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Abtract

Climate change; the most concerning issue in the globe, is now co&qidered a major cause of heat
stress which is deteriorating agricultural crops. A pot experiment was performed to examine the
ameliorative role of melwin foliar spray on growth attributes, physiological attributes and yield
and quality attributes of heat-tolerant and heat-sensitive genotypes of tomatoes under heat stress
mediated by field enviroaent. The results demonstrated that all the growth parameters of all
tomato genotypes such as plant fresh biomass, plant dry biomass, stem girth, leaf area, the number
of viable seeds, protein contents as well as physiological attributes including photosynthetic rate,
stomatal contents, transpiration rate, chlorophyll contents, water use efficiency (WUE) and
synthesis of osmoprotectants including proline and glycine betain (GB) were increased
significantly upon foliar application of melatonin @ 25 M under heat stress except electrolyte
leakage (EL), leaf temperature and hydrogen peroxide contents (H202) which were decreased in
all cultivars of tomato either in heat tolerant or in hat sensitive; as compared to their respective
control wl'yh remained untreated. Similarly, acivity of enzymatic and non-enzymatic antioxidants
including nitric oxide synthase (NOS), glutathione reductase (GR), nitrate reductase (NR) and
glutathione S transferase (GST) were also improved upon melatonin foliar application under heat
stress. However, the maximum improvement in all measured attributes was observed in all types

of tomato genotypes grown under both control and 25 M melatonine foliar spray treatment. All
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these findings proved that melatonin spray is capable to address the deteriorative impact of high

temperature on tomato gl’OWth.

Keywords: Heat tolerance; Heat sensitivity; High temperature; Plant biomass; Photosynthesis

rate; Transpiration rate.
1. Introduction

A change in temperature; even more than 1 °C , is able to produce heat stress. In specific
climatic areas or zones, heat stress is considered as a high degree of temperature. It occurs at day
or night and depends upon the climatic conditions, that raise the temperature to its optimum level.
Heat-tolerant plants are those plants that can produce an economic yield of the crop under extreme
temperatures. The rise in greenhouse gasses may gradually increase the global temperature
(Ahammed et al., 2021). Due to the temperature rise, the growing season of plants may be altered,
along with the disturbance in the geographical distribution. This rise in temperature to its threghold
level allows it to damage the early crop maturity at the start of the season as well (Fahad et al.,
2019). High-temperature stress may harm the microtubule organization and mitotic cells aster
formation, phragmoplast mﬁotubules and splitting of spindles may be damaged (Bellinger, 2020).
Heat stress injuries cause the production of reactive oxygen species (ROS), toxic compounds,
starvation, and growth inhibition in a plant cell (Hemantaraﬁm etal., 2018).

Heat stress may cauﬁhe actual changes in plants at the cellular level. These changes j
the synthesis of proteins are related to stress which may change the gene a)ression level (Rajaet
al., 2020). During heat stress, some plants adapted heat shock proteins to cope with heat stress
conditions. Like chaperone heat shock proteins (HSP), The molecular mass of HSPs ranges fro&
10 to 200 KD (kilo Daltons). HSP works in signal transduction when the condition is extreme to
heat stress (Ul Haq et al., 2019).However, all plants with the same genotype or within the species
are not capable of coping with heat stress conditions. There are so many variations in the plant
genome, within or between the plant species which make plant capable to stand against extreme
heat stress environment by genetic difference (Ul Hassan et al., 2021). As plant changes their
behavior with respect to the environment, it is not easy to find their upper threshold level of
temperature stress (Nievola et al., 2017). However a temperature above 35 degrees, negatively
affected seed germination, fruit ripening, vegetative growth, and fruits. T& higher threshold level

for other plant species may be upper and lower than the 35°C. Heat stress is considered as the main
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limiting factor for production of crop plants. High temperature is a very sensitive element for crop
yield (Argosubekti, 2020) During seed filling, high exposure to heat may reduce yield, and seed
weight per kilogram, and also expedite the rate of senescence. The reason is that due to heat stress
plants cope with it may lead to a reduction of the photosynthetic rate, divert the resources and
reproduce within limited factors. When immediately exposed to heat stress (30-35 °C), the plant
may be affected adversely like flower dropping at the blooming stage (Ferguson et al., 2021).
This study draws attention to adaptations and plant responses to heat stress conditions. The
plant tolerates extreme conditions for its genetic improvemlt by adopting different strategies and
procedures at cellular and subcellular levels. Reduction in plant growth and development starts
when the temperature of the environment exceeds its level is called a threshold temperature.
Through field experts and control laboratory procedures, the temperature level has been changed

for plant development and growth.

