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Abstract

To investigate the impact of exogenously applied vanillic acid (VA) in mitigating the adverse
effects of drought stress, a greenhouse experiment was conducted on pea plants (Pisum sativum
L.). The pea seeds were primed for 14 h in varying concentrations (0, 0.5,1.0,2.0,3.0,4.0,50,
and 6.0 mM) of VA Then, thirty-five days old pea plants were subjected to control (100% field
capacity) and water deficit conditimﬁ(ﬁi)% F.C.). After thirty days of water stress treatments, the
dataﬁowed a notable reduction in shoot and root fresh and dry weights, shoot and root lengths,
and chlorophyll contents. While, water deficit stress led to an iEease in leaf free proline, total
phenolics, glycinebetaine (GB), ascorbic acid AsA) as well as the activities of catalase (CAT),
superoxide dismutase (SOD) and peroxidase (POD) enzymes. We observed thﬁ seed priming with
various concentrations of vanillic acid resulted in significant enhancement in shoot and root fresh
and&' weights, shoot and root lengths, chlorophyll contents, proline, total phenolics, GB, AsA
and the activities of POD, SOD and CAT enzymes of pea plants. Of varying concentrations of VA,
20 and 40 mM VA were more effectivw improving the plant morphology and physio-
biochemical metabolites of pea plants. So the results of the present study suggested that the
improvement in growth and different physio-biochemical characteristics can be attributed to the
V A-induced upregulation of osmoprotection and oxidative defense system of pea plants.

Keywords: Water stress; Pea (Pisum sativum L.); vanillic acid; antioxidants; osmoprotectants

1 Introduction

Often, the term "drought” refers to shortage of water compared to the demand of the plant
according to the prevailing environmental conditions (Ali et al., 2016). Several regions of the
world are currently experiencing drought stress due to unpredictable climate change (Javed et al.,

2016; Lamaoui et al., 2018; Naumann et al., 2018; Seleiman et al., 2021). The drought -prone
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regions are increasing due to improper use of irrigations, so the crop productivity on such lands is
hampering significantly (Naumann et al., 2018).

The condition of water shortage causes a&niﬁcant reduction in leaf mass and area with a
significﬂ change in other morphological traits, such as the number of leaves per plant, and plant
height (Seleiman et al., 2021; Yang etal., 2021). Plant developmental processes significantly slow
down as drought duration and intensity increase (Duan et al., 2017). Moreover, during heat and
drought stress, metabolic pathways experience significant alterations (Naz et al., 2014; Akram et
al., 2016), and differentially regulated metabolism-related gene expression can be found,
particularly in the cellular organelles such as mitochondria and plastids (Oleti, 2018). Water
shortage has a significant impact on the functioning of a variety of metabolic processeﬁ'ncluding
the rate of photosynthetic activity, source-sink trﬁport, and seed production (Aslam et al., 2013;
Sehgal et al., 2018). For example, excessive generation of reactive oxygen species (ROS)
generated by water stress deteriorates the chloroplast membranes, as the lipid peroxidation of
cellular membranes is the result of over-production of ROS (Ashraf, 2009). In response to ROS, a
variety of antioxidants (enzymaticfnon-enzymata accumulate in the cells to reduce the destructive
properties of ROS ((Razzaq et al., 2017; Kosar et al., 2022).

Pea (Pisum sativum L.) is an economical vegetable crop used all over the world. It is a very
common model for genetic and physiological research. Pea has been the subject of countless
scientific studies due to its simplicity of production, quick generation cycle, and significant
morphological variation (Smykal et al., 2012; Santos et alﬁOlg). However, it is categorized as a
very sensitive crop in terms of its stEs tolerance (Cernay et al., 2015; Devietal., 2023). Although
a variety of strategies are in vogue to enhance stress tolerance in plants, exogenous application of
inorganic and organic chemicals has shown a promise in terms of improving plant stress tolerance.
Thus, in the present investigation, vanillic acid (VA), one of the potential organic growth
substances, was supplementedﬁ drought-stressed pea plants to examine if this chemical could
improve pea plants’ growth under water deficit conditions. Vanillic acidé de-scribed as a
derivative of benzoic acid and an oxidized variant of vanillin is commonly used as a flavoring
agent (Kim et al., 2010). It is a conjugated acid of vanillate and is a naturally occurring phenolic
acid; vanillin is used widely in pharmaceuticals, cosmetics and the food industry as a flavoring
agent (Imming et al., 2006). It was first reported in Melilotus messanensis (Macias et al., 1997),

