms
2.1 Adaptive Boosting (AdaBoost)

AdaBoost, a renowned ensemble algorithm [25]. During each iteration, AdaBoost
adjusts the weight of individual samples, assigning higher weights to previously
misclassified samples to emphasize their importance in subsequent iterations.
Consequently, the new learner focuses more on these challenging instances. Ultimately,
AdaBoost combines these learners through weighted voting to yield predicted sample
valus, thereby enhancing the overall learner's performance.

2.2 Relevance Vector Machine (RVM)

RVM, a machine learning algorithm rooted in Bayesian theory [26], serves as a
sparse probability model utilized for both classification and regression analyses.
Notably, the sparsity of the RVM algorithm is a key characteristic: during training, most
weights tend towards infinity, effectively nullifying the contribution of corresponding




features to the model. Consequently, RVM automatically identifies and emphasizes the
st crucial features for the prediction task while disregarding irrelevant ones.
2.3 Butterfly Optimization Algorithm (BOA)

Butterfly optimization algorithm (BOA) [27] is ameta—heuris@algorithm for global
optimization inspired by natural heuristics, initially introduced by Arora and Singh in
2019. This algorithm emulates the cooperative movement of butterflies towards a food
source, a behavior observed in nature. Butterflies navigate by receiving, sensing, and
analyzing odors in the air to locate potential food sources or mates.

3 The proposed algorithm (IBOA-AdaBoost-RYM)
3.1 Improved Butterfly Optimization Algorithm (IBOA)

Chaotic mapping, characterized by attributes such as good ergodicity, non-
repeatability, unpredictability, and non-periodicity, is leveraged to enrich population
diversity and enhance algorithm performance [28, 29]. In the original butterfly
optimization@mithm, butterfly diversity suffers due to random initialization of the
population. Therefore, this study introduces Tent chaotic mapping to uniformly
distribute the butterfly population and broaden its search range. It is defined as:
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Where a<(0,1).

The search step length of a single butterfly is not set in original BOA algorithm.
During the operation of the algorithm, due to the high dee of freedom of individuals,
but the search step length is not limited, resulting in fast search spmi in the early stage
of the search, low search accuracy in the late stage, and easy to fall into the local
optimum or far from the global optimum. In order to avoid the restriction of butterfly
individual search step size due to this situation, this study proposes a weight coefficient
that adaptively adjusts according to individual fitness value, and the formula is as
follows:
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Where, F, is the current individual fitness value, F, and F, are the current global

optirggl and worst fitness values, respectively.

If the fitness value of the current individual is nearly equivalent to the worst global
fitness, the higher the weight coefficient assigned to that individual, the greater the step
size they will take in their movement, aimed at avoiding entrapment in a local optimum.
Ifthe current ieividual fitness value is much different from the global worst value, that
is, it is nearer to the global optimal value, then the weight coefficient of the indigigual
is smaller, and the smaller moving step size ensures the high-precision search och
population in the later stage of the algorithm, and avoids the individual skipping the
global optimal value, which reduces the performance of the algorithm.

Furthermore, following the “No free lunch” theorem [30, 31], a single algorithm
cannot be fully applicable to all problems, so this work introduces sine-cosine algorithm
to improve search phase of butterfly opggpization algorithm. Combined with the
adaptive weight coefficient, the formula of the global search stage and the local search




stage of butterfly optimizationdgorithm can be updated as:
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Where 1, =ax (1é/1nm) , @ is a constant and the value is 2, ¢ is the current number of
iterations, f,, is the maximum number of iterations, 7, is the random number

betweenOand277, 73 isthe random number between 0 and 2, and #; is the random
number between 0 and 1. The flow chart of IBOA is shown in Figure 1.
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Fig.1 IBOA frame diagram.

3.2 Adaptive Boosting Based on Relevance Vector Machine (AdaBoost-RVM)

Traditional AdaBoost uses decision trees as weak learners [32]. However, decision
tree models are susceptible to overfitting, diminishing the model's generalization
capacity, and they have limited efficacy in addressing nonlinear problems [33]. The
inherent sparsity of the RVM model aids in enhancing the model's generalization ability
and mitigating the risk of overfitting. Additionally, RVM can be extended to handle
nonlinear problems through kernel techniques, enabling it to tackle more intricate
datasets [34]. Hence, this study capitalizes on the strengths of both RVM and AdaBoost
by utilizing RVM as a weak learner within the AdaBoost framework. Model structure
is shown in Figure 2.
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Fig.2 AdaBoost-RVM frame diagram.
3.3 The IBOA-AdaBoost-RVM prediction model
To sum up, the flow of the IBOA-AdaBoost-RVM model introduced in this work is
shown in Figure 3.
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Step 1: Acquire the power production data of the wind farm, and normalize the data
to prepare for the subsequent research.