Melatonin is a very beneficial compound and provides a protective shield for the growth

of plants under abiotic stress as well (Ahammed and Li, 2022). It has the ability to cure the plants
that were damaged by heat stress or by drought conditions (Shafi et al., 2021). Heat stress injuries
plant and the major part of the plant is affected by rupturing of the plasma membrane, production
of ROS species, low rate of pho&ynthesis, dehydration in plants and premature falling of seeds
and flowers before blooming (Imran et al., 2021). In different plant species, the function of
melatonin is also different as it provides a strong defense system by improving osmoprotectant
including proline and Glycine betaine which play its major role in plant defense system. It also
works as an electron receptor and reduces the oxidative stress (ROS species) in plants leading to
promote seed germination and development. Me%nin receptor is also found in terrestrial plants,
where it regulates stomatal opening and closure (Tan et alﬁOlS; Jouetal.,2019). However, itis
hypothesized that optimum level of melatonin spray can ameliorate the depressing effect of heat
stress by improving physiological and gas exchange parameters, osmoprotect%production and
enzymatic antioxidant activities in all genotypes of tomato plants. Therefore present study was
performed to determine the foliar impact of melatonin on morphological, yield, gas excha@e and

quality related attributes including osmoprotectants in all genotypes of tomato under heat stress.
2. Materials and Methods

2.1. Experimental design
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A pot trial was performed under two factor factorial randomized complete block design
(RCBD) to evaluate the heat stress-mitigation effect of melatonin spray in four tomato cultivars.
Tomato seeds of four cultivars (two heat tolerantand two heat sensitive) were sown. Pots of all
tomato cultivars were placed in field under sunshine in order to face heat stress by plant. Two
treatments were applied [control (without foilarspray) and melatonin @ 25 ¢ M)] to all genotypes
of tomato and each was replicated five times. Heat tolerant genotypes were included as T60 F1

and Supercash F1 while heat sensitive genotypes were named as Nagina and Naqgeeb.

The seeds of tested genotypes of tomato were grown in 12-inch plastic pots filled with peat
moss for growth medium. Half-strength Hoagland and Arnon (1950) nutrient solution, was applied
as a source of nutrients. Pots were placed in the field of research area. The variations in climate of
Sargodha city remained 41/5 °C and rainfall of 115/5 mm Whereas ideal temperature for tomato
growth varies between 22-28°C. Melatonin was applied at two growth stages of tomato i. one week
before the maturity stage. ii. One week before the harvesting stage and following parameters were
studied.

2.2. Growth Parameters measurements

Data regarding growth attributes was collected at the end of stress, 40 days afﬁthe sowing
of tomato seeds. Leaf samples and plant samples of individual replications were uprooted and
washed with distilled water and attached particles of growing media were removed from the roots.
After tlﬁplams blotted with filter paper for the removal of water preserﬁn leaves and roots.

Plant fresh biomass, plant dry biomass, leaf area, stem girth, photosynthesis rate (Pn),
stomatal conductance, transpiration rate (E), water use efficiency (Y/Et), leaf temperature,
chlorophyll contents, electrolyte leakage (EL), hydrogen peroxide (H202), soluble protein contents
and number of viable seeds werg observed according to standard procedures. Leaf area of plant
was measured with the help of Leaf area meter (L1-3100; LI-COR Inc., USA).

2.3. Physiological measurements

From top fully gxpanded 2"! leaf of a young plant from each replication of treatments was
selectedéo record the photosynthetic rate, transpiration rate, and stomatal conductance with the
help of photosynthesis measuring-system CI-340 transportable infrared gas analyzer (Analytical
Deyelopment Company, Hoddesdon, England). This information was recorded between 10.00 to
12.00 A M. of the day witEubsequent modifications: atmospheric pressure 99.9 kPa, molar flow

of air, per unit area of leaf 403.3 mmol m? S!, water vapor pressure into chamber ranged from 6.0
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to 8.9 m bar, leaf temperature ranged from 28.4 62.4 °C, ambient CO2z concentration 352 mol

mol!, PAR at surface of leaves was highest upto 1711 mol m? S! and ambient temperature was
ranged from 22.4-27.9 °C.

Chlorophyll content meter (CCM-300, ADC Bioscientific, U% was used to estimate
chlorophyll contents from fully matured leaf samples of tomato plants. Water use efficiency was

measured by using the following equation.

WUE 4
T Et

Where, Y= Crop yield and Et = Evapotranspiration rate

2.4. Electrolyte leakage
Electrolyte leakage (EL) measures cell damage. It was determined by the method of Shi
etal.,2006. 0.25 g leaf sample was kept in 25 ml deionized water for 24 hours in test tubes. After
4 hours time period, EC1 was measured by using electrical conductivity meter. Then test tubes
were placed in water bath for 1 hour at 90 °C. After that, EC2 was measured again. Thus EL%

was the determined by following equation. . ECi/ ECz x 100.