then in Chenopodium murale (Batish et al., 2007) and Dactylis glomerata (Parveen et al., 2011).
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Being a phenolic compound, vanillic acid in plants reduces the activity of root system by the
allelopathy phenomenon (Chen et al., 2011). Different fruits (grapes, pomegranate, etc.), herbs and
spices (cinnamon, tea, rosemary, sage, thyme, &egano, mint, ginger, etc.) and vegetables
(pumpkin, broccoli, drumstick, curry, nettle, etc.) are the main source of vanillic acid (Ingole et
al., 2021).

The influence of vanillic acid on the development and metabolism of different plants has
been examined in different studies. For example, exogenously applied vanillic acid promoted
alfalfa seedlings’ growth, particularly the development of plant aerial compo-nents (Khaleda et al.,
2017). Likewise, another study, (Parvin et al., 2020) while assessing the impact of VA on tomato
seedlings under saline stress, found a significant enhancement in growth of the tomato seedlings
which was reported to be associated with reduced stress-induced oxidative stress as well as tissue
Na*/K* ratio. In the same crop, a marked increase in the actions of key antioxidative enzymes was
observed (Ghareib et al., 2010; Singh et al., 2021). Moreover, working with maize (Stingu et al.,
2011) showed 45% improvement in the growth of maize seedlings supplied exogenously with
vanillic acid. In pea particularly, the growth of the roots was suppressed by vanillic acid at high
concentrations (Vaughan and Ord, 1990).

Keeping in view the effectivity of VA in improving plant metabolism and stress toleﬁce,
it was hypothesized that seeds treated with different levesl of VA might improve the drought stress
tolerance of pea plants. Thus, the primary aim of this study was to evaluate, that up to what extent
exogenously applied vanillic acid as a seed treatment could improve the growth and vital

physiologi-cal and biochemical processes in pea.

2 Materials and Methods
2.1 Growth conditions and treatments

An experiment using plastic pots (diameter 28.5 cm?) containing 7.5 kg soil/pot sandy-clay.
loam (45:25:30) was performed from October to December 2021 to determine the effectivity of
different levels of vanillic acid (VA) in the ﬁulation of drought stress tolerance. The soil had
organic matter,0.79%; pH 7.9,EC 3.01 dSm''; P,52 mgkg!, and K, 398 mg kg"!. The experiment

was designed using a completely randomized approach, involving three factor-factorial [drought
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(2) x cultivars (1) x levels of VA (8)] with four pots or replications of each treatment (total eight
pots and 40 plants per treatment). The sample size (pots) was atotal of 64 2 x 1 x 8 x 4 = 64)

perimental units. The pots were placed in the Plant Sanctuary, Government College University
Faisalabad, Pakistan with a latitude of 310- 26' N; a longitude of 730- 06' E and an altitude of
184 .4 m. The seed of a pea variety, Sarsabaz, was procured from the Vegetable Section at the Ayub
@ricultural Research Institute in Faisalabad, Pakistan. During the experimental period, the
average (day + night) temperature was 26.8 °C, the average relative humid'&was 68.9%, the
average rainfall was 0.3 mm and the average light period was 8.1 h/day. The seeds were surface
sterilized by washing them in 0.05% sodium hypochlorite. Then the seeds were primed for 14 h
with varied levels (0, 0.5, 10,20, 3.0,4.0, 50 and 6.0 mM) of VA (CsHsO4; molecular weight,
168.15 g; Across Organic Chemicals, Pakistan). Various concentrations of VA were formulated
using deionized water. Then, 10 seeds were planted in each pot (replicate). Seed germination was
noted daily and all seeds germinated in eight days. Following 15 days of seed germination, a
thinning process was carried out, and each pot/replicate contained five seedlings of uniform size.
At the same time, drought stress treatments comprising a control group (maintained at 100% field
capacity) and a water deficit stress group (subjected to 60% field capacity) were initiated, and the
required levels were maintained based on the soil saturation (32 mL/100 g oven dry soil) level
percentage as well as field capacity (16 mL/100 g dry soil). These levels took twenty days to attain
the desired field capacities (100% and 60%). After thirty days of drought stress initiation, data for
growth and physiological and biochemical characteristics were determined.

