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Prediction of phases and mechanical properties of magnesium-based high-

entropy alloys using machine learning

Abstract
Objectives: To predict phases and mechanical properties of Mg-Al-Cu-Mn-Zn alloys and to validate the results.
Methods: In this study, 29 predictor features of the alloys were examined based on dataset drawn from relevant
publications. The correlation of selected predictor features with echanical properties of Mg-Al-Cu-Mn-Zn
alloy were evaluated. New features specific to vehicle and aerospace applications. Feature selection schemes
involving four machine learning (ML) classifiers that included ﬁcial neural networks (ANN), linear
discriminant analysis (LDA), random forest regression (RF) and k-nearest neighbours (k-NN) were adopted.
Tensile test was carried out based on ASTM ES8 standard.
Results: Results of correlation of features showed that specific strengths and specific modulus of the alloys were
strongly and positively correlated with composition of alloying elements but strongly and negatively correlated
with composition of magnesium. The results also revealed that homogenization temperatures and time were
weakly correlated with the mechanical properties and phases while electronegativity difference and VEC had
significant positive correlation. ANN was the best performing classifier followed by k-NN, LDA, and lastly RF
with prediction accuracy on test data of 98.7%, 98.1%, 97.9% and 97.8%, respectively. The validity and
applicability of the model was tested with three magnesium-based alloys:g—SO—Al—lO—Cu—S—Mn—S—Zn—U,g—
80-Al-5-Cu-5-Mn-5-Zn-5 and I\n/lg—9lA2—Al—8A3—Cu—0—Mn—0AlS—Zn—0A35 and compared with findings in
literature. The model had higher prediction accuracies compared to previous ML models used on magnesium
alloys. The model was then used to predict phases in the Mg-89.43-A1-8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy
and it accurately predicted presence of Mgi7Ali2, Mg2Si, MgZn and MgZn:. Results of simulation in MatCalc
version 6.04 also verified presence of the phases. The phases were further confirmed through SEM/EDS
analysis.
Conclusions: Dominant strengthening phases were Mgi7Ali2, Mg2Si, MgZn and MgZn:. Predicted yield
strength, ultimate tensile strength and Young's modulus were within the range of experimental results.
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1. Introduction

A new area of interest in material science is modelling and development of materials with enhanced
mechanical properties (Stergiou et al., 2023). One such interest is to be able to predict mechanical properties
from compositions and phases of modern light alloys with low densities and high strength-to-weight ratios
applicable in aerospace and light-vehicle industries (Feng et al., 2016). The light metals include high entropy
alloys (HEAs) of aluminium, magnesium, titanium, and beryllium (Behera et al., 2022; Feng et al., 2016).
Traditional methods for developing terials, such as empirical trial and error, may be replaced by machine
leamning (ML) techniques and artificial intelligence that are capable of predicting alloy phases and mechanical
properties (Feng et al., 2016). Research has shown that mechanical properties of HEAs can be improved through
understanding of phases present in the alloy materials. Over the years, ML has been applied to various tasks of
phase and mechanical property predictions that are computationally intensive with good results (Machaka,
2021).

ML algorithms provide fast and low-cost approach compared to traditional techniques of material design,
phase prediction, analysis and modelling (Ford et al., 2021; Machaka, 2021). There is great research focus on
ediction of phases and mechanical properties of high-entropy alloys of light metals (Qiao et al., 2021; Xiong
et al., 2023). Explomtionphases and mechanical properties of magnesium alloys has risen over the years to
because of lowest density of magnesium among other light metals and opportunity to reduce dead weight of
vehicles, aircraft and spacecraft (Reza Kashyzadeh et al., 2023). There is a rising interest in Mg-Al-Cu-Mn-Zn
that has seen improved mechanical properties based on varied percentages of the alloying elements and
strengthening phases (Tun et al., 2019). However, existing ML-based research on high-entropy alloys lacks
standardization, focuses generally, and fail to address the promising Mg-Al-Cu-Mn-Zn for lightweight, high-
strength applications.