2.5. H>0; Quantification
Analysis of hydrogen peroxide (H202) quantification was made by a method described by
MacNevin and Urone (1953) with some modifications (Brennan and Frenkel, 1977; Rivero et al.,
2007).
2.6. Leaf Temperature
Leaf temperature was estimated by an Infrared thermometer (AmiciKart® Digital Laser IR
Infrared Thermometer-GM320) from 11 am to 12 noon during the stress period.
2.7. Protein Contents
The soluble protein contents were estimated through Bradford (1976) method using
specﬁphotometer UV (PG instrument T60).
2.8. Number of viable seeds per fruit
To measure the number of viable seeds, three fruits per plant were randomly selected and

their seeds were counted manually %gently extracting seeds from tomato fruit through manual

process and their viability was tested in petri dishes using Whatman filter paper wetted with double
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distilled water. The seeds that ruptured their seed coat and showed growth of their cotyledon were
counted and considered viable seeds.
2.9. Enzyme assays

Activity ofenzymat'&antioxidants including NOS, GR,NR and GST was assayed by using
their respective detection kits (Solarbio Life science, Beijing, China) according to protocol.
Centrifugation rate and molar extinction was different for all determined enzymes. These kits were
used after digestion and collection of supernatant solution of 0.1 g leaf sample.
2.10. Experimental design and statistical analysis

The data was analyzed through statistical methods illustrated by Gomez and Gomez (1984).
To find the difference of significance betw%l treatment means at P < 0.05 (n = 5) Tukey HSD
test was used. Data were evaluated through Statistix 8.1 software.
3. Results
3.1. Impact of melatonin foliar treatment on morphological attributes of tomato genotypes

The results (Table 1) showed that under the foliar application of melatonin, plant fresh
biomass was increased as 41.62 % and 40.98 % in heat tolerant (T60 F1 and Super cash F1)
genotypes of tomato respectively showing values as 651.99 g and 650.56 g of tomato when
compared to their respective control. Similarly, fresh biomass in heat sensitive (Nagina and
Nageeb) genotypes was recorded as 473.09 g and 472.01 g respectively showing 34.11 % and
31.20 % increase than their respective control. However, all genotypes either heat tolerant or heat
sensitive were increased significantly (p < 0.05) under melatonin spray. However, heat tolerant

genotypes of tomato were more responsive than heat-sensitive cultivars of tomato.

Similarly, maximum increase (38.44 %) in plant dry biomass of Super cash (Table 1) under
the foliar application of melatonin was recorded (186.16 g) as compared to without application of
melatonin i.e. control (134.47 g). followed by T60 F1 presented the 37.90 % increase in dry
biomass (174.89 g) as compared to control (126.82 g). Similarly, heat-sensitive genotypes of
tomato expressed that greater plant dry biomass was observed in Nagina (101.22 g) as compared
to control (79.17 g) showing 27.85 % increase in plant drybiomass. Whereas, Nageeb showed

27.11 % improvement inplant dry biomass (94.38 g) as compared to control (74.25 g).

The results (Table 1) showed that under the foliar application of melatonin, 45.65 %

increased leaf area was observed in T60 F1 (250.86 cm?) as compared to without application of
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melatonin i.e. control (172.24 cm?). Whereas Super cash F1 showed 42.33 % increase in leaf area
(237.12 cm?) when compared with the control (166.59 cm?). In the case of heat-sensitive genotypes
of tomato, the results revealed a greater leaf area in Nagina (36.56 %) and Naqeeb (35.72 %) (heat
sensitiv&cultivars than their respective control.

The results revealed that the maximum (45.16 %) increase in stem girth (Table 1) under
the foliar application of melatonin was noted in Super cash F1 (2.25 cm) as compared to without
application of melatonin i.e. control (1.55 cm). Whereas T60 F1 under foliar application of
melatonin presented 42 % increase in stem gir%llB cm) as compared to the control (1.50 cm).
Similar to heat-tolerant genotypes of tomato, foliar application of melatonin also increased the
stem girth in heat-sensitive genotypes of tomato and results expressed 35.60 % increase in stem
girth in Nagina (1.77 cm) as compared to control (1.32 cm). Whereas, Nageeb under foliar
application of melatonin showed 30.43 % impeovement in stem girth (1.50 cm) as compared to
control (1.15 cm).