2.2 Morphological attributes

Two plants were gently pulled out from each pot/replicate (eight plants per treatment),
followed by thorough rinsing with distilled water and keeping them on a blotting paper to remove
water. The pla%‘;amples were separated into roots and shoots, and their lengths were measured.
Subsequently, their fresh w&ghts were recorded. After that, the shoot and root samples were air-
dried before placing them in an oven set at 70 °C for 72 h, and finally, their dry weights were
recorded.

2.2.1 Leaf relative water contents (LRWC)
A fresh leaf 2™ one from the top was sampled from the plants and placed in a water tub after

determining their fresh weights. After keeping these samples in water for three hours, their turgid
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measurements of weights were documented. Then all samples were oven-dried for 72 h and

recorded their dehydrated masses. Following Jones and Turner (1978), RWC was determined.
2.2.2 Relative membrane permeability (RMP)

A young 2nd leaf from the top (500 mg) was shredded in ten milliliters of deionized water.
After two hours, ECO was recorded. The specimens were retained for a night and documented their
EC1. Then all samples were autoclaved for &rm nutes. The specimens were allowed to cool down
to ambient temperature, and then their EC2 was measured using a formula proposed by Yang et al.
(1996), and the RMP was calculated.

2.3 Chlorophyll (a and b) content

Following the procedure established by Arnon (1949), a freshly harvested 2nd leaf weighing
g was macerated in a mortar and pestle with 10 ml of 80&( v/v) acetone un-der cold conditions.
The samples were kept at 4 °C for 24 h. Subsequently, a spectrophotometer was employed to
measure the absorbance at wavelengths of 645 and 663 nm.

2 4 Osmoprotectants (Proline and Glyginebetaine)

sulfosalicylic acid (3%) was used to homogenize 0.5 g of fresh young leaf and then filtered. The

To measure the proline levels following the procedure of Bates et al. (1973), 10 mL of

sample extract (2 mL) was mixed with acidic ninhydrin (2 ml) and glacial acetic acid (2 ml). Eyery
sample was subjected to boiling in a water bath, and subsequently, the mﬁure was placed in an
ice bath. Subsequently, 4 mL of toluene was added to each sample, and the absorbance of the upper

For GB content determination, a fresh young leaf (500 mg) was mixed in 10 mL of deionized

layer was observed at 520 nm.

water, and the samples were prepared following the E)cedure as delineated by Grieve and Grattan
(1983). A spectrophotometer was utilized to record the absorbance of the lower organic layer, ata
wavelength of 365 nm.
2.5.1 Ascorbic acid content

The youngest 2nd leaf from top (500 mg) was homogenized in trichloroacetic acid (10 ml;
6%). Further reactions were caﬁd out following the procedure proposed by Mukherjee and
Choudhuri (1983). A volume of 2 mL of eacl&af extract was combined with 2 mL of 2% (v/v)
dinitrophenyl hydrazine. To this mixture, 1.0 mL of 10% (w/v) thiourea was introduced, and the

samples were subjected to boiling in a water bath for 15 minutes before being cooled to room
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temperature. Following this, 5 mL of 80% (v/v) H2SOs was added, and the absorbance was

measured at 530 nm.
2.5.2 Total phenolic content

Freshly harvested top 2nd leaf (250 mg) was extracted in 5 mL (80%) acetone according to
the method developed by Julkunen-Tiitto (1985). Following the centrifugation process, 0.1 of
the sample was blended with 2 ml dH20. The sample extract was supplemented with 1.0 mL of
Folin—Ciocalteu's phenol reagent and 5 mL of 20% sodium carbonate. Subsequently,
spectrophotometric analysis was conducted at 750 nm to determine the total phenolic content.
2.6 Activities of enzymatic antioxidants

A fresh top 2nd leaf was preserved in an ultra-low freezer for a week. Then, a 500 mg leaf
sample was triturated in a K-buffer (10 ml; 50 mM;&l 7.8). After centrifugation, the mixture was
storeﬁ‘n sterilized Eppendorf tubes for determining the activities of POD,CAT and SOD enzymes.
The SOD activity was assessed according to the method described by Giannopolitis and Ries
(1977), whereas those of POD and CAT enzymes were ob-served using the protocol outlined by
Chance and Maehly (1955).
2.7 Statistical analysis

The data of differ%t attributes mentioned earlier were subjected to data analysis using Co-
Stat v. 306, employing analysis of va@c&: (ANOVA) in a completely randomized design. Mean
values were subsequently compared using the least significant difference at the 5% probability

level.

