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*% detected as AI
AI detection includes the possibility of false positives. Although some text in 
this submission is likely AI generated, scores below the 20% threshold are not 
surfaced because they have a higher likelihood of false positives.

Caution: Review required.

It is essential to understand the limitations of AI detection before making decisions 
about a student’s work. We encourage you to learn more about Turnitin’s AI detection 
capabilities before using the tool.

Disclaimer
Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify 
writing that is likely AI generated as AI generated and AI paraphrased or likely AI generated and AI paraphrased writing as only AI generated) so it should not be used as the sole basis for 
adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any 
academic misconduct has occurred.

Frequently Asked Questions

How should I interpret Turnitin's AI writing percentage and false positives?
The percentage shown in the AI writing report is the amount of qualifying text within the submission that Turnitin’s AI writing 
detection model determines was either likely AI-generated text from a large-language model or likely AI-generated text that was 
likely revised using an AI-paraphrase tool or word spinner.
 
False positives (incorrectly flagging human-written text as AI-generated) are a possibility in AI models.
 
AI detection scores under 20%, which we do not surface in new reports, have a higher likelihood of false positives. To reduce the 
likelihood of misinterpretation, no score or highlights are attributed and are indicated with an asterisk in the report (*%).
 
The AI writing percentage should not be the sole basis to determine whether misconduct has occurred. The reviewer/instructor 
should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted 
assignment in accordance with their school's policies.

What does 'qualifying text' mean?
Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a 
longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be likely AI-generated will be 
highlighted in cyan in the submission, and likely AI-generated and then likely AI-paraphrased will be highlighted purple.
 
Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the 
percentage shown.
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Prediction of phases and mechanical properties of magnesium-based high-

entropy alloys using machine learning 

Abstract 

Objectives: To predict phases and mechanical properties of Mg-Al-Cu-Mn-Zn alloys and to validate the results. 

Methods: In this study, 29 predictor features of the alloys were examined based on dataset drawn from relevant 

publications. The correlation of selected predictor features with mechanical properties of Mg-Al-Cu-Mn-Zn 

alloy were evaluated. New features specific to vehicle and aerospace applications. Feature selection schemes 

involving four machine learning (ML) classifiers that included artificial neural networks (ANN), linear 

discriminant analysis (LDA), random forest regression (RF) and k-nearest neighbours (k-NN) were adopted.  

Tensile test was carried out based on ASTM E8 standard. 

Results: Results of correlation of features showed that specific strengths and specific modulus of the alloys were 

strongly and positively correlated with composition of alloying elements but strongly and negatively correlated 

with composition of magnesium. The results also revealed that homogenization temperatures and time were 

weakly correlated with the mechanical properties and phases while electronegativity difference and VEC had 

significant positive correlation. ANN was the best performing classifier followed by k-NN, LDA, and lastly RF 

with prediction accuracy on test data of 98.7%, 98.1%, 97.9% and 97.8%, respectively.  The validity and 

applicability of the model was tested with three magnesium-based alloys: Mg-80-Al-10-Cu-5-Mn-5-Zn-0, Mg-

80-Al-5-Cu-5-Mn-5-Zn-5 and Mg-91.2-Al-8.3-Cu-0-Mn-0.15-Zn-0.35 and compared with findings in 

literature.  The model had higher prediction accuracies compared to previous ML models used on magnesium 

alloys. The model was then used to predict phases in the Mg-89.43-Al-8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy 

and it accurately predicted presence of Mg17Al12, Mg2Si, MgZn and MgZn2. Results of simulation in MatCalc 

version 6.04 also verified presence of the phases. The phases were further confirmed through SEM/EDS 

analysis. 

Conclusions: Dominant strengthening phases were Mg17Al12, Mg2Si, MgZn and MgZn2. Predicted yield 

strength, ultimate tensile strength and Young’s modulus were within the range of experimental results. 

 

Keywords: Magnesium alloys; Phase prediction; Machine learning; Predictor features; Mechanical properties 

Page 3 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967

Page 3 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967



2 

 

1. Introduction 

A new area of interest in material science is modelling and development of materials with enhanced 

mechanical properties (Stergiou et al., 2023). One such interest is to be able to predict mechanical properties 

from compositions and phases of modern light alloys with low densities and high strength-to-weight ratios 

applicable in aerospace and light-vehicle industries (Feng et al., 2016). The light metals include high entropy 

alloys (HEAs) of aluminium, magnesium, titanium, and beryllium (Behera et al., 2022; Feng et al., 2016). 

Traditional methods for developing materials, such as empirical trial and error, may be replaced by machine 

learning (ML) techniques and artificial intelligence that are capable of predicting alloy phases and mechanical 

properties (Feng et al., 2016). Research has shown that mechanical properties of HEAs can be improved through 

understanding of phases present in the alloy materials. Over the years, ML has been applied to various tasks of 

phase and mechanical property predictions that are computationally intensive with good results (Machaka, 

2021).  

ML algorithms provide fast and low-cost approach compared to traditional techniques of material design, 

phase prediction, analysis and modelling (Ford et al., 2021; Machaka, 2021). There is great research focus on 

prediction of phases and mechanical properties of high-entropy alloys of light metals (Qiao et al., 2021; Xiong 

et al., 2023). Exploration of phases and mechanical properties of magnesium alloys has risen over the years to 

because of lowest density of magnesium among other light metals and opportunity to reduce dead weight of 

vehicles, aircraft and spacecraft (Reza Kashyzadeh et al., 2023). There is a rising interest in Mg-Al-Cu-Mn-Zn 

that has seen improved mechanical properties based on varied percentages of the alloying elements and 

strengthening phases (Tun et al., 2019). However, existing ML-based research on high-entropy alloys lacks 

standardization, focuses generally, and fail to address the promising Mg-Al-Cu-Mn-Zn for lightweight, high-

strength applications.  