3.2. Impact of melatonin foliar treatment on quality attributes of tomato genotypes

The greater production of protein (Table 1) from heat-tolerant genotypes of tomato was
observed in T60 F1 (65.55 ug g'' FW) as compared to without application of melatonin i.e. control
(48.84 ug g'' FW) showing 34.21 % increase over control treatment. Whereas Super cash F1 under
foliar application of melatonin ﬁdwed the 32.66 % increase in protein contents (62.30 ug g' FW)
as compared to control (46.96 ug g'' FW). In the case of heat-sensitiﬁgenotypes of tomato, the
26.52 % increase inprotein contents were recorded in Nageeb (52.16 ug g'' FW) as compared to
control (41.32 ug g FW). While Nagina under foliar application of melatonin presented only
23.84 % improvement in prot%contents (50.01 ug g'' FW) as compared to its control (40.38 ug
¢! FW). The foliar treatment of melatonin significantly (p < 0.05) increased the protein contents

of all growing cultivars either heat tolerant or heat sensitive.
The foliar treatment of melatonin significantly (p < 0.05) increased (Table 1) the number

of viable seedﬁr fruit in all cultivrs of tomato (Table 1). The similar trend of results was observed
in the case of the number of viable seeds per fruit of tomato. The maximum increase in (6.07 %)
number of viable seeds per fruit from heat-tolerant genotypes of tomato was observed in Super
cash F1 (95.64) as compared to without the application of melatonin (90.16). Whereas T60 F1
under foliar application of melatonin showed 6.02 % increase in number of viable seeds per fruit

(93.90) as compared to control (88.28).
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Similarly in the case of heat-sensitive genotypes of tomato a significant increase (3.72 %)
in number of viable seeds per fruit was observed in Nageeb (83.78) as compared to the control
(80.77). While Nagina under foliar application of melatonin presented the 4.49 % more number of

viable seeds per fruit (81.45) as compared to the control (77.95).

3.3. Impact of melatonin foliar treatment on physiological traits of tomato genotypes

Data regarding Etosynthetic rate (Figure 1) reflected that 4204 % increase in
ﬂlotosynthesis rate from heat tolerant genotypes of tomato was observed in Super cashﬁ (28.14
pmol CO2 m? S™') as compared to without application of melatonin i.e. control (19.81 pmol CO2
m?2 Sy, However, T60 FL under foliar application of melatonin showed 39.95 % increase in

photosynthesis rate (26.38 pmol CO2 m? S™') as compared to control (18.85 umol CO> m? S™).

In case of heat-senﬁ'tive genotypes of tomatoes, the greater photosynthesis rate was
observed in Nageeb (21.64 pmol CO2 m™? S!) as compared to control (16.26 pmol CO2 m? S™!)
indicating 33.08 % improvement over control. Whereas, Nagina unclerﬁoliar application of
melatonin presented 31.73 % improvement in photosynthesis rate (18.39 umol CO2 m? S!) as
compared to its respective control (13.96 pumol CO2 m? S''). The foliar treatment of melatonin,
statistically (p < 0.05) increased the photosynthesis rate in heat tolerant as well as in heat sensitive

cultiars of tomato.

In the same way, significant (p < 0.05) results of melatonin foliar spray swere obtained in
case of transpiration rate (Fige 1). According to the results, maximulﬁranspiration rate was
noted in Super cash F1 (2.31 mmol H20 m? S'!) as compared to control (1.78 mmol 820 m?2ST)
reflecting 29.77 % increase over control. Similarly, T60 presented 27.93 % more transpiration
rate (2.29 mmol H20 m? S'!) as compared to its respective control (1.79 g::ol H>0 m? S').
Similarly, in heat-sensitive genotypes of tomattéesults expressed that the 23.27 % increase in
Enspiration rate was observed in Nageeb (1.96 mmol H20 m™ S™!) as compared to control (1.59

ol HO m? S). While Nagina reflected minimum increase (23.53 %) in transpiration rate (1.89

mmol HO m? S™!) than its control (1.53 mmol H2O m? S™).

The results (Figure 1) indicated that under the foliar application émelatonjn improved

26.63 % stomatal conductance significantly (p< 0.05) in T60 FI (2.33 mmol m?2 S than its

control (1.84 mmol m™? S!). While Super cash F1 genotype showed 27.93 % improvement in
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stomatal conductance (2.29 mmol m S™') as compared to its respective control (1.79 mmol m? S
1. Similarly, heat-sensitive genotypes of tomatoes also revealed the same trend as heat-tolerant

genotypes.
It is clear from the data (Figure 1) regarding chlorgphyll contents that foliar application of

melatonin increased chlorophyll contents significantly (p < 0.05) in all tomato cultivars. The
results showed that under the foliar application of melatonin greater chlorophyll contents from
heat-tolerant genotypes of tomato were observed in T60 FI (29.04 mg g™') as compared to control
(21.23 mg g™') untreated showing 36.78 % increase in chlorophyll contents. Super cash F1 under
foliar application of melatonin indicated 39 % improvement in chlorophyll contents (28.12 mg g’
') as compared to its respective control (20.23 mg g™).

