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Development of prediction model for body weight and energy balance indicators from milk traits

in lactating dairy cows based on deep neural networks

Abstract

To develop a body weight (BW) prediction model using milk production traits and present a useful
indicator for energy balance (EB) evaluation in dairy cows. Data were collected from 30 Holstein cows
using an automatic milking system. BW prediction models were developed using multiple linear

regression (MLR), local regression (LOESS), and deep neural networks (DNN). Milk production traits
readily available on commercial dairy farms, such as energy-corrected milk (ECM), fat-to-protein ratio,
days in milk (DIM), and parity, were used as input variables for BW prediction. The EB was evaluated

as the difference between energy intake and energy demand. The DNN model showed the greatest
predictive accuracy for BW compared with the LOESS and MLR models. The BW predicted using the
DNN model was used to calculate the energy demand. Our results revealed that the day on which the
EB status transitioned from negative to positive differed among cows. The s were assigned to one
of the three EB index groups. EB index | indicated that the day of EB transition was within DIM < 70.
The EB indexes 2 and 3 were 70 < DIM < 140 and 140 < DIM < 305, respectively. EB index 3 had the
lowest EB, which is the slowest to transition from a negative to a positive energy balance compared
with EB indexes | and 2. The highest ECM and feed efficiency were observed for EB index 3. The
calving interval was the shortest for EB index 1. EB of individual cows duringctation can be estimated

and monitored with moderately high accuracy using EB indexes.

Keywords: Body weight, Deep neural networks, Energy balance, Energy corrected milk

1. Introduction

The monitoring of the energy balance (EB) of high-yielding dairy cows during the lactation period is

important (Nigussie, 2018) because 1t is directly related to milk production and reproductive

performance (Heuer et al., 2001) and, ultimately, the profitability of dairy enterprises. Several methods
have been proposed to estimate EB using body weight (BW) changes, body condition scores (Friggens

etal., 2007), and analysis of metabolites in blood and milk (Moore et al., 2005). However, these methods
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are difficult to apply to large herds (Alvarez et al., 2018), making monitoring of the individual EB of
cows in the field challengingAB can also be evaluated as the difference between the measured energy
intake (feed intake) and demand (milk production and maintenance); however, this requires
measurements ofﬁk yield and composition, BW, dry matter intake (DMI), and energy density of
feedstuft (Méntysaari lA, 2015), which are not broadly available on commercial farms (Yan et al.,
2009).

Recording the daily BW, milk yield, and milk composition is possible through modem automatic
milking systems (Mintysaari et al., 2015). Although data from these automatic milking systems is used
in modeling studies to predict and evaluate BW, DMI, EB, and milk yield (Caixeta et al., 2015), to date,
these models require very detailed information, which has limited their adoption in commercial dairy
farms (Vanrobays et al., 2015). Additionally, a range of other factors, such as the stage of lactation,
parity, and a cow’s individual characteristics, which also need to be considered by the prediction model,
affect BW and EB.

ﬁultiple linear regression (MLR) is one of the most widely used modeling approaches for

agricultural applications (Basak et al., 2020a). Although it is a powerful modeling technique, it assumes

that the relationship between independent and dependent variables is linear. This assumption of linearity

may not always be correct, and can lead to biased results that fail to provide satisfactory prediction
accuracy (Chen et al., 2022). Alternatively, local regression (LOESS), which is a nonparametric local
regression model for performing nonlinear predictions, is used to address this limitation (Shamim et al.,
2016).

Recently, machine learning algorithms, such as artificial neural networks or deep neural networks
(DNN), have become popular as powerful learning methods that are particularly beneficial for modeling
nonlinear and complex relationships between variables (Chen et al., 2022). A ﬂN, which is an
extension of an artificial neural network, tends to outperform the latter in direct comparisons using the
same dataset (e.g., Guo et al., 2021). Further, DNN models also have better predictive performance than
traditional methods (Ruchay et al., 2021). DNN models have been used in studies of dairy cows,
including the estimation of body condition scores and BW throlah image processing, animal

40

identification, breeding classification, and heat detection (Chowdhury et al., 2016; Shen et al., 2020).
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In this study, we compared the prediction accuracy of BW using three different models based on MLR,
LOESS, and DNN and presented a decision-making support system to evaluate daily EB for individual
cows. Automatic milking systems were used to record the daily BW and milk yield during the lactation
period. Additional information readily available on commercial dairy farms, such as milk traits, days in

milk (DIM), and parity was also included in the models.