Previous research identified phases that were commonly associated with magnesium alloys. The phases 

included: Mg17Al12 in their gamma and beta states (Yamanoglu et al., 2021), laves phases such as Mg2Cu and 

MgCu2 (Fan et al., 2021), and MgZn2 and Mg2Zn11 (Bilbao et al., 2022). Other phases identified in literature 

and put in CALPHAD databases included  β_Al3Mg2, θ_Al2Cu, Al2Cu3_D, Al9Cu11_Z,AlCu_ζ, AlCu_G_D83, 

AlCuMg_V (Tayyebi et al., 2021). Previous research such as Pei et al. (2020), Li and Tsai (2020),  Li and Guo 

(2019) focused on crystal structures associated with alloy phases rather than actual phases. 
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Recent research efforts to predict phases and mechanical properties of magnesium alloys focused on 

understanding their phase transformations and mechanical properties under various conditions (Chen et al., 

2020, 2019a, 2019b). Chen et al. (2019a) studied constitutive behaviour of AZ80 magnesium alloy during hot 

deformation using a segmented model that outperformed Arrhenius and Johnson–Cook models. The research 

provided a comprehensive understanding of high-temperature deformation characteristics relating to alloy 

phases. Chen et al. (2019b) explored the effects of ultrasonic vibration on the casting process of AZ80 alloy and 

found significant differences in mechanical properties in relation to phase. Chen et al. (2020) showed that Mg-

Zn-Y alloy subjected to dual-frequency ultrasonic field result in improved mechanical strength, and corrosion 

resistance as a result of quasi-crystals. These studies collectively advance the prediction and optimization of 

phases and mechanical properties in magnesium alloys. These studies did not focus on specific strength and 

specific modulus and did not focus Mg-Al-Cu-Mn-Zn alloys. They also did not use ML algorithms.  

Various researchers focused specifically on strength and phases of magnesium alloys using ML prediction 

techniques. Liu et al. (2021) developed high-strength Mg cast alloys by iteratively optimizing the composition 

and heat treatment condition based on a surrogate model that evolved with new data. Pei et al. (2020) used a 

random forest algorithm to investigate the deformation mechanisms and ductility of Mg. However, the specific 

strength and modulus was not tested in both cases. Mandal et al. (2022) used ML algorithms to predict phases 

in high entropy alloys and found that decision tree and SVM had 93.84% accuracy for phase prediction, and 

84.32% for crystal structure classification, respectively. Most recent study by Dong et al. (2024) predicted 

ultimate tensile strength (UTS), yield strength (YS), elongation (EL), and hardness (HV) using Shapley additive 

explanations (SHAP) model and obtained accuracies of up to 93%. The study did not focus on specific strength 

and stiffness of the alloys for application in light vehicle and aerospace industries. It was also not specific to 

high entropy Mg-Al-Cu-Mn-Zn alloys.   

Though ML has been used to predict phases and strengths of magnesium alloys, it has not been applied to 

Mg-Al-Cu-Mn-Zn alloys. Research has not focused on predicting phases, specific strength, and modulus of 

these alloys, despite their potential. There is need to explore these properties using ML to understand the 

composition-phase-strength/modulus relationship, as no single study has addressed this comprehensively. In 

this paper, strategies employed in previous studies on ML-based strength and phase prediction were reviewed. 

The objectives of the research were to predict phases, specific strengths and specific modulus of Mg-Al-Cu-
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Mn-Zn alloys based on their compositions and heat treatments. A dataset of Mg-Al-Cu-Mn-Zn alloys with 

strength and metallurgy-specific features presented. Analysis was conducted based on a framework developed 

by Machaka (2021) and incorporated new features such as yield strength (YS), ultimate tensile strength (UTS), 

modulus of elasticity (E), specific strength at yield (spec_strength_YS), specific strength with ultimate tensile 

strength (spec_strength_UTS) and specific modulus (spec_mod).  

2. Materials and Methods 

2.1. Classification framework 

Framework for analysis used in this research was based on Figure 1. Computational framework was anchored 

on four platforms as suggested by (Machaka, 2021). Data collection, filtering, and wrangling yielded four crystal 

structures, 20 phases, and 29 features. Data was processed, segmented, and split into 75% training and 25% 

testing. Feature selection and validation followed, with model performance tested. 

2.2. Collection and selection of data 

Data from research on magnesium alloys (Al, Cu, Mn, Zn) was cleaned, checked for missing data, encoded, 

and transformed for machine learning. Feature selection used backward elimination, forward selection, and 

regularization to identify significant features. New features such as density (Density_calc), change of entropy 

of mixing (dSmix), atomic size difference (Atom_Size_Diff), electronegativity difference (Elect_Diff) and 

valence electron concentration (VEC) were created using feature engineering (Bhandari et al., 2020; Machaka, 

2021). dSmix was calculated based on Equation 1.  

𝑑𝑆𝑚𝑖𝑥 = −𝑅∑𝑥𝑖 ln 𝑥𝑖

𝑛

𝑖=1

                                                                          (1) 

Change in enthalpy of mix was calculated using Equation 2. 