Previous research identified phases that were commonly associated with magnesium alloys. The phases
included: Mg;7Al)z in their gamma and beta states (Yamanoglu et al., 2021), laves phases such as Mg:Cu and
MgCus (Fan et al., 2021), and MgZn> and Mg>Zn;; (Bilbao et al., 2022). Other phases identified in literature
and put in CALPHAD databases included p AlsMgs, 8 AlCu, AlsCus D, AlsCuyy Z,AlCu (, AlCu G D83,
AlCuMg V (Tayyebi et al., 2021). Previous research such as Pei et al. (2020), Li and Tsai (2020), Liand Guo

(2019) focused on crystal structures associated with alloy phases rather than actual phases.
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Recent research efforts to predict phases and mechanical properties of magnesium alloys focused on

understanding their phase transformations and mechanical properties under various conditions (Chen et al.,
2020, 2019a, 2019b). Chen et al. (2019a) studied constitutive behaviourAZS[] magnesium alloy during hot
deformation using a segmented model that outperformed rhenius and Johnson—Cook models. The research
provided a comprehensive understanding of high-temperature deformation characteristics relating to alloy

phases. Chen et al. (2019b) explored the effects of ultrasonic vibration on the casting process of AZ80 alloy and
found significant differences in mechanical properties in relation to phase. Chen et al. (2020) showed that —
Zn-Y alloy subjected to dual-frequency ultrasonic field result in improved mechanical strength, and corrosion
resistance as a result of quasi-crystals. These studies collectively advance the prediction and optimization of
phases and mechanical properties in magnesium alloys. These studies did not focus on specific strength and
specific modulus and did not focus Mg-Al-Cu-Mn-Zn alloys. They also did not use ML algorithms.

Various researchers focused specifically on strength and phases of magnesium alloys using ML prediction
techniques. Liu et al. (2021) developed gh-strength Mg cast alloys by iteratively optimizing the composition
and heat treatment condition based on a surrogate model that evolved with new data. Peial‘ (2020) used a
random forest algorithm to investigate the deformation mechanisms and ductility of Mg. However, the specific
strength and modulus was not tested in both cases. Mandal et al. (2022) used ML algorithms to predict phases
in high entropy alloys and found that decision tree and SVM had .84% accuracy for phase prediction, and
84.32% for crystal structure classification, respectively. Most recent study by Dong et al. (2024) predicted
ultimate tensile strength (UTS), vield strength (YS), elongation (EL), and hardness (HV) using Shapley additive
explanations (SHAP) model and obtained accuracies of up to 93%. The study did not focus on specific strength
and stiffness of the alloys for application in light vehicle and aerospace industries. It was also not specific to
high entropy Mg-Al-Cu-Mn-Zn alloys.

Though ML has been used to predict phases and strengths of magnesium alloys, it has not been applied to
Mg-Al-Cu-Mn-Zn alloys. Research has not focused on predicting phases, specific strength, and modulus of
these alloys, despite their potential. There is need to explore these properties using ML to understand the
composition-phase-strength/modulus relationship, as no single study has addressed this comprehensively. In
this paper, strategies employed in previous studies on ML-based strength and phase prediction were reviewed.

The objectives of the research were to predict phases, specific strengths and specific modulus of Mg-Al-Cu-
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Mn-Zn alloys based on their compositions and heat treatments. A dataset of Mg-Al-Cu-Mn-Zn alloys with

strength and metallurgy-specific features presented. Analysis was conducted based on a framework developed
by Machaka (2021) and incorporated new features such as yield strength (Y S), ultimate tensile strength (UTS),
modulus of elasticity (E), specific strength at yield (spec strength YS), specific strength with ultimate tensile

strength (spec_strength UTS) and specific modulus (spec_mod).

2. Materials and Methods
2.1. Classification framework

Framework for analysis used in this research was based on Figure 1. Computational framework was anchored
on four platforms as suggested by (Machaka, 2021). Data collection, filtering, and wrangling yielded four crystal
structures, 20 phases, and 29 features. Data was processed, segmented, and split into 75% training and 25%

testing. Feature selection and validation followed, with model performance tested.
2.2. Collection and selection of data

Data from research on magnesium alloys (Al, Cu, Mn, Zn) was cleaned, checked for missing data, encoded,
and transformed for machine learning. Feature selection used backward elimination, forward selection, and
regularization to identify significant features. New features such as density (Density calc), change of entropy
ofixing (dSmix), atomic size difference (Atom Size Diff), electronegativity difference (Elect Diff) and

valence electron concentration (VEC) were created using feature engineering (Bhandari et al., 2020; Machaka,

2021). dSmix was calculated based on Equation 1.

T
dSmix = —Rin]nxi (1)

i=1
Change in enthalpy of mix was calculated using Equation 2.

n
dHmix = 4 x Z dH ™ x; x; 2)

i=1i%]

Atomic size difference was calculated using Equation 3




Atom_Size Diff = 100 x (3)

Average atomic radius was given by Equation 4,

7= Zn: Xt (4

i=1

Valence electron concentration (VEC) was calculated based on Equation 5.