In the case of heat-sensitive genotypes of tomato, the results revealed that foliar application
of melatonin increase 26.95 % chlorophyll contents in Nageeb (21.86 mg g') as compared to
control (17.22 mg g™'). Whereas, Nagina presented 25.16 % more chlorophyll contents (21.19 mg
g'!) as compared to control (1693 mg g™!).

The results (Figure 2) regarding WUE had revealed that the highest increase in WUE
(9.43%) was noted in the Super cash F1 (12.18 pmol CO2/ mmol H>0) genotype as compared to
the control (11.13 pmol CO2/ mmol H20). In the same way, T60 F1 under foliar application of
melatonin presented 9.41 % increase in WUE (11.51 pmol CO2/ mmol H20) as compared to its
control (10.52 pmol CO2 mmol H20). Similar to heat-tolerant genotypes, 8.03 % improvement in
WUE in heat-sensitive genotypes of tomato was observed in Nageeb (11.03 pmol CO2/ mmol
H>0) as compared to control (10.21 pmol CO2/ mmol H20). Subsequently, Nagina under foliar
application of melatonin showed greater WUE (9.71 pmol CO2/ mmol H20) than its respective

control (9.10 pmol CO2»/ mmol H20) indicating 6.70 % increase over control.

The leaf temperature (Figure 2) of heat-tolerant genotype T60 F1 (24.20 °C) showed 4.53
% low leaf temperature as compared to control (25.35 °C). Leaf temperature of other heat tolerant
genotypes Super cash F1 was also reduced (25 °C) as 5.12 % over its control (26.35 °C). On the
other hand, 2.20 % lower leaf temperature in heat-sensitive genotypes of tomato in Nagina (26.60
°C) was observed as compared to control (27.20 °C). Whereas, another heat-sensitive cultivar

Nageeb also showed 2.98 % lower leaf temperature (26 °C) than its respective control (26.80 °C).
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The results regarding electrolyte leakage (EL) indicated that the minimum EL was recorded
in Super cash F1 (12.15 %) as compared to control (17.76 %). Similarly, T60 F1 under foliar
application of melatonin presented the lowest electrolyte leakage (13.24 %) as compared to control
(18.23 %). Similar to heat-tolerant genotypes of tomato foliar application of melatonin also
decreased the electrolyte leakage in heat-sensitive genotypes of tomato and results expressed that
the lowest electrolyte leakage was observed in Nagina (18.67 %) than its control (22.83 %).

Whereas, Nageeb also showed minimum electrolyte leakage (19.15 %) than its control (23.83 %).

3.4. Impact of melatonin foliar treatment on ROS of tomato genotypes

The maximum reduction (13.15 %) in H202 contents (Figure 2) under the foliar application
of melatonin from heat tolerant genotypes of tomato was noted in T60 F1 (8.24 ymol g'' FW) as
compared to without application of melatonin (13.15 gmol g' FW). Similarly, in another heat
tolerant cultivar Super cash FI also presented 39.50 % reduction in H202 contents (7.52 gmol g’
FW) than its respective control (12.43 gmol g! FW). In case of heat sensitive genotypes of
tomato,24.72 % reduction in H202 contents were observed in Nageeb (13.43 ymol g"' FW) when
compared with control (éS/—l umol g'' FW) and followed by Nagina showing the 26.61% less
reduction inH202 (11.72 pmol g' FW) as compared to its control (15.97 gmol g' FW).

3.5. Impact of foliar melatonin treatment on leaf and root osmoprotectants (GB and proline)

of tomato genotypes

The maximum increase in GB contents (Figure 3) in leaf and roots of heat-tolerant
genotypes of tomato was noted in T60 F1 (22.76 % and 17.14 %) in leaf and roots respectively as
compared to without application of melatonin. Similarly, in another heat-tolerant cultivar Super
cash F1 also presented 20 % and 15.53 % higher GB contents in leaf and roots than its respective
control. In the case of heat-sensitive genoty&s of tomato, 13.33 % and 9.52 % more GB contents
in leaf and roots were observed in Nageeb as compared to the %mol followed by Nagina (12.78
% and 9.30 %) showed high GB contents in leaf and roots respectively as compared to their

respective control.