𝑑𝐻𝑚𝑖𝑥 = 4 × ∑ 𝑑𝐻𝑖𝑗
𝑚𝑖𝑥  𝑥𝑖  𝑥𝑗

𝑛

𝑖=1,𝑖≠𝑗

                                                          (2) 

Atomic size difference was calculated using Equation 3 
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𝐴𝑡𝑜𝑚_𝑆𝑖𝑧𝑒_𝐷𝑖𝑓𝑓 = 100 × √∑𝑐𝑖 (1 −
𝑟𝑖
�̅�
)

𝑛

𝑖=1

                                                  (3) 

Average atomic radius was given by Equation 4. 

�̅� = ∑𝑥𝑖𝑟𝑖

𝑛

𝑖=1

                                                                                               (4)     

Valence electron concentration (VEC) was calculated based on Equation 5. 

𝑉𝐸𝐶 =∑𝐶𝑖(𝑉𝐸𝐶)𝑖

𝑛

𝑖=1

                                                                                   (5) 

Electronegativity difference, 𝜒, was calculated based on Equation 6. 

𝜒 =∑𝐶𝑖 . (𝜒𝑖 − �̅�)
2

𝑛

𝑖=1

                                                                                   (6) 

Where, in Equations 1 – 4 

R= Ideal gas constant; 

𝑥𝑖 and 𝑥𝑗= Atomic percentages of the 𝑖𝑡ℎ and 𝑗𝑡ℎ elements, respectively; 

𝑟𝑖= Radius of the 𝑖𝑡ℎ element;  

�̅� = Average atomic radius; 

𝜒𝑖= Pauling electronegativity of the ith component; 

�̅�= Mean electronegativity for alloy system; 

𝐶𝑖= atomic percentage; and 

(𝑉𝐸𝐶)𝑖= Valence electron concentration of the 𝑖𝑡ℎ element 

Iterative testing evaluated the impact of engineered features on model performance, leading to optimized 

results. The final data had 60 observations and 29 variables. Multicollinearity tests showed that no Variance 
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Inflation Factor (VIF) values exceeded 5 (see Table 1). There was moderate correlation for Atom_Size_Diff and 

Elect_Diff. VEC had low multicollinearity (VIF=1.27). There was no multicollinearity between the features that 

could affect the reliability of the predictive models as no VIF value exceeded the threshold of 5. This implied 

that each predictor variable, such as Atom_Size_Diff and Elect_Diff, provided unique and valuable information 

for the prediction without being overshadowed by correlations with other variables. The low VIF of 1.27 

indicated that VEC was a stable predictor. 

Though the current dataset was small, it had more features compared to other datasets of magnesium-based 

alloys used in machine learning (He et al., 2023; Mi et al., 2022). The research used 29 features, including alloy 

compositions and design parameters, to improve ML model predictions despite a small dataset (Chen et al., 

2021). Feature engineering technique proposed by Machaka (2021) was used to refactor the original dataset in 

order to fit the learning algorithm.  

2.3. Feature selection and reduction of dimensions 

This study used five stages of experiments as shown in Figure 2. The first stage used all 29 features of the 

dataset as the baseline feature set. The second stage created four smaller feature sets by applying Boruta 

algorithm with the RF algorithm (Machaka, 2021). It also used recursive feature elimination based on RF 

regression [31]. The third stage ordered the features by declined importance applying majority-vote ranking 

technique for better outcomes. The fourth stage grouped the ordered-features into seven sets with the top 5, 7, 

10, 13, 15, 20, 25 feature sub-sets as proposed by (Machaka, 2021). The fifth stage involved determining and 

validating performance of different classifiers.

2.4. ML Classifiers and performance evaluation criteria 

In literature, several ML classifiers have been used in prediction of alloy phases and mechanical properties 

but only a few are applicable in small datasets which are associated with model over fitting or under fitting as 

well as and too high or too low feature dimensions (Xu et al., 2023). Algorithms for small datasets such as 

support vector machine (SVM), Gaussian process regression (GPR), gradient boosting decision tree (GBDT) 

and XGBoost though robust, have problems of inherent complexity, potential overfitting, and computational 

intensity. They falter with high dimensions and complex alloy data interactions. Conversely, RF, LDA, and kNN 
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are more apt, with RF excelling in modelling non-linearities and preventing overfitting (Xu et al., 2023). LDA 

maximizes class separability in limited data and helps in dimensionality reduction (see Table 3). ANN was used 

to model non-linear relationships and transfer learning helped to leverage it to improve performance with the 

small dataset. k-NN was used to classify features based on similarity measures and its problems of 

dimensionality was addressed using principal component analysis (PCA). RF struggles with high-dimensional 

data, but feature selection can mitigate this. LDA may oversimplify, yet regularization can enhance robustness. 

Models were trained to identify high discriminant power features. A function was defined to calculate accuracy 

and kappa index using a confusion matrix. Classifier performance was evaluated with three magnesium-based 

alloys: Mg-80-Al-10-Cu-5-Mn-5-Zn-0, Mg-80-Al-5-Cu-5-Mn-5-Zn-5, and Mg-91.2-Al-8.3-Cu-0-Mn-0.15-Zn-

0.35. 