VEC = Z C,(VEC); (5)

i=1

Electronegativity difference, y, was calculated based on Equation 6.
n
?(ZZC('-(X(‘—X')Z (6)
i=1

Where, in Equations | — 4
R= Ideal gas constant;

x; and x;= Atomic percentages of the ith and jth elements, respectively;

1= Radius of the i*" element;

7 = Average atomic radius;

xi= Pauling electronegativity of the i component;
¥= Mean electronegativity for alloy system;
C;= atomic percentage; and

(VEC);= Valence electron concentration of the it" element

Iterative testing evaluated the impact of engineered features on model performance, leading to optimized

results. The final data had 60 observations and 29 variables. Multicollinearity tests showed that no Variance




Inflation Factor (VIF) values exceeded 5 (see Table 1). There was moderate correlation for Atom Size Diff and
Elect Diff. VEC had low multicollinearity (VIF=1.27). There was no multicollinearity between the features that
could affect the reliability of the predictive models as no VIF value exceeded the threshold of 5. This implied
that each predictor variable, such as Atom Size Diff and Elect Diff, provided unique and valuable information
for the prediction without being overshadowed by correlations with other variables. The low VIF of 1.27

indicated that VEC was a stable predictor.

Though the current dataset was small, it had more features compared to other datasets of magnesium-based
alloys used in machine learning (He et al., 2023; Mi et al., 2022). The research used 29 features, including alloy
compositions and design parameters, to improve ML model predictions despite a small dataset (Chen et al.,
2021). Feature engineering technique proposed by Machaka (2021) was used to refactor the original dataset in

order to fit the learning algorithm.

2.3. Feature selection and reduction of dimensions

This study used five stages of experiments as shown in Figure 2. The first stage used all 29 features of the
dataset as the baseline feature set. The second stage created four smaller feature sets by applying Boruta
algorithm with the RF algorithm (Machaka, 2021). It also used recursive feature elimination based on RF
regression [31]. The third stage ordered the features by declined importance applying majority-vote ranking
technique for better outcomes. The fourth stage grouped the ordered-features 0 seven sets with the top 5, 7,

10, 13, 15, 20, 25 feature sub-sets as proposed by (Machaka, 2021). The fifth stage involved determining and

validating performance of different classifiers.
2.4. ML Classifiers and performance evaluation criteria

In literature, several ML classifiers have been used in prediction of alloy phases and mechanical properties

but only a few are applicable in small datasets which are associated with model over fitting or under fitting as
well as and too high or too low feature dimensions (Xu et al., 2023). Algorithms for small datasets such as

e
support vector machine (SVM), Gaussian process regression (GPR), gradient boosting decision tree (GBDT)

and XGBoost though robust, have problems of inherent complexity, potential overfitting, and computational

intensity. They falter with high dimensions and complex alloy data interactions. Conversely, RF, LDA, and kNN




are more apt, with RF excelling in modelling non-linearities and preventing overfitting (Xu et al., 2023). LDA
maximizes class separability in limited data and helps in dimensionality reduction (see Table 3). ANN was used
to model non-linear relationships and transfer leaming helped to leverage it to improve performance with the
small dataset. k-NN was used to classify features based on similarity measures and its problems of
dimensionality was addressed using principal component analysis (PCA). RF struggles with high-dimensional
data, but feature selection can mitigate this. LDA may oversimplify, yet regularization can enhance robustness.
Models were trained to identify high discriminant power features. A function was defined to calculate accuracy
and kappa index using a confusion matrix. Classifier performance was evaluated with three magnesium-based
alloys: g—SU—Al— lU—Cu—5—Mn—5—Zn—U,g—SU—Al—S—Cu—S—Mn—S—Zn—S, and Mg-91.2-A1-8.3-Cu-0-Mn-0.15-Zn-

0.35.