Step 2: Calculate the Pearson correlation coefficient of each input and output variable,
and select the appropriate input variable.

tep 3: Weather data and power data are used for short-term wind power prediction,

and the hyperparameters of the model are optimized by the improved butterfly
optimization algorithm.

Step 4: Output final model prediction results.
4 Experimental simulation and result discussion
4.1 Data description

Dataset coa‘ises measurements taken at a frequency of 15 minutes. The division
between the training and test sets adheres to a ratio of 7:3. The input variables




encompass measurements of wind speed, wind direction, temperature, air pressure, and
humidity. The validity and reliability of the model are verified by real wind power data.
Moreover, to alleviate the impact stemming from the differing scales of the data and
augment the precision of the prediction outcomes, this study implements normalization
[35] as part of the data preprocessing stage.
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Where, X; represents the normalized data, X; represents the original data, X,

and X, represent the minimum and maximum values of the original data,
respectively.
4.Wput feature selection

The Pearson method is a common way to measure the degree of correlation between
two variables [36]. From Figure 4 (refer to Table 1 for details), it is eviden‘ghat
characteristics highly correlated with actual power generation primarily include wind
speed and wind direction attributes. Consequently, wind speed and direction
characteristics (excluding the 50-meter wind direction of the wind tower) are chosen as
input features for the model in this study.
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Fig.4 The correlation between various characteristics and actual power generation.
Table 1 Partial parameters and abbreviations in the heat map.
Abbrm’ati ons d‘arameters

ws 10 (m/s) Wind tower |10m wind speed (1v/s)
ws30 (m/s) Wind tower 30m wind speed (m/s)
ws50 (m/s) Wind tower 50m wind speed (1v/'s)
ws70 (m/s) Wind tower 70m wind speed (m/s)
wsH (m/s) Hub height Wind speed (m/s)

wdl10 (%) Wind tower 10m Wind direction (%)

wd30 (%) Wind tower 30m Wind direction (%)




wd30 () Wind tower 50m Wind direction (%)
wd70 (%) Wind tower 70m Wind direction (%)
wdH (°) Hub height Wind direction (°)
4.3 Evaluation indicators
This article selects the coefficient of determination (R’), root mean square error
(RMSE), mean absolute percentage error (MAPE), and mean absolute percentage error
(MAE) to evaluate the accuracy of the modeb)rediction results.
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Where, 7 is the total number of samples, y, is the predicted wind power value, y, is
the actual wind power value, y is the average of the actual wind power values.
4.4 Experimental comparison
441 Experimentaaomparison in March

Table 2 displays the results of the four evaluation indicators for the introduced model
and other comparative models using the spring March dataset. Furthermore, Modell to
Model6 represent the performance of the following models: IBOA-AdaBoost-RVM,
BOA-AdaBoost-RVM, AdaBoost-RF, AdaBoost-CNN, AdaBoost-BiLSTM, and
AdaBoost-CNN-BiLSTM, respectively.

Compared with BOA-AdaBoost-RVNg the IBOA-AdaBoost-RVM model exhibits a
1.8% increase in the R? value, a 21.9% decrease in RMSE, a 2/-&/0 decrease in MAE,
and a 17.2% decrease in MAPE. Furthermore, employing Random Forest (RF),
Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory Neural
Network (BiLSTM), etc., as weak learners for AdaBoost results in weaker performance
across all four-evaluation metrics compared to AdaBoost-RVM. From Figure 5, it is
evident that all six models demonstrate satisfactory fitting results for wind power data
in March of spring. Nevertheless, upon closer inspection of the locally enlarged graph,
it becomes apparent that the IBOA-AdaBoost-RVM model exhibits the most favorable
fitting effect, closely aligning with the actual wind power values.