2.5. Simulation in MatCalc Software 

Optimal values of density, yield strength, ultimate tensile strength and stiffness were obtained from the values 

of percentages generated from the objective functions. MatCalc 6.04 used classical nucleation theory to estimate 

alloy precipitates' development and granularity, based on the Svoboda–Fischer–Fratzl–Kozeschnik (SFFK) 

model. Alloy composition (Mg, Al, Cu, Mn, Zn) was optimized using genetic algorithms and GRG 

programming in Matlab R2023b for optimal properties. 

Density of Mg is given by 𝜌𝑀𝑔 = 1.738 g/cm3, of Al is 𝜌𝐴𝑙 = 2.7 g/cm3, Cu is 𝜌𝐶𝑢 = 8.96 g/cm3, Mn is 

𝜌𝑀𝑛 = 7.26 g/cm3 and Zn is 𝜌𝑍𝑛 = 7.133 g/cm3. Masses of the components were 𝑚𝑀𝑔, 𝑚𝐴𝑙, 𝑚𝐶𝑢, 𝑚𝑀𝑛 and 

𝑚𝑍𝑛 for magnesium, aluminium, copper, manganese and zinc. Density estimation was done using alloy formula 

in Equation 5 and 6 based on density of components. 

𝜌𝑎𝑙𝑙𝑜𝑦 =
𝑚

𝑣
                                                                                          (5) 

Where, 

𝑚=mass of alloy in grams; 

𝑣=volume of alloy, cm3, 

 𝑚 = 𝑚𝑀𝑔 + 𝑚𝐴𝑙 +𝑚𝐶𝑢 +𝑚𝑀𝑛 +𝑚𝑍𝑛                                        (6)  
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But 𝑣 is the sum of volumes of the components of the alloy. Meaning volume of magnesium, 𝑣𝑀𝑔 =
𝑚𝑀𝑔

𝜌𝑀𝑔
, 

aluminium,  𝑣𝐴𝑙 =
𝑚𝐴𝑙

𝜌𝐴𝑙
, copper, 𝑣𝐶𝑢 =

𝑚𝐶𝑢

𝜌𝐶𝑢
, manganese, 𝑣𝑀𝑛 =

𝑚𝑀𝑛

𝜌𝑀𝑛
 and 𝑣𝑍𝑛 =

𝑚𝑍𝑛

𝜌𝑍𝑛
. 

𝜌𝑎𝑙𝑙𝑜𝑦 =
𝑚

𝑣𝑀𝑔 + 𝑣𝐴𝑙 + 𝑣𝐶𝑢 + 𝑣𝑀𝑛 + 𝑣𝑍𝑛
 

=
𝑚

(
𝑚𝑀𝑔

𝜌𝑀𝑔
+
𝑚𝐴𝑙
𝜌𝐴𝑙

+
𝑚𝐶𝑢
𝜌𝐶𝑢

+
𝑚𝑀𝑛
𝜌𝑀𝑛

+
𝑚𝑍𝑛
𝜌𝑍𝑛

)
                                  (7)  

Percentages of the components by weight were 𝑝𝑀𝑔 =
𝑚𝑀𝑔

𝑚
∗ 100%, 𝑝𝐴𝑙 =

𝑚𝐴𝑙

𝑚
∗ 100%, 𝑝𝐶𝑢 =

𝑚𝐶𝑢

𝑚
∗ 100%, 

𝑝𝑀𝑛 =
𝑚𝑀𝑛

𝑚
∗ 100%, and 𝑝𝑍𝑛 =

𝑚𝑍𝑛

𝑚
∗ 100% for magnesium, aluminium, copper, manganese and zinc 

𝜌𝑎𝑙𝑙𝑜𝑦 =
100

𝑝𝑀𝑔
𝜌𝑀𝑔

+
𝑝𝐴𝑙
𝜌𝐴𝑙

+
𝑝𝐶𝑢
𝜌𝐶𝑢

+
𝑝𝑀𝑛
𝜌𝑀𝑛

+
𝑝𝑍𝑛
𝜌𝑍𝑛

                                           (8) 

The specific strength at yield,  
𝑌𝑆

𝜌𝑎𝑙𝑙𝑜𝑦
, 
𝑈𝑇𝑆

𝜌𝑎𝑙𝑙𝑜𝑦
 and specific modulus 

𝐸

𝜌𝑎𝑙𝑙𝑜𝑦
became the objective functions for 

genetic algorithm implementation of multi-objective. The aim was to maximize each as shown in Equation 9. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{
 
 
 
 

 
 
 
 

𝑌𝑆

𝜌𝑎𝑙𝑙𝑜𝑦
=

𝑘1

(𝑘2)
𝑡𝑎𝑢1
𝑡𝑎𝑢2

(𝜌𝑎𝑙𝑙𝑜𝑦)
(
𝑡𝑎𝑢2
𝑡𝑎𝑢1

−1)
 

𝑈𝑇𝑆

𝜌𝑎𝑙𝑙𝑜𝑦
=

𝑘3

𝑘2

𝑡𝑎𝑢3
𝑡𝑎𝑢2

∗ (𝜌𝑎𝑙𝑙𝑜𝑦)
(
𝑡𝑎𝑢3
𝑡𝑎𝑢2

−1)
    

𝐸

𝜌𝑎𝑙𝑙𝑜𝑦
= (

1

𝑘2
)

1
𝑡𝑎𝑢2

∗  (𝜌𝑎𝑙𝑙𝑜𝑦)
(
1

𝑡𝑎𝑢2
−1)
 

                                           (9) 