2.5, Simulation in MatCalc Software

Optimal values of density, yield strength, ultimate tensile strength and stiffness were obtained from the values
of percentages generated from the objective functions. MatCalc 6.04 used classical nucleation theory to estimate
alloy precipitates' development and granularity, based on the Svoboda—Fischer—Fratzl-Kozeschnik (SFFK)
model. Alloy composition (Mg, Al, Cu, Mn, Zn) was optimized using genetic algorithms and GRG
programming in Matlab R2023b for optimal properties.

ensity of Mg is given by py, = 1738 glem’, of Al is p,; = 2.7 glem’, Cu is p.,, = 8.96 g/iem’, Mn is

Puyn = 7.26 g/lem® and Zn is p,, = 7.133 g/cm’. Masses of the components were Mg, My, My, My, and

Mzp r magnesium, aluminium, copper, manganese and zinc. Density estimation was done using alloy formula

in Equation 5 and 6 based on density of components.

m
Palioy = o )
Where,
m=mass of alloy in grams;
v=volume of alloy, em?,
m=myg + My + Moy + My + Mgy (6)




But v is the sum of volumes of the components of the alloy. Meaning volume of magnesium, vy, = p—
Mg
aluminium, vy, = At COpper, Ve, = T manganese, UVpy, = T and Vgy = —Zn
Peu Mn Pzn
m
Palloy =
Upg + Var + Vey + Vun + Vin
= @)
B (mMQ 4 MLy Moy | My mZn)
Pmg Pat Pcu  Pmn  Pin
. m,
Percentages of the components by weight were pyg = 2 100%,pq = % * 100%, pcy = mrs“ * 100%,
_ Mpmn 0 _ Mzn 0 . i .
Pun ==, " * 100%, and pz, = o 100% for magnesium, aluminium, copper, manganese and zinc
100 ®)
Patloy = Pug  par , Peu ; Pun 4 Pzn
Pmg Pat Pcu  Pwmn  Pzn
. . Ys  UTS . E P .
The specific strength at yield, 2 and specific modulus became the objective functions for
Palloy Palloy Palloy
genetic algorithm implementation of multi-objective. The aim was to maximize each as shown in Equation 9.
Ys ! (rare1)
Dl = tau, (Pa“oy) :
oy (k)
uts k3 (m“3_1)
— &
T taus * (pﬂuo}") ez (9)

Maximize
pa“ay k. tau;
2

E 14\t 1
= (—) e % (Pa“oy)(muz 1)

Substituting for percentage components from Equation 8 into Equation 9, the objective functions were as

shown in Equation 10.




r (tauz_ 1)
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Ys I,y 100
- tauy | Py
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tau,
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Additional parameters were essential for the kinetic simulations of precipitation, which included
microstructural details and nucleation configurations. The kinetic simulation parameters encompassed thermal
treatments, specifying formation at 1300°C and normalization at 400°C for one hour, alongside grain size and
dislocation density considerations.

MatCale 6.04 was used to capture precipitation domains for Mg, Al, Cu, Mn, and Zn solutes with specific
trapping enthalpies. It identified precipitates like MgZn, Mg>Cu, and MnAl phases. The thermal protocols were
set to begin with casting at 1300°C, then cooling to 400°C at -0.75°C/s. Homogenization was at 400°C to reduce

grain sizes, followed by quenching to 25°C at -100°C/s aimed at enhancing strength and stabilize properties.

2.6. Mechanical Tests

Mg-89.43-A1-8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy obtained from optimization results was produced using
stir casting technique from source material AZ91D to which quantities of pure copper, zinc and manganese
powders were added. The alloy was prepared in inert argon gas atmosphere with melt heated to 1300°C for
about 20 minutes. Pouring was done in graphite coated pre-heated steel mould. The melt was lett to homogenize
at 400°C for one hour after which quenching was done in oil. The casting products were age-hardened for seven
days, machined into six test samples, and prepared for tensile tests per ASTM ES8. Tests in a Universal Testing
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values.




2.7.  Scanning Electron Microscopy and EDS analysis

The microstructure of the Mg-89.43-Al=8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy was characterized using
scanning electron microscope (SEM) (Tun et al., 2019). Sample preparation involved polishing, embedding,
mounting, dehydration, and cleaning. Samples were made electrically conductive for SEM analysis. Images
formed from backscattered and secondary electrons. 50mm diameter, 4mm thick samples were prepared using
nitric acid and ethanol, adhered to stubs with carbon tape, and vacuum-dried for 30 minutes.