The maximum increase in proline contents (Figure 3) in leaf and roots of heat tolerant

genotypes of tomato was noted in T60 F1 (20.95 % and 15.05 %) respectively as compared to

11
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without application of melatonin. Similarly, in other heat-tolerant cultivar Super cash F1 also
presented 20.88 % and 14.28 % higher proline contents in leaf and roots respectively than their
respective control. In case of heat-sensitive %otypes of tomato, maximum increase in proline
contents of leaf (13.28 %) and roots (10.81 %) were observed in Nageeb as compared to the control
followed by Nagina showed 13.70 % and 11.26 % increase in proline contents in leaf and roots

respectively as compared to their respective control.

3.6. Impact of melatonin foliar treatment on enzymatic antioxidant activities of tomato
genofypes

The enzymatic antioxidants activities (NOS, NR, GR, and GST) in all genotypes (heat

tolerant and heat sensitive) of tomato were significantly (p < 0.05) improved (Figure 4) when
melatonin was applied as compared to control which remained under heat stress without melatonin
treatment. Maximum increase in activity of NOS (133.91 %), NR (48.38%), GR (59.76 %) and
GST (55.92 %) was found in heat tolerant genotype (Super cash F1) under heat stress along with
melatonin foliar spray. However, both heat tolerant cultivars of tomato showed a non-significant
difference in increasing activity of enzymes. while minimum activity of enzymes were indicated
by heat sensitive genotypes (Nageeb and Nagina) as compared to control treatment which

remained untreated bearing heat stress.

3.7. Pearson association between morphological, physiological, quality and enzymatic traits

of tomato genotypes

The Pearson correlation analysis revealed that there was a significant relationsh&between
morphological, physiological, quality and enzymatic traits of tomato genotypes (Figure 5).
Moreover, the photosynthetic rate, transﬁltion rate, stomatal contents, chlorophyll contents,
WUE, GB, proline, NOS, NR, GR, GST, plant fresbbiomass, plant dry biomass, leaf area, stem
girth, protein contents, and number of viable seeds were positively associated with each other (p

<0.05) and negatively associated with the EL, leaf temperature, and H20-.

4. Discussion
Melatonin is a signaling molecule known as a pleiotropic molecule which is capable of
improving heat tolerance in plants by alleviating its adverse effects. Numerous researches have

explored its determined role in improving plant physiology by regulating growth mechanisms.

12
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However, the comprehensive role of melatonin in improving plant growth and %d attributes
under abiotic stress conditions is not yet determined. Therefore to understand its role iBhe
mitigation of heat stress foliar spray was applied to four genotypes of tomatoes including heat-
tolerant and heat-sensitive cultivars.

A foliar spray of melatonin increased fresh and dry biomasﬁ both heat-tolerant and heat-
sensitive genotypes of tomatoes under heat-stress conditions. The reduction in fresh biomass and
dry biomas of plants is directly related to heat stress. High temperature disrupted the water
potential owing to increased ROS spggies leading to reduced photosynthetic activity, chlorophyll
contents, and water use efficiency (Wang et al., 2022). All these processes are responsible for
lowering of fresh and dry biomass of plants. However foliar application of melatonin influenced
all these growth attributes positively and increased plant fresh and dry biomass by stabilizing water
potential and enﬁlatic activities to reduce ROS species that are responsible for membrane
stability (Ahmad et al., 2023). Melatonin also acts as a growth promoter and induces the activity
of auxins and indole acetic acid (IAA) that contribute to improved plant vegetative growth and cell
expansion in plants which subsequently increases plant biomass (Arnao and Hernandez-Ruiz,
2021).

Stem grith of both heat tolerant and heat sensitive genotypes of tomato reduced under heat
stress. It is also directly related to water loss in high amounts from plants. High water loss reduced
water use efficiency in plant meﬁ)olism by inducing oxidative damage which subsequently
reduced plant growth in terms of plant growth (Kapoor et al., 2020). Melatonin spray increases
plant growth by increasing water uptake due to low oxidative damage of the membrane (Nawaz et
al., 2020). The leaf area is also reduced under heat shock. Under high-temperature shock, plants
experience low water potential due to which uptake of water and nutrients become restricted. Thus
limited water retention in plant metabolism caused stunted growth of plants and yellowing of
leaves due to leaf senescence. Thus, high water loss under heat stress also contributed to reducing
leaf area by Leaf senescence. Melatonin spray influences leaf area in a positive manner by
%'tigating this adverse effect of heat stress and increasing heat stress tolerance by stabilizing
reactive oxygen species (ROS) and photosynthetic electron flux which is responsible for increased
Fv/Fm ratio in plants (Altaf et al., 2022).