Substituting for percentage components from Equation 8 into Equation 9, the objective functions were as 

shown in Equation 10.  
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑌𝑆

𝜌𝑎𝑙𝑙𝑜𝑦
=

𝑘1

(𝑘2)
𝑡𝑎𝑢1
𝑡𝑎𝑢2

(
100

𝑝𝑀𝑔
𝜌𝑀𝑔

+
𝑝𝐴𝑙
𝜌𝐴𝑙

+
𝑝𝐶𝑢
𝜌𝐶𝑢

+
𝑝𝑀𝑛
𝜌𝑀𝑛

+
𝑝𝑍𝑛
𝜌𝑍𝑛

)

(
𝑡𝑎𝑢2
𝑡𝑎𝑢1

−1)

 

𝑈𝑇𝑆

𝜌𝑎𝑙𝑙𝑜𝑦
=

𝑘3

𝑘2

𝑡𝑎𝑢3
𝑡𝑎𝑢2

∗ (
100

𝑝𝑀𝑔
𝜌𝑀𝑔

+
𝑝𝐴𝑙
𝜌𝐴𝑙

+
𝑝𝐶𝑢
𝜌𝐶𝑢

+
𝑝𝑀𝑛
𝜌𝑀𝑛

+
𝑝𝑍𝑛
𝜌𝑍𝑛

)

(
𝑡𝑎𝑢3
𝑡𝑎𝑢2

−1)

    

𝐸

𝜌𝑎𝑙𝑙𝑜𝑦
= (

1

𝑘2
)

1
𝑡𝑎𝑢2

∗  (
100

𝑝𝑀𝑔
𝜌𝑀𝑔

+
𝑝𝐴𝑙
𝜌𝐴𝑙

+
𝑝𝐶𝑢
𝜌𝐶𝑢

+
𝑝𝑀𝑛
𝜌𝑀𝑛

+
𝑝
𝑍𝑛
𝜌𝑍𝑛

)

(
1

𝑡𝑎𝑢2
−1)

 

       (10) 

Additional parameters were essential for the kinetic simulations of precipitation, which included 

microstructural details and nucleation configurations. The kinetic simulation parameters encompassed thermal 

treatments, specifying formation at 1300°C and normalization at 400°C for one hour, alongside grain size and 

dislocation density considerations. 

MatCalc 6.04 was used to capture precipitation domains for Mg, Al, Cu, Mn, and Zn solutes with specific 

trapping enthalpies. It identified precipitates like MgZn, Mg2Cu, and MnAl phases. The thermal protocols were 

set to begin with casting at 1300°C, then cooling to 400°C at -0.75°C/s. Homogenization was at 400°C to reduce 

grain sizes, followed by quenching to 25°C at -100°C/s aimed at enhancing strength and stabilize properties. 

2.6. Mechanical Tests 

Mg-89.43-Al-8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy obtained from optimization results was produced using 

stir casting technique from source material AZ91D to which quantities of pure copper, zinc and manganese 

powders were added. The alloy was prepared in inert argon gas atmosphere with melt heated to 13000C for 

about 20 minutes. Pouring was done in graphite coated pre-heated steel mould. The melt was left to homogenize 

at 4000C for one hour after which quenching was done in oil. The casting products were age-hardened for seven 

days, machined into six test samples, and prepared for tensile tests per ASTM E8. Tests in a Universal Testing 

Machine determined yield strength, ultimate tensile strength, and Young’s Modulus, compared to predicted 

values. 
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2.7. Scanning Electron Microscopy and EDS analysis 

The microstructure of the Mg-89.43-Al=8.16-Cu-0.34-Mn-0.25-Zn-1.81 alloy was characterized using 

scanning electron microscope (SEM) (Tun et al., 2019). Sample preparation involved polishing, embedding, 

mounting, dehydration, and cleaning. Samples were made electrically conductive for SEM analysis. Images 

formed from backscattered and secondary electrons. 50mm diameter, 4mm thick samples were prepared using 

nitric acid and ethanol, adhered to stubs with carbon tape, and vacuum-dried for 30 minutes.  

3. Results and Discussions 

3.1. Results of ML Prediction 

The results revealed that homogenization temperatures and time were weakly correlated with the mechanical 

properties and phases while electronegativity difference and VEC had significant positive correlation. Linear 

discriminant analysis (LDA) results in Table 2 showed that synthesis methods significantly affected alloy 

properties. The properties affected included yield strength, UTS, elastic modulus (E), VEC, atomic size 

difference (Atom_Size_Diff), and enthalpy of mixing (dHmix). Die casting (DC) had the highest probability 

(0.78889), followed by solution treatment (ST_4) and solution treatment with age-hardening (ST_6) at 0.66667. 

Induction melting (IM) and disintegrated melt deposition (DMD) had probabilities of 0.75556 and 0.82222, 

respectively. Yield strength had negative coefficients in all discriminant functions, aiding class differentiation. 

LD1, LD2, LD3, and LD4 maximized separation between different phases or compositions. Each LD 

represented a direction in feature space along which the data was projected to achieve maximum separation. 

LD1 showed the direction that maximized the separation between the most distinct classes, often capturing the 

most variance. LD2 was orthogonal to LD1 and would maximize separation not captured by LD1. This process 

continued with each subsequent LD (LD3, LD4, LD5) being orthogonal to the previous ones and capturing the 

maximum separation possible. 

UTS correlated positively with LD2 and LD3. Young’s modulus showed mixed effects on LD1 and LD2. 