3. Results and Discussions

3.1. Results of ML Prediction

The results revealed that homogenization temperatures and time were weakly correlated with the mechanical
properties and phases while electronegativity difference and VEC had significant positive correlation. Linear
discriminant analysis (LDA) results in Table 2 showed that synthesis methods significantly affected alloy
properties. The properties affected included yield strength, UTS, elastic modulus (E), VEC, atomic size
difference (Atom_Size Diff), and enthalpy of mixing (dHmix). Die casting (DC) had the highest probability
(0.78889), followed by solution treatment (ST 4) and solution treatment with age-hardening (ST 6) at 0.66667.
Induction melting (IM) and disintegrated melt deposition (DMD) had probabilities of 0.75556 and 0.82222,
respectively. Yield strength had negative coefficients in all discriminant functions, aiding class differentiation.
LDIl, LD2, LD3, and LD4 maximized separation between different phases or compositions. Each LD
represented a rection in feature space along which the data was projected to achieve maximum separation.
LDI showed the direction that maximized the separation between the most distinct classes, often capturing the
most variance. LD2 was orthogonal to LD1 and would maximize separation not captured by LDI1. This process

continued with each subsequent LD (LD3, LD4, LD3) being orthogonal to the previous ones and capturing the

maximum separation possible.

UTS correlated positively with LD2 and LD3. Young’s modulus showed mixed effects on LDI1 and LD2.
VEC significantly affected LD1 and LD3 but not LD2. Atom Size Diff greatly influenced LD, less so LD3
and LD4 (see Table 3). dHmix had minimal impact on class differentiation. LDA results showed phase

distinctions. Atomic size differences were omitted due to minor variations. Negative VEC coefficients in LDI
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and LD2 highlighted its influence, while positive impact was noted in LD 1. LDI accounted for most variance
of 42.97%, marking its significance in phase identification, unlike the minimal 3.71% in LD5. VEC was crucial,
whereas mechanical properties had major effects on phase separation. High dHmix in magnesium alloys
indicated a tendency to form distinct phases. The probability of classifving beta-Mg;;Al» in group 5 was 75.6%
and in Group 4 was 82.2%. Gamma-Mg>Si and Mg>Cu each had the highest probability of 40% of being
classified in Group 1. Similar results were found with magnesium alloys that were studied by Machaka (2021)

and Tun et al. (2019).

Random forest regression yielded near-perfect categorization with negligible QOB error, predicting alloy
synthesis pathways. ANN with a 6-10-5 model structure effectively predicted synthesis techniques, avoiding
overfitting. Results in Figure 3 showed that ANN outperformed other models with prediction accuracy of
08.70%, precision of 98.41%, recall of 98.12%, and an F1-score of 98.70% with the proposed framework. k-
NN algorithm followed closely, with slightly lower metrics across the board. The resuls that ANN had highest
accuracy corroborate findings of Machaka (2021). LDA showed exceptional precision at 99.55% but lagged
slightly in other areas. RF algorithm demonstrated consistent performance, though it had the lowest metrics
among the evaluated algorithms. Therefore, ANN algorithm demonstrated the most balanced performance,

suggesting its suitability.

3.2, Results of MatCale Simulation

Simulation results in MatCalc 6.04 showed a high number of fine precipitates with a uniform distribution
suggested consistent mechanical properties. Gamma-Mg;7Al;> had an extremely low mean phase fraction and
low precipitate number, implying it was residual or undeveloped. The Q-AlCuMg phase (Q ALCUMG P0)
had a higher mean phase fraction, indicating significant presence. Other phases included Mg,Si, MgZn, and

MgZn,. Thes results confirm findings of Bilbao et al. (2022) and Tayyebi et al. (2021) on intermetallic phases.

3.3. Results of SEM/EDS Analysis

At magnifications of X500 and X10,000, the microstructure in Figures 4 exposed the intricate details of the
grain boundary nucleation. It showcased the presence of Mg;;Al2, alpha Mg, and Q AlCuMg clusters. The

white regions denoted the Mg, ;Al;> phase. The grey regions represented the alpha-Mg matrix and the dark grey




areas correspond to the Q AlCuMg intermetallic clusters. The clarity in grain boundary nucleation of the same

phases in Figures 3 and 4 suggested a repeatable and reliable microstructural pattern.

Spectrum | and EDS in Figure 4 showed that magnesium was predominant, with traces of oxygen. Figure 5
confirmed no peaks were omitted, representing all elements present. The EDS analysis in Figure 6 showed
magnesium as the main element in Spectrum 3, with 70.96% weight and 72.91% atomic percentage. Aluminium
was 20.11% by weight and 18.62% atomic percentage. The MgZn phase (6.37wt%) indicated strengthening.
Presence of 10.83wt% MgO was due to surface oxidation, serving as a protective barrier against further

corrosion.