Heat stress also contributed 6 depressing quality of tomatoes in terms of low protein

contents and poor viability of seeds in both heat tolerant and heat sensitive cultivars of tomato.
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wlatonin foliar spray improved protein contents in tomatoes owing to itsgntribution in
increasing the activity of antioxidant enzymes which acted as scavengers for reactive oxygen
species (ROS) leading to reduced misfolding and denaturing of protein as well as started to refold
denatured protein (Hassan et al., 2022). Similarly, Poor viability in seeds was induced due to pollen
abortion is caused by heat stress (Lohani et al., 2022). melatonin foliar spray increased the viability
and number of seeds in all tomato cultivars. This might be due to the pleiotropic nature of
melatonin which acts as a phyto-regulator to promote the development and growth of plants during
the reproductive stage and plays its regulatory role in pollen thermotolerance in all genotypes of
tomato (Colombage et al., 2023).

Photosynthetic rate, chlorophyll contents, stomatal conductance, and transpiration rate are
the physiological processes that directly depend upon each other (Jaffar et al., 2023; Sadaf et al.,
2023). Improvement of one attribute will improve another. Regulation of all these physiological
attributes declined under heat shock due to restricted water and nutrient availability. Und%low
water uptake and high temperature, these physiological processes deteriorated due to the
accumulation of oxidative stressad membrane damage which subsequently caused disturbance
in balanced homeostasis (Tiwari et al., 2020). Melatonin acts as a growth regulator and 18-7- roves
photosynthetic rate by improving photosynthe& efficiency, chlorophyll contents, stomatal
conductance, and transpiration rate by improving the activity of antioxidant enzymes to minimize
oxidative stress (Hassan et al., 2022; Hasan et al., 2023). Meanwhile, heat stress also caused the
induction of chlorophyllase enzymes which reduced chlorahyll contents. Melatonin has the
capability to reduce the activity of this enzyme and to promote the synthesis of chlorophyll pigment
(Javed et al., 2022). However, melatonin spray regulates the opening of stomata for regular
exchange of gases by improving membrane idity. Last but not least melatonin foliar spray
increased all physiological parameters of both éagt-tolerant and heat-sensitive genotypes of tomato
(Annadurai et al., 2023).

Heat stress also influenced water use efficiency (WUE) negatively. High temperature
restricted water uptake due to which regulation of opening and closing of stomata distorted lead to
reduced WUE by losing turgidity of the membrane. Melatonin improves water use efficiency by
maintaining water potential within plants to regulate membrane turgidity by the accumulation of
soluble compounds and by reducing membrane damage owing to ROS oxygen species (Jahan et

al., 2021). High temperature induced electrolyte leakage (EL), leaf temperature, and hydrogen
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peroxide (H20:) due to oxidative stress. To make a conducive environment for plant growth under
heat stress (Barman et al., 2019; Annadurai et al., 2023), Soluble solutes&' osmoprotectants such
as proline and glycine betaine (GB) were increased in both lea‘ald roots under heat stress. A foliar
spray of melatonin further increased these osmoprotectants to protect plants from the negative
effects of heat stress. Melatonin reduced ROS species to induce a strong defense system and
increased regulation of proline and GB within the plant by maintaining water requirements leading
to reduced osmotic stress (Mushtaq et al., 2022). These compatible solutes also improve
nitrogenous compounds within plants' regulated nutrient supply (Alharbi et al., 2021) :

Melatonin foliar spray augmented the regulation of enzymatic antioxidant like Nitric oxide
synthase (NOS), Glutathione reductase (Ga, nitrate reductase (NR) and glutathione S reductase
(GST)) to make a strong defense system of plants against oxidative stress (Awan et al., 2023).
Under heat stress, melatonin provide a condusive environment to enzymes activity. This increase
in activity might be attributed to hormonal regulation caused by melatonin which influenced
hormonal balance and signal transduction which activated signal pathways to promote antioxidant
activities leading to protect plant from heat stress. Moreover, melatonin also directly acts as
antioxidant owing to its properties of antioxidant (Hassan et al., 2022)These enzymes act as a
scavenger of these ROS species leading to alleviated oxidative damage owing to improve plant
physiological and morphological traits of tomto plants (Javed et al.,2022; Khan et al.,2024). Infact
under abiotic stress (control) activity of GR, NR, NOS and GST were downregulated owing to
declined expressin of genes&lated to each enzyme that were improved in both genotypes of

ato when melatonin was applied in the form of foliar spray (Jahan et al., 2019).