VEC significantly affected LD1 and LD3 but not LD2. Atom_Size_Diff greatly influenced LD1, less so LD3 

and LD4 (see Table 3). dHmix had minimal impact on class differentiation. LDA results showed phase 

distinctions. Atomic size differences were omitted due to minor variations. Negative VEC coefficients in LD1 
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and LD2 highlighted its influence, while positive impact was noted in LD1. LD1 accounted for most variance 

of 42.97%, marking its significance in phase identification, unlike the minimal 3.71% in LD5. VEC was crucial, 

whereas mechanical properties had major effects on phase separation. High dHmix in magnesium alloys 

indicated a tendency to form distinct phases. The probability of classifying beta-Mg17Al12 in group 5 was 75.6% 

and in Group 4 was 82.2%. Gamma-Mg2Si and Mg2Cu each had the highest probability of 40% of being 

classified in Group 1. Similar results were found with magnesium alloys that were studied by Machaka (2021) 

and Tun et al. (2019). 

Random forest regression yielded near-perfect categorization with negligible OOB error, predicting alloy 

synthesis pathways. ANN with a 6-10-5 model structure effectively predicted synthesis techniques, avoiding 

overfitting. Results in Figure 3 showed that ANN outperformed other models with prediction accuracy of 

98.70%, precision of 98.41%, recall of 98.12%, and an F1-score of 98.70% with the proposed framework. k-

NN algorithm followed closely, with slightly lower metrics across the board. The resuls that ANN had highest 

accuracy corroborate findings of Machaka (2021). LDA showed exceptional precision at 99.55% but lagged 

slightly in other areas. RF algorithm demonstrated consistent performance, though it had the lowest metrics 

among the evaluated algorithms. Therefore, ANN algorithm demonstrated the most balanced performance, 

suggesting its suitability. 

3.2. Results of MatCalc Simulation 

Simulation results in MatCalc 6.04 showed a high number of fine precipitates with a uniform distribution 

suggested consistent mechanical properties. Gamma-Mg17Al12 had an extremely low mean phase fraction and 

low precipitate number, implying it was residual or undeveloped. The Q-AlCuMg phase (Q_ALCUMG_P0) 

had a higher mean phase fraction, indicating significant presence. Other phases included Mg2Si, MgZn, and 

MgZn2. Thes results confirm findings of Bilbao et al. (2022) and Tayyebi et al. (2021) on intermetallic phases. 

3.3. Results of SEM/EDS Analysis 

At magnifications of X500 and X10,000, the microstructure in Figures 4 exposed the intricate details of the 

grain boundary nucleation. It showcased the presence of Mg17Al12, alpha_Mg, and Q_AlCuMg clusters. The 

white regions denoted the Mg17Al12 phase. The grey regions represented the alpha-Mg matrix and the dark grey 
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areas correspond to the Q_AlCuMg intermetallic clusters. The clarity in grain boundary nucleation of the same 

phases in Figures 3 and 4 suggested a repeatable and reliable microstructural pattern.  

Spectrum 1 and EDS in Figure 4 showed that magnesium was predominant, with traces of oxygen. Figure 5 

confirmed no peaks were omitted, representing all elements present. The EDS analysis in Figure 6 showed 

magnesium as the main element in Spectrum 3, with 70.96% weight and 72.91% atomic percentage. Aluminium 

was 20.11% by weight and 18.62% atomic percentage. The MgZn phase (6.37wt%) indicated strengthening. 

Presence of 10.83wt% MgO was due to surface oxidation, serving as a protective barrier against further 

corrosion. 

3.3. Results of Tensile Test  

The predicted and experimental values for the mechanical properties of the alloy closely matched, with slight 

variances in yield strength and Young’s Modulus. The UTS showed a broader experimental range, with 

significant deviations at the lower end. Specific strength and modulus had more discrepancies, likely due to 

alloy composition, microstructure, or testing conditions. Six samples were tested, all fracturing in the middle, 

indicating material consistency. The load at yield was 16.17kN, with extensions at yield and fracture being 

0.102439mm and 1.03mm, respectively, indicating low ductility. The predictions were reliable but could be 

refined for better accuracy. 

4. Conclusions 

The ANN framework outperformed traditional predictors due to clean, well-labelled, and unbiased data. 

Despite a small dataset, carefully chosen features led to good performance. SEM/EDS results showed that the 

tested alloy was precipitation hardened with key hardening phases being Mg17Al12, traces of Mg2Si, MgZn, 

MgZn2, MgCu2 and the hexagonal crystal structured intermetallic alloy strengthening Q-AlCuMg phase. 

Presence of Mg17Al12 and Mg2Si was correctly predicted through machine learning and simulation techniques. 

Mg17Al12, MgZn, MgZn2 and MgCu2 were correctly predicted through thermodynamic and diffusion simulation. 

The intermetallic LAVES_C15_P0 clusters and Mg17Al12 in the microstructure were the possible reason for low 

ductility of the material.  
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The tested material had yield strength, UTS and Young’s Modulus that were close to the predicted values.  