2. Material and methods
2.1. Data collection and preprocessing
Data from 30 Holstein cows (61 + 16.4 months old; 726 + 53.6 kg BW) were collected from a

commercial dairy farm located in Gimcheon, Korea, between February and November 2022. All the

cows were housed in free-stall facilities and milked using an automatic milking system (Lely,
Astronaut). The ws were fed a total mixed ration (TMR) of flaked com, com silage, cottonseed meal,
timothy, tall fescue, and alfalfa, which comprised 61.8% dry matter (% as-fed), 16.7% crude protein,
59.8% total digestible nutrients, 50.4% neutral detergent fiber, and 5.61 MJ of net energy/kg of dry
matter. The TMR was fed ad libitum ly at 09:00 and 16:00 hours. Individual TMR intake was
recorded using an automatic feeding system equipped with a radiofrequency identification system
(Dawoon Co., Incheon, Korea). Each feed bunk had a real-time electronic system that recognized cows
using their tags. The feed consumption per visit was measured before and after weighing. The TMR
intake was the sum of the per-visit consumed feed amounts in 24 h. The following data were obtained
from the automatic milking system: individual identification number, parity, test date (representing
daily data), daily BW,k yield, milk components (protein, fat, lactose, and somatic cell count), and
milking frequency. DIM records were collected between days 10 and 305. After excluding outliers,
1,745 records were used for the analysis. me descriptive statistics of the entire dataset are provided in
Table 1. The numerical variables in the training and test data were scaled, that is, normalized (Walls et

al., 2020). For normalization, the min—max normalization technique (Chen et al., 2022) was used fora

period of DIM 10-305 for every cow using the following equation:
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where X or X represents the normalized or original value, and ,, and X, stand for the minimum
and maximum values of the input dataset, respectively. This normalization improves the efficiency of
DNN training and is necessary because the variables, including a cow’s BW, can have very different
values depending on the individual and their DIM records, which may lead to poor model performance.

After the analysis, all normalized BW-predicted values obtained from the three models were

denormalized back to their original scale using the following equation by Chen et al. (2022):

Y = Yaorm X (Ymax = Ymin) + Yinin Eq.2
where Y, or Y is the normalized or demoralized value, and Y, or Y, 15 the minimum or maximum
value of the output data. The results were presented on the original scale.

2.2, Input variable selection

In each modeling method, the selection of input variables plays a crucial role in determining a suitable
model structure (Basak et al., 2020b). In the present study, 1ncipal component analysis was conducted
to identify the main variables in the automatic milking system data (Fig. 1).

From these, energy-corrected milk (ECM), DIM, fat-to-protein ratio, and parity, which are readily
available on commercial dairy farms, were selected as input variables for all models. ECM provides a
more precise representation of cows' energy output compared to milk yield alone, as it accounts for
milk yield adjusted to the ratio of milk solids (Knob et al., 2021). The lactation phase, parity, milk

production, and fat-to-protein ratio exhibit significant predictability for EB (Heuer et al., 2000). The

ECM (Shirley, 2006) and fat-to-protein ratios (Lee et al., 2017) were calculated as follows:
ECM (kg/d) =@27 x milk yield (kg) + 7.2 x milk protein (kg) + 12.95 x milk fat (kg) Eq3
g—m—pmtein ratio = milk fat (% )/milk protein (%) Eq4
2.3. Model evaluation
We used three models (MLR, LOESS, and DNN) to predict the BW of cows. MLR is a widely utilized

modeling technique in diverse animal science applications (Chen et al., 2022). The MLR equation is as

follows:
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Y=Fo+pi+ +Bunte Eq.5
where the dependent variable ¥ and independent variables x and f represent the linear regression
coefficients, and & represents the error. me “Im” function in R (R Core Team, 2020) was used for the
analysis.

LOESS is a nonparametric local regression model that fits curves and surfaces to data by smoothing
(Bruhns et al., 2005) and is often used as an altemnative technique for performing nonlinear prediction
(Shamim et al., 2016). Moreover, LOESS exhibits flexibility by effectively capturing intricate local
data trends that might pose challenges for linear methods because it does not assume a specific
parametric model (Eguasa et al., 2022). For LOESS, we used the “loess” function in R and the default
span parameter (James et al., 2013).