3 Results

Drought stress [60% field capacity (F.C.)] significantly (P <0.001) inhibited the shoot fresh
(29.9%) and dry weights (28.6%) of pea (Pisum sativum L.) plants. However, seed priming with
varying levels (0.5, 1.0,2.0,3.0,4.0,5.0 and 6.0 mM) of vanillic acid (VA) caused a substantial
(P <0.001) improvement regarding fresh and dry weights of pea plant shoots (Table 1; Fig. 1AB).
In general, the levels of 4.0 mM and 6'0ﬁM of VA exhibited greater effectiveness in promoting
both fresh and dry shoot weights of pea plants both under normal (100% F.C.) and drought stress

(60% F.C.) conditions. Additionally, water stress led to a notable reduction in the fresh (P =< 0.01;
15.5%) and dry (P = 0.01; 11.23%) weights of roots of pea plants. The influence of VA was also

significantly (P < 0.001) effective in enhancing root biomass. The more prominent results were
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found at 2.0 mM and 4.0 concentrations, particularly under water deficit conditions.
Exogenous VA demonstrated a significant increase in the fresh and dry weights of the roots of pea
plants (Fig. 1CD).

Considerable reductions were observed in both shoot and root lengths of the pea plants (P <
0.001) in dehydrated circumstances. Varying concentrations of VA significantly increased the
shoot and root lengths (P < 0.001) of the pea plants (Table 1). Of all levels of VA used, 2.0 mM
and 4.0 mM VA were more effective in enhancing the shoot and root lengths of the pea plants in
stress environments (Fig. 1EF). Similarly, a marked (P < 0.01) reduction was detected in the leaf
area of the pea plants (Table 1) un-der drought stress conditions (Fig. 1G). Varying levels of VA
noticeably (P <0.001) enhanced leaf area per plant under both stressed and unstressed conditions.
Of all VA concentrations, 4.0 mM V A was more effective in minimizing the influence of shortage
of water on the pea plants.

Under water deficiency, the leaf relative water contents (LRWC) of the pea plants were
recorded to be markedly declined (P < 0.001). Different VA levels had noticeable effects in
enhancing the LRWC, and of all VA levels, 3 and 6 mM VA were more effective than the other
levels under both normal and water scarcity surroundings (Table 1; Fig. 2A).

Under water-deficit stress, relative membrane permeability (RMP) was increased noticeably
(P < 0.001, Table 1) in the pea plants. However, the application of VA decreased the RMP
significantly (P <0.001) in the pea plants. Of all VA levels, 6 mM was more effective in dropping
RMP under both water regimes (Table 1; Fig. 2B).

Chlorophyll a and total chlorophyll concentrations reduced markedly (P < 0.05) in water-
stressed circumstanceﬁround the pea plants. Nonetheless, there was no noticeable alteration
induced by drought in the chlorophyll b levels and the chlorophyll a/b ratio of the pea plants. The

-treatment of seeds with different cgpcentrations of VA significantly enhanced the levels of
chlorophyll a, b, and total chlorophyll (P <0.05, P <0.001, and P < 0.05, respectively). Notably,
among all the levels employed under both water conditions, 2 mM VA exhibited the most
pronounc ectiveness (refer to Table 1 and Fig. 2CDEF). There was no notable alteration
detected in the chlorophyll a/b ratio of the pea plants at both water regimes.

A promising (P < 0.01) increase in proline contents was noticed in shortage of water
situations (Fig. 2G). Seed priming with different levels of VA (0.5,1.0,2.0,3.0,40,5.0and 6.0

mM), some levels of VA was found to be very effective (P = 0.001) in enhancing the proline
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accumulation in the pea plants under water scarcity circumstances (Table 1). Of all concentrations
of VA, 10 and 5.0 mM were observed more promising for the pea plants in accumulating a
substantial amount of proline under water deficit stress.

A noticeable (P < 0.001) rise in glycinebetaine (GB) was perceived in drought-stressed pea
plants. Exogenous supplementation of VA was found instrumental for raising GB contents of the
pea plants 4.0 and 6.0 mM doses of VA were rated as the best for achieving increased GB content
in the pea plants at 60% F.C. (Table 1; Fig. 2H).