Table 2 Evaluation indicators of the forecast results of different models in March.
Mdoell Model2 Model3 Modeld Model5 Model6
R? 0.971 0.953 0.944 0.918 0.950 0.960
RMSE  11.060 14.167 15.366 18.604 14.437 13.076
MAE 7.047 9.300 10.197 13.479 10.341 8.821
MAPE  0.418 0.505 0.426 0.897 0.920 0.525
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Fig.5 Prediction curves of different models in March.
4.4.2 Experimental comparison in June
Table 3 shows four evaluation indicators of different models on the summer June
data set. The four evaluation indicators of the introduced method outperformed the
comparative models, with the R values increasing by 2.0%, 6.7%, 6.9%, 2.3%, and
1.5%, respectively. Additionally, the RMSE values decreased by 17.9%, 37.3%, 38.1%,
19.9%, and 14.6%, while the MAE values decreased by 15.9%, 32.7%, 42.2%, 23.1%,
and 13.4%, and the MAPE values decreased by 12.2%, 56.1%, 53.5%, 22.9%, and
14.3%, respm'vely. Figure 6 provide further support for the proposed improvement
strategy and demonstrate the accuracy of the proposed model.
Table 3 Evaluation indicators of the forecast results of different models in June.
Mdoell Model2 Model3 Modeld Model5 Model6

R? 0.962 0.943 0.902 0.900 0.940 0.948

RMSE  7.905 9.625 12.612 12.771 9.878 9.254

MAE 5.503 6.543 8.178 9.515 7.160 6.354

MAPE 0.776 0.884 1.768 1.668 1.006 0.906
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Fig.6 Prediction curves of different models in June.
4.4.3 Experimental comparison in September
As depicted in Table 4, on the autumn September dataset, the R?, RMSE, and MAE
values of IBOA-AdaBoost-RVM outperform those of the comparison model. Although
the proposed method did not achieve optimal results for all four-evaluation metrics,
BOA-AdaBoost-RVM obtained the optimal MAPE value. This outcome further
substantiates the feasibility of utilizing RVM as a weak learner for AdaBoost in this
study. Moreover, upon examining the image in Figure 7, it was observed that the
introduced method can better capture the trend of changes in true values.
Table 4 Evaluation indicators of the forecast results of different models in September.
Mdoell  Model2 Model3 Model4 Model5 Modelo

R? 0.961 0.926 0.915 0.909 0.932 0.931

RMSE  8.069 11.141 11.972 12.370 10.680 10.749

MAE 4.722 5.974 6.616 7.452 6.413 6.877

MAPE  0.948 0.726 0.827 1.735 1.420 1.512
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Fig.7 Prediction curves of different models in September.
4.4 4 Experimental comparison in December
As can be seen from Table5, among the six models, only the R’ values of IBOA-
AdaBoost-RVM and BOA-AdaBoost-RVM exceed 0.9, with BOA-AdaBoost-RVM
reaching 0.92. When compared to AdaBoost-B, the proposed method demonstrates a
21.5% increase in R? value, a 42.6% reduction in RMSE, a 36.7% decrease in MAE, and
a45.9% decrease in MAPE. This further underscore the advanced nature of the method
proposed in this study. Figure 8 provides additional evidence supporting this conclusion.
Table 5 Evaluation indicators of the forecast results of different models in December.
Mdoell Model2 Model3 Modeld Model5 Model6
R? 0.920 0.910 0.757 0.853 0.891 0.819
RMSE  14.576 15.383 25.410 19.763 16.988 21.897
MAE 10.854 11.371 17.140 14.976 12.811 16.259
MAPE  0.438 0.499 0.811 0.585 0.521 0.619
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Fig.8 Prediction curves of different models in December.
5 Conclusions

In this study, an innovative model, named IBOA-AdaBoost-RVM, is proposed. The
performance of the IBOA-AdaBoost-RVM is verified by four distinct seasonal monthly
data sets. Results demonstrate that IBOA-AdaBoost-RVM achieves high forecasting
accuracy. The model's prediction results across four different seasons and months
consistently yield optimal outcomes, indicative of its robust generalization ability and
applicability.

In the future work, data from different geographic locations are considered and
compared with more advanced algorithms to further validate the model's excellence. In
aiition, future studies need to consider applying the model to different forms of
renewable energy, such as solar energy, hydrogen energy, and so on.
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