Predicted yield strength was 260.2MPa while experimental values were in the range of 258-266MPa. Predicted 

Young’s Modulus was 146GPa while experimental values fell in the range of 125.16-147.26MPa. Experimental 

UTS was in the range of 432.8-512.96GPa slightly below the predicted 515.96GPa. High specific strength and 

modulus were associated with strengthening phases of gamma- Mg17Al12, MgZn, MgZn2 and MgCu2. 
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Figure 1 Phase and mechanical properties classification framework for ML 
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Figure 2 Feature selection 

Figure 3 Performance of the algorithms 

Figure 4 Tested alloy showing grain boundaries at X500 and X10,000 

Figure 5 EDS Spectrum 1 and point of its collection 

Figure 6 EDS Spectrum 2 and point of its collection 

Figure 7 EDS Spectrum 3 and point of its collection 

Figures and Tables 

Table 1 

Results of test for multicollinearity 

Density_calc dHmix dSmix dGmix Atom_Size_Diff Elect_Diff VEC 

1.585639e-02 6.562312e-01 8.409286e-01 8.403489e-01 2.121941e+00 2.090115e+00 1.274882e+00 

Table 2 

Group means and probabilities for LDA 

Synthesis route Yield UTS E VEC Atom_Size_Diff dHmix Probabilities 

ST_6 134.83 227.50 82.64 2.06 0.02 -205.55 0.86667 

ST_4 211.00 318.00 49.35 2.10 0.04 -1380.06 0.66667 

DC 291.23 490.46 141.31 2.36 0.07 -4652.25 0.78889 

IM 92.29 260.86 72.93 2.06 0.03 -265.06 0.75556 

DMD 151.00 256.00 75.14 2.06 0.03 -472.24 0.82222 

 

Table 3 

LDA analysis of properties with respect to synthesis route and phases 

With respect to synthesis route 

Properties LD1 LD2 LD3 LD4 LD5 

Yield -0.0184  -0.0117 -0.0252   -0.0065 -0.0190 

UTS -0.0220   0.0030 0.0009  0.0312 0.0244 
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E -0.0141  -0.0112 -0.0161   -0.0173 0.0204 

VEC -139.2761  -0.0336 109.955 -11.2031 53.0878 

dHmix 0.3439  0.7202 -0.19009   -0.0224 -0.1408 

With respect to phases 

Property LD1 LD2 LD3 LD4  

Yield -0.1449 -0.0371 -0.0782 -0.0121  

UTS 0.0058 0.0674 0.0332 -0.0284  

E 0.0263 -0.0582 0.0028 -0.0454  

VEC 35.992 -92.789 31.0342 3.6329  

Atom_Size_Diff 608.67 92.705 -69.6795 -148.965  

dHmix -0.0041 -0.0039 0.0007 -0.0039  

 

Figure 1. Phase and mechanical properties classification framework for ML 
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Figure 2 Feature selection 

 

 

Figure 3 Performance of the algorithms 

Page 18 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967

Page 18 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967



17 

 

 

Figure 4 Tested alloy showing grain boundaries at X500 and X10,000 

 

Figure 5 EDS Spectrum 1 and point of its collection 

 

Figure 6 EDS spectrum 2 and point of its collection 
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Figure 7 EDS Spectrum 3 and point of its collection 

References 

Behera, A., Sahoo, A.K., Mohapatra, S.S., 2022. Nickel–titanium smart hybrid materials for automotive 

industry, in: Thomas, S., Behera, Ajit, Nguyen, T.A. (Eds.), Nickel-Titanium Smart Hybrid Materials, 

Micro and Nano Technologies. Elsevier, pp. 271–295. https://doi.org/10.1016/B978-0-323-91173-

3.00015-8 

Bhandari, U., Zhang, C., Yang, S., 2020. Mechanical and Thermal Properties of Low-Density Al20+xCr20-

xMo20-yTi20V20+y Alloys. Crystals 10, 278. https://doi.org/10.3390/cryst10040278 

Bilbao, Y., Trujillo, J.J., Vicario, I., Arruebarrena, G., Hurtado, I., Guraya, T., 2022. X-ray Thermo-Diffraction 

Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6. Materials 15, 5056. 

https://doi.org/10.3390/ma15145056 

Chen, C., Liu, D., Deng, S., Zhong, L., Chan, S.H.Y., Li, S., Hng, H.H., 2021. Accurate machine learning models 

based on small dataset of energetic materials through spatial matrix featurization methods. J. Energy 

Chem., In Celebration of the 100th anniversary of Chemisry at Nankai University 63, 364–375. 

https://doi.org/10.1016/j.jechem.2021.08.031 

Chen, X., Liao, Q., Niu, Y., Jia, W., Le, Q., Cheng, C., Yu, F., Cui, J., 2019a. A constitutive relation of AZ80 

magnesium alloy during hot deformation based on Arrhenius and Johnson–Cook model. J. Mater. Res. 

Technol. 8, 1859–1869. https://doi.org/10.1016/j.jmrt.2019.01.003 

Chen, X., Liao, Q., Niu, Y., Jia, Y., Le, Q., Ning, S., Hu, C., Hu, K., Yu, F., 2019b. Comparison study of hot 

deformation behavior and processing map of AZ80 magnesium alloy casted with and without ultrasonic 

vibration. J. Alloys Compd. 803, 585–596. https://doi.org/10.1016/j.jallcom.2019.06.242 

Chen, X., Ning, S., Wang, A., Le, Q., Liao, Q., Jia, Y., Cheng, C., Li, X., Atrens, A., Yu, F., 2020. Microstructure, 

mechanical properties and corrosion behavior of quasicrystal-reinforced Mg-Zn-Y alloy subjected to 

dual-frequency ultrasonic field. Corros. Sci. 163, 108289. https://doi.org/10.1016/j.corsci.2019.108289 

Dong, S., Wang, Y., Li, J., Li, Y., Wang, L., Zhang, J., 2024. Machine Learning Aided Prediction and Design for 

the Mechanical Properties of Magnesium Alloys. Met. Mater. Int. 30, 593–606. 