3.3. Results of Tensile Test

The predicted and experimental values for the mechanical properties of the alloy closely matched, with slight
variances in yield strength and Young’s Modulus. The UTS showed a broader experimental range, with
significant deviations at the lower end. Specific strength and modulus had more discrepancies, likely due to
alloy composition, microstructure, or testing conditions. Six samples were tested, all fracturing in the middle,
indicating material consistency. The load at yield was 16.17kN, with extensions at yield and fracture being

0.102439mm and 1.03mm, respectively, indicating low ductility. The predictions were reliable but could be

refined for better accuracy.

4. Conclusions

The ANN framework outperformed traditional predictors due to clean, well-labelled, and unbiased data.
Despite a small dataset, carefully chosen features led to good performance. SEM/EDS results showed that the
tested alloy was precipitation hardened with key hardening phases being Mgi7Als, traces of Mg,Si, MgZn,
MgZn>, MgCus and the hexagonal crystal structured intermetallic alloy strengthening Q-AlCuMg phase.
Presence of Mg;7Al;» and Mg»Si was correctly predicted through machine learning and simulation techniques.
Mgi7Al2, MgZn, MgZn, and MgCus were correctly predicted through thermodynamic and diffusion simulation.
The intermetallic LAVES C15 PO clusters and Mg ;A1) in the microstructure were the possible reason for low

ductility of the material.




The tested material had yield strength, UTS and Young’s Modulus that were close to the predicted values.

Predicted yield strength was 260.2MPa while experimental values were in the range of 258-266MPa. Predicted
Young’s Modulus was 146G Pa while experimental values fell in the range of 125.16-147.26MPa. Experimental
UTS was in the range of 432.8-512.96GPa slightly below the predicted 515.96GPa. High specific strength and

modulus were associated with strengthening phases of gamma- Mg,;Al;», MgZn, MgZn, and MgCu,.

Acknowledgment
This is to acknowledge Semi-Conductor Technologies Limited for their help with SEM/EDS scanning and
analysis. This is to thank Prof Geoffrey of Penn State University for his insights and advice on phase analysis,

prediction and data analysis with small datasets.

Declaration of Competing Interest

The authors do not have any competing interest to declare.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-

profit sectors.

Data Availability Statement

Data will be availed upon request.

Figures and Tables Legend

Table Caption

Table 1 Results of test for multicollinearity

Table 2 Group means and probabilities for LDA

Table 3 LDA analysis of properties with respect to synthesis route and phases
Figure Caption

Figure | Phase and mechanical properties classification framework for ML




Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Figure 7

Feature selection

Performance of the algorithms

Tested alloy showing grain boundaries at X500 and X 10,000
EDS Spectrum 1 and point of its collection

EDS Spectrum 2 and point of its collection

EDS Spectrum 3 and point of its collection

Figures and Tables

Table 1

Results of test for multicollinearity

Density_cale dHmix dSmix dGmux Atom_Size Diff Elect_Diff VEC
1.58563%-02 6.562312e-01 8.409286e-01  8.403489%-01 2.121941et00  2.090115e+00  1.274882e¢+00
Table 2

Group means and probabilities for LDA

Synthesis route Yield UTS E VEC Atom Size Diff dHmix Probabilities
ST 6 134.83 227.50 82.64 2.06 0.02 205.55 0.86667
ST 4 211.00 318.00 49.35 2.10 0.04 -1380.06 0.66667
Dc 291.23 490.46 141.31 236 0.07 465225 0.78889
M 92.29 260.86 72.93 2.06 0.03 265.06 0.75556
DMD 151.00 256.00 75.14 2.06 0.03 47224 0.82222
Table 3
LDA analysis of properties with respect to synthesis route and phases
With respect to synthesis route
Properties LDI LD2 LD3 LD4 LD5
Yield -0.0184 -0.0117 -0.0252 -0.0065 -0.0190
uUTs -0.0220 0.0030 0.0009 0.0312 0.0244




E -0.0141 -0.0112 -0.0161 -0.0173 0.0204
VEC -139.2761 -0.0336 109.955 -11.2031 53.0878

dHmix 0.3439 0.7202 -0.19009 -0.0224 -0.1408

With respect to phases

Property LDI LD2 LD3 LD4
Yield -0.1449 -0.0371 0.0782 0.0121
UTS 0.0058 0.0674 0.0332 -0.0284
E 0.0263 -0.0582 0.0028 -0.0454
VEC 35.992 -92.789 31.0342 3.6329
Atom_Size Diff 608.67 92.705  -69.6795  -148.965
dHmix -0.0041 -0.0039 0.0007 -0.0039
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Figure 1. Phase and mechanical properties classification framework for ML
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