Ascorbic acid (AsA) concentration was recorded to be higher in the drought-stressed pea
plants than in the control untreated plants. However, varying levels of VA considerably (P <0.001)
improved the AsA contents, and 20 mM was more promising than the other VA levels in
increasing the AsA levels in the drought-stressed pea plants (Fig. .

Total phenolic contents were significantly (P <0.001) higher in the water-stressed pea plants
than those in the untreated plants. The supplementation of VA resulted in a marked rise in the total
phenolic content of the pea plants, with the most substantial enhancement observed at 0.5 mM VA
under water-deficient condmns (Table 1 and Fig. 3B).

Drought stress led to a significant increase in the activities of superm%: dismutase (SOD),
peroxidase (POD), and catalase (CAT) (P <0.01; 0.05; 0.001, respectively) enzymes in the leaves
of the pea plants (Table 1). The priming of pea seeds with VA had a significant (P <0.001; 0.001;
0.05) stimulating influence in accelerating the activities of SOD, POD and CAT, particularly under
drought stress conditions (Table 1; Fig. 3CDE). Under both water regimes, 2.0, 3.0 and 4.0 mM

V A markedly boosted the functionality of all antioxidant enzymes.

4 Discussion

Water scarcity is recognized as a primary factor causing a major decline in crop bio-mass
and yields all over the world, particularly in water-scarce and semi-aridareas (Akram et al., 2023).
It is widely known that water deficit conditions profoundly affect the growth and development of
almost all plant species (Shafiq et al., 2014; Ahluwalia et al., 2021; Seleiman et al., 2021) because
adequate water avail%ity is essential at each phase of a plant's life cycle. This chﬁnging
condition may lead to a reduction of more than 50% in the average yield of major crops (Wang et
al., 2003; Ashraf et al., 2011; Lamaoui et al., 2018). However, there is substantial evidence that

plants can adjust themselves by altering physiological, biochemical, and anatomical features in
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response to both internal and external climate related factors including drought stress (Naz et al.,
2023). Through the adaptive mechanisms including osmoprotection, osmotic adjustment, ionic
compartmentalization, upregulation of antioxidants and accumulation of stzgss hormones, plants
can endure and thrive well in challenging environmental conditions (Shafiq et al., 2015; Akram et
al., 2016; Naz et al., 2023). Moreover, a multitude of strategies are in vogue to alter plants that
could flourish well under harsh environmental indications. Of those, seed priming is considered a
shotgun and efficient technique for promoting plant growth under stressful regimes (Ashraf and
Eolad, 2005; Akram et al., 2020). However, for seed priming, a variety of organic and inorganic
chemicals are currently under use (Akram et al., 2020; Kong et al., 2023).

In the current investigation, water stress significantly decreased both the fresh and dry
weights of shoots and roots in the pea plants,&ereas seed priming with different levels of vanillic
acid triggered an important improvement in the fresh and dry weights of the pea plants (Table 1;
Fig. 1) u&er varying water regimes. Overall, 40 mM and 6.0 mM levels of VA were more
effective in enhancing the fresh and dry weights of the pea plants. Since no relevant literature is
available to exhibit the role of the exogenous application of VA (a phenolic compound) to plants,
the results recorded here could -88 eated as the first study in this regard. Nonetheless, Moran-
Palacio et al. (2014) observed a positive relationship between total phenolic content and
antioxidant properties in Rhizophora mangle and Krameria erecta plants. Furthermore, vanillic
acid and p-hydroxy benzoic acid were identified as growth-promoting substances that mitigated
leaf contraction and senescence in sorghum exposed to temperature stress conditions&hmad et
al., 2016). Consequently, it is plausible to suggest that the foliar treatment of VA may play a vital
role in triggering the production of osmoprotectants, to enhance drought resistance and improve
the survival capacity of plants under water-limited conditions as found in rice (Ahmad et al., 2016).