https://doi.org/10.1007/s12540-023-01531-6 

Fan, Z., Baranovas, G., A. Yu, H., Szczęsny, R., Liu, W.-R., H. Gregory, D., 2021. Ultra-rapid synthesis of the 

MgCu 2 and Mg 2 Cu Laves phases and their facile conversion to nanostructured copper with 

controllable porosity; an energy-efficient, reversible process. Green Chem. 23, 6936–6944. 

https://doi.org/10.1039/D1GC01710A 

Feng, R., Gao, M.C., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J.A., Zhang, Y., Liaw, P.K., 2016. Design 

of Light-Weight High-Entropy Alloys. Entropy 18, 333. https://doi.org/10.3390/e18090333 

Ford, E., Maneparambil, K., Rajan, S., Neithalath, N., 2021. Machine learning-based accelerated property 

prediction of two-phase materials using microstructural descriptors and finite element analysis. 

Comput. Mater. Sci. 191, 110328. https://doi.org/10.1016/j.commatsci.2021.110328 

Page 20 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967

Page 20 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967



19 

 

He, X., Liu, J., Yang, C., Jiang, G., 2023. Predicting thermodynamic stability of magnesium alloys in machine 

learning. Comput. Mater. Sci. 223, 112111. 

Li, J.-H., Tsai, M.-H., 2020. Theories for predicting simple solid solution high-entropy alloys: Classification, 

accuracy, and important factors impacting accuracy. Scr. Mater. 188, 80–87. 

https://doi.org/10.1016/j.scriptamat.2020.06.064 

Li, Y., Guo, W., 2019. Machine-learning model for predicting phase formations of high-entropy alloys. Phys. 

Rev. Mater. 3, 095005. https://doi.org/10.1103/PhysRevMaterials.3.095005 

Liu, Y., Wang, L., Zhang, H., Zhu, G., Wang, J., Zhang, Y., Zeng, X., 2021. Accelerated development of high-

strength magnesium alloys by machine learning. Metall. Mater. Trans. A 52, 943–954. 

Machaka, R., 2021. Machine learning-based prediction of phases in high-entropy alloys. Comput. Mater. Sci. 

188, 110244. https://doi.org/10.1016/j.commatsci.2020.110244 

Mandal, P., Choudhury, A., Basu, M.A., Ghosh, M., 2022. Phase Prediction in High Entropy Alloys by Various 

Machine Learning Modules Using Thermodynamic and Configurational Parameters. Met. Mater. Int. 

Mi, X., Tian, L., Tang, A., Kang, J., Peng, P., She, J., Wang, H., Chen, X., Pan, F., 2022. A reverse design model 

for high-performance and low-cost magnesium alloys by machine learning. Comput. Mater. Sci. 201, 

110881. 

Pei, Z., Yin, J., Hawk, J.A., Alman, D.E., Gao, M.C., 2020. Machine-learning informed prediction of high-

entropy solid solution formation: Beyond the Hume-Rothery rules. Npj Comput. Mater. 6, 1–8. 

https://doi.org/10.1038/s41524-020-0308-7 

Qiao, L., Liu, Y., Zhu, J., 2021. A focused review on machine learning aided high-throughput methods in high 

entropy alloy. J. Alloys Compd. 877, 160295. 

Reza Kashyzadeh, K., Amiri, N., Maleki, E., Unal, O., 2023. A Critical Review on Improving the Fatigue Life 

and Corrosion Properties of Magnesium Alloys via the Technique of Adding Different Elements. J. Mar. 

Sci. Eng. 11, 527. 

Stergiou, K., Ntakolia, C., Varytis, P., Koumoulos, E., Karlsson, P., Moustakidis, S., 2023. Enhancing property 

prediction and process optimization in building materials through machine learning: A review. Comput. 

Mater. Sci. 220, 112031. https://doi.org/10.1016/j.commatsci.2023.112031 

Tayyebi, M., Adhami, M., Karimi, A., Davood Rahmatabadi, Alizadeh, M., Hashemi, R., 2021. Effects of strain 

accumulation and annealing on interfacial microstructure and grain structure (Mg and Al3Mg2 layers) 

of Al/Cu/Mg multilayered composite fabricated by ARB process. J. Mater. Res. Technol. 14, 392–406. 

https://doi.org/10.1016/j.jmrt.2021.06.032 

Tun, K.S., Kumar, A., Gupta, M., 2019. Introducing a High Performance Mg-Based Multicomponent Alloy as 

an Alternative to Al-Alloys. Front. Mater. 6. 

Xiong, W., Cheng, L., Zhan, S., Guo, A.X., Liaw, P.K., Cao, S.C., 2023. Recent Advances on Lightweight High-

Entropy Alloys: Process, Design, and Applications. High Entropy Alloys Mater. 1–20. 

Xu, P., Ji, X., Li, M., Lu, W., 2023. Small data machine learning in materials science. Npj Comput. Mater. 9, 1–

15. https://doi.org/10.1038/s41524-023-01000-z 

Yamanoglu, R., Bahador, A., Kondoh, K., Gumus, S., Gokce, S., Muratal, O., 2021. New Magnesium Composite 

with Mg 17 Al 12 Intermetallic Particles. Powder Metall. Met. Ceram. 60, 216–224. 

 

  

 

 

Page 21 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967

Page 21 of 21 - AI Writing Submission Submission ID trn:oid:::1:2997978967