5 Conclusion

The present study explored the adverse effect of heat stress due to low water uptake and
high temperature. Heat shock causes stunted growth of plants owing to oxidative damage, impaired
photosynthetic efficiency, and high ROS spﬁies. To improve heat tolerance melatonin spray was
applied to the tomato cultivars. Melat%n acts as a growth regulator and provides a conducive
environment for plant grou@ under heat stress by improving the growth and physiological
attributes of tomato plants in both heat-tolerant and heat-sensitive genotypes. Melatonin also
improves antioxidant enzymetic activity (NOS, NR, GR, GST) to minimize oxidative stress and
restore membrane turgidity under heat-stress environment. Moreover, protein contents and

viability of tomato seeds were also recovered by melatonin foliar spray due to ROS-mediated
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damage. This study was confined to pot experiments and in the climatic region of Sargodha. It is
required to perform this experiment in future in all ecological zones under field conditions to

understand the interactive effect of heat stress and melatonin foliar spray in depth.
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579  Table 1. Effect of foliar melatonin spray on growth attributes and protein contents of heat
580 tolerant and heat sensitive genotypes of tomato under heat stress

581

Treatments Tolerant Cultivars Sensitive Cultivers
T60 F1 Super cash F1 Nageeb Nagina

Plant fresh biomass (g)
Control 460.38+23.02c 461.47+23.53c 359.76x19.79d 352.74x18.70e
25 uM 651.99+32.60a 650.56+33.18a 47201%25.96b 473.09+£25.07b
Plant dry biomass (g)
Control 126.82+5.96d 134 .47+6.72c 74.25+3.71h 79.17+4 .35¢
25 uM 174 89+8.22b 186.16£9.31a 94 38+4.72f 101.22+5.57e
Leaf area (cm?)
Control 172.24+7 .75¢c 166.59+7.33d 126.45+6.32¢ 126 40+6.45¢e
25 uM 250.86+11.29a 237.12+10.43b 171.62+8.58c 172.62+8.80c
Stem girth (cm)
Control 1.50+0.08e 1.55+0.09d 1.15+0.06¢g 1.32+0.07f
25 uM 2.13+£0.12b 2.25+0.12a 1.50+0.08e 1.77+0.10c
Protein contents (ug g FW)
Control 48 84=+1.71e 46 .96+1.60f 41.32+1.61g 40.38+1.4%h
25 uM 65.55+2.29a 62.30+2.12b 52.16+2.03c 50.01+1.85d
Number of viable seeds
Control 88.28+3.97d 90.16x4.15¢c 80.77+3.39¢ 77.95+3.12h
25 uM 093.90+4.23b 05.64+4 .40a 83.78+3.52¢ 81.45+3.26f
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593  Fig. 1.Foliar application of melatonin improved Physiological [Photosynthetic rate (a),
594  Transpiration rate (b), Stomatal conductance (c), SPAD Chlorophyll contents (d)] in heat tolerant
595  and heat sensitive genotypes of tomato under heat stress. Mean value + standard error, significant
596  difference is exhibited by lower case letters (p < 0.05) according to LSD.
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Fig. 2.Foliar application of melatonin improved Water use efficiency (WUE) (a), Leaf
temperature (b), and reduced Electrolyte leakage (%) (c), Hydrogen per oxide (H202) (d) in heat
tolerant and heat sensitive genotypes of tomato under heat stress. Mean value + standard error,
significant difference is exhibited by lower case letters (p < 0.05) according to LSD.
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Fig. 3. Foliar application of melatonin improved osmoprotectants [Leaf GB (a), Root GB (b), Leaf
proline (c), Root proline (d)] in heat tolerant and heat sensitive genotypes of tomato under heat
stress. Mean value + standard error, significant difference is exhibited by lower case letters (p <
0.05) according to LSD.
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Fig. 4. Foliar application of melatonin improved Nitric Oxide Synthase (NOS) activity (a), Nitrate
reductase (NR) activity(b), glutathione reductase (GR) activity(c), glutathione S-transferase (GST)
activity (d) in heat tolerant and heat sensitive genotypes of tomato under heat stress. Mean value
+ standard error, significant difference is exhibited by lower case letters (p < 0.05) according to
LSD.
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Fig. 5. Correlation analysis of Photosynthetic rate (PR), Transpiration rate (TR), Stomatal
conductance (SC), SPAD chlorophyll contents (Chl), Water use efficiency (WUE), Leaf
temperature (LT), reduced Electrolyte leakage (EL), Hydrogen per oxide (HO), Leat GB, Root
GB, Leat proline (LP), Root proline (RP), Nitric oxide synthase (NOS) activity, Nitrate reductase
(NR) activity, Glutathione reductase (GR) activity, Glutathione S-transferase (GST) activity, Plant
fresh biomass (PFB), Plant dry biomass(PDM), Leaf area (LA), Stem grith (SG), Protein contents
(PC), Viable seeds (VS) in heat tolerant and heat sensitive genotypes of tomato under heat stress.
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