The relationship between reduced water content and the adaptability of cell meﬁbranes to
withstand various environmental signals, including those of drought stress has already been widely
reported (Liu et al., 2002; Ahmad et al., 2016; Yang et al., 2021). Moreover, under water-deficit
conditions, the sustainability and permeability of cell membranes tend to decrease plant growth
(Blokhina et al., 2003). When assessing the physiological implications of cellular water scarcity,
LRWC is considered a potential criterion for evaluating the water status of plants. However,
consistent with earlier reported studies, the findings of the current study demonstrated that LRWC

was significantly affected in the drought-stressed pea plants. However, VA exogenous application

10
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had a positive effect on LRWC, which is consistent with the findings of Hura et al. (2012). They

reported a notable increase in phenolics bound to the cell wall, which were associated with
enhanced water retention within the plant. This led to a delay in leaf desiccation and the
development of leaf undulations. Adgtionally, these phenolic compounds, including derivatives
of hydroxycinnamic acids (such as ferulicdcid and p-coumaric acid) and flavonoids (such as
kaempferol and quercetin), were localized in the cell walls and vacuoles of the epidermis. This
localization potentially functions as a photoprotective mechanism for the photosynthetic apparatus,

oviding defense against the potential damage to leaf cell structures caused by UV radiation (Hura
etal., 2012; Nichols et al., 2015).

Under water deficit conditions, chlorophyll pigments play a crucial role in energy dissipation
and light absorption during photosynthesis (Akram et al., 2018). In the existing study, scarcity of
water led to a decline in photosynthetic pigments in the pea plants. This reduction in pigments
under water shortage is a copymonly observed reaction across various crops, such as mung bean
(Batra et al., 2014), potato (Arabshahi and Mobasser, 2017), chickpea (Mafakheri et al., 2010),
carrot (Razzaq et al., 2017), and canola ﬁ(ram et al., 2018), suggesting a shared adaptive
mechanism of plants to drought conditions. The decrease in chlorophyll levels can be attributed to
excessive production of ROS, disruptions in nutrient balance, and disturbances in enzyme
activities caused by cellular or plant-level water deficiency. In accordance with these findings, the
current study exhibited a reduction in chlorophyll ¢ content under water deficit situations.
However,ée use of VA pointedly mitigated the harmful effects of drought on the pea plants.
Likewise, Xuan and Khang (2018), reported that foliar application of low concentrations of vanillic
acid increased the chlorophyll contents in rice plants.

Two essential osmolytes, glycinebetaine (GB) and proline, are known to accumulate in
numerous crob‘;pecies under stressful conditions and they play a critical part in osmotic
modification (Raza et al., 2016). Raza et al. (2014) conveyed that a high accumulation of GB
enhanced plant tolerance to various abiotic stresses, together withwater shortage. The
accumulation of GB at a high level enhanced the drought resistance of plants by promoting the
functionality of antioxidant enzymes (Ma et al., 2014) and maintaining turgor pressure (Ashraf
and Foolad, 2007). In the deficient supply of water, the decrease in leaf water potential triggers an
accelerated synthesis of GB, which helps maintain the osmotic potential of leaves (Ashraf and

Foolad, 2007). Moreover, proline is also known for its role in protecting plants against ROS and

11
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regulating osmoregulation (Aranjuelo et al., 2010; Yaqoob et al., 2019). This study revealed a
noteworthy elevation in the concentration of both proline and GB, particularly under the water
stress level of 60% F.C. Studies on radish plants (Akram et al., 2016) and rice by Galahitigama
and Wathugala (2016) demonstrated that the enhanced accumulation of proline and GB under
drought stress contributed to increased stress tolerance. Moreover, in the current study, the
exogenous spray of vanillic acid augmented the concentration of proline and GB contents in the
pea plants subjected to water stress as well as normal watering. However, VA-induced
accumulation in GB or proline could not be linked with any earlier investigation, as no report is
available in the literature oahis aspect.

The plant's defense against oxgtive stress includes both enzymatic and non-enzymatic
antioxidants, which shield plant cells from damage caused by drought stress. Some investigations
have demonstrated that aﬁmentation of the antioxidative defense system could enhance drought
tolerance across various plant species, e.g., radish (Shafiq et al., 2015), and rice (Nounjan et al.,
2012). Among non-enzymatic compounds, ascorbic acid is widely known for its ability to prot
plants against various abiotic stresses by effectively rummaging oxy-gen-free radicals (Shafiq et
al., 2014). Ejaz et al. (2012) stated that thealular level of AsA is associated with the stimulation
of plants' protective system. Ascorbic acid plays a crucial role in plant growth and is implicated in
various physiological processes, e.g., division of cells, cell expansion, and several others (De Gara,
2004). In this study, we observed a rise in ascorbic acid content in the pea plants subjected to
drought stress, which is consistent with earlier findings in maize (Dolatabadian et al., 2010)
wherein a significant elevation in AsA, particularly reported under high drought intensity.
Furthermore, in our study, the use of VA enhanced the accumulation of ascorbic acid in water-
deficit environments. Under drought-induced oxidative stress, phenolic compounds accumulate
and protect fatty acids, as previously reported by Frary et al. (2010) and Amri et al. (2017). In the
course of our investigation, we noted a rise in total phenolic content in the pea plants&der water
deficit conditions, which aligns with the findings recorded in maize (Mol&ramnejad et al.,2015),
canola (Dawood and Sadak, 2014), and quinoa (Aziz et al., 2018) under drought conditions.

Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) are enzymatic
antioxidants that perform a crucial role in neutralizing reactive oxidants, thereby en-hancing stress
toleranceécrops against drought. Previous studies by Ashraf (2009) and Akram et al. (2018) have

reported the involvement of these enzymes in the mechanism of drought tolerance in dif-ferent
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plants. It has been suggested that the ability of a species to tolerate drought stress can be linked to
the enhanced activity of antioxidant enzges, as demonstrated by Lima et al. (2002) and Yadav
and Sharma (2016). In our current study, we observed hiaer activities of SOD, CAT, and POD in
the drought-stressed pea plants, similar to the findings reported earlier in canola (Akram a al.,
2018) and radish (Shafiq et al., 2015) cultivars that exhibited increased enzyme activities undﬁ'
stress conditions. The exogenous application of VA positively influenced the ac-tions of
superoxide disutase, catalase, and peroxidase enzymes in drought-hit plants, similar to the
stimulation of catalase and superoxide dismutase for nullifying the reactive oxygen species as
observed jn rice under flooding conditions (Xuan and Khang, 2018). Numerous scientists have
described the role of phenolic compounds in increasing ctivities of superoxide dismutase and
catalase in water-deficit plants for ROS detoxification (Abu El-Soud et al., 2013; Singh et al.,
2019).

5 Conclusions

Seed priming with vanillic acid enhanced the growth and regulated physio-biochemical
parameters of drought-stressed pea plants. It also improved these attributes in non-stressed control
plantsd‘hese results suggested that vanillic acid treatment can be advantageous for promoting
plant growth under both stressful and non-stressful conditions. So, the capability of vanillic acid
to enhance stress tolerance in crop plants can provide valuable benefits to farmers facing water

deficit stress conditions.
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604  Table 1 Mean squares from ANOVA of data for different morphological and phys-io-biochemical
605  characteristics of pea (Pisum sativum L.) plants raised from seeds treated with varying levels of
606  vanillic acid and subjected to water-deficit conditions.
Source of Variationdf Shoot fresh weight Shoot dry weight Root fresh weight  Root dry weight
Drought stress (D) 1 5.286%%* 0.0997% 3 1.676%* 0.063%***
Vanillic acid (VA) 7  0.876%** 0.057%** 0.464+* 0.019%%*
Dx VA 7  0.198ns 0.006* 0.455%* 0.002ns
Shoot length Root length Leaf area per plant LRWC
Drought stress (D) 1 568.5%%* 497 2% 4.557%* 1750%#*
Vanillic acid (VA) 7  105.4%** 05. 143 2.719%%% 366.3%#*
Dx VA 7 1322ns 20.42%%* 0.042ns 43.63ns
RMP Chlorophyll@a  Chlorophyll b Total chlorophyll
Drought stress (D) 1 298.5%%%* 0.261* 0.038ns 0.262%*
Vanillic acid (VA) 7 177.7%%* 0.114%* 0.138%*** 0.114*
Dx VA 7  6.659ns 0.021ns 0.002ns 0.021ns
Chlorophyll a/b ratioProline Glycinebetaine Ascorbic acid
Drought stress (D) 1 0.792ns 0.799%** 159 4k 1536*
Vanillic acid (VA) 7  2.053ns 2.604 %% 107 8% 16.397%#*
Dx VA 7 0.160ns 0.096ns 3.242ns 1.233ns
Total phenolics SOD POD CAT
Drought stress (D) 1 160.1#%** 1.693 % 0.162%* 0.04 2%
Vanillic acid (VA) 7  26.93%%* 1.8 15%%* 0.115%3#* 0.006*
Dx VA 7 2477ns 0.042ns 0.005ns 0.001ns
607  *,** and ***= significant at 0.05,0.01 and 0.001 levels, respectively; ns= non-significant.
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