A DNN stands as an artificial neural network featuring numerous layers positioned gween the
input and output layers. In this study, we constructed a DNN using a sequential Keras model within R
(Chollet, 2017). We applied two hidden layers to the model and constructed the output layer with a
single unit (BW), given that r model involves a regression problem with a solitary response variable.
Additionally, we employed the rectified linear activation function (relu) as the default activation
function for regression issues in Keras. The option of dropping out between the layers was used because
a dropout in the hidden layer helps prevent the DNN from memorizing the input data (overfitting). The
model was compiled using the RMSprop optimizer. We carried out hyperparameter tuning employing
a grid search strategy across the provided parameter range, and subsequently, we chose the optimal
parameter combination (with the lowest mean absolute error [MAE]). For model training, the epoch
number was 100, batch size was 5, leaming rate was 0.00001, and validation split was 0.2.

dataset was split into two parts: 80% for training and 20% for test data, achieved through
random sampling. The training data were utilized to build BW prediction models, while the test data
were employed to assess and compare the predictive performance of the different modeling approaches
(Chen et al., 2022).

The model performance was appraised utilizing a ten-fold cross validation approach in order to

gauge the test error associated with each model. We used MAE and root mean square error (RMSE) to
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assess precision and accuracy, as described by Walls et al. (2020):

n
1
MAE = =" |y -] Eq.6
i=1

RMSE =

where, y; refers to the observed value, y denotes the predicted value, and n stands for the number of

observations.
2.4. Calculation of energy balance and development of energy balance index

Daily EB was determined by subtracting the energy intake from the demand (GfE, 2001). Daily

energy intake was computed based on the DMI and net energy of the TMR (Eq.9).
Daily energy demand was derived as the sum of energy demands for lactation and maintenance

(Smit et al, 2005) (Eq.10). The predicted BW values were utilized to calculate the energy demand for

maintenance.

EB (MJ of NE; /d) = energy intake — energy demand Eq.8

Energy intake (MJ of NE; /d) = DMI (kg/d) x feed energy concentration (MJ of NE /kg

of dry matter)

Energy demand (MJ of NE_/d) = 6.9 x [(42.4 x BW®” + 442 x FPCM) x (1 + (FPCM —

Eq.10
15) x 0.00165)]/1000

FPCM (kg/d) =[(0.337 +0.06 x milk protein (%) + 0.116 x milk fat (%)] x milk yield (kg) Eq.11

Feed efficiency = ECM (kg/d)y/DMI (kg/d) Eq.12
To develop an EB index,ws were classified into three groups based on the time point at which a
negative energy balance (NEB) was converted to a positive energy balance (PEB): EB index | (DIM <
70).EB index 2 (70 < DIM < 140), and EB index 3 (140 < DIM < 305). Each group comprised 9 cows
(55 + 16.1 months old; 721 + 45.7 kg BW), 10 cows (60 + 14.0 months old; 735 + 56.3 kg BW), and

11 cows (71 =22.0 months old; 717 + 63.7 kg BW), respectively. The EB was scaled with an average

value of zero and a standard deviation (SD) of 1.
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3. Results
3.1. Prediction of BW
To obtain an optimal prediction model for BW , predictive performance was tested and compared using
three different methods. As shown in Table 2, the DNN model had the lowest RMSE (32.92) and MAE
(25.65) when mpared to the MLR and LOESS models in the tenfold cross-validation. As the DNN
model had a higher accuracy in this study than the other models, we used the BW predicted by this
model to calculate the energy demand. The ECM and DMI patterns during lactation are shown in Fig.
2. The ECM increased sharply during the first 8-9 weeks (DIM 61) of lactation, after which it decreased.
In contrast, the DMI increased slowly until approximately 14 weeks (DIM 100).
3.2. Calculation of energy balance
The estimated energy demand, energy intake, and EB during lactation are shown in Fig. 3. The mean
daily energy demand was high after parturition up to DIM 61, after which it began to decline (Fig. 3A).
The mean daily energy intake was low afier parturition and peaked at a DIM of 100. These patterns of
changes in energy intake and demand during lactation were similar to those of the DMI and ECM results
(Fig. 2). This was expected, as daily energy intake was computed from DMI, and the net energy of the
total mixed ration and daily energy demand were determined as gsum of energy demand for milk
production and maintenance. As shown in Fig. 3C, the daily mean EB was negative after parturition
and then increased to a positive value.
3.3. Development of energy balance index
We found that the day on which the EB status transitioned from negative (N) to positive (P) differed
among the cows (Fig. 3C). Therefore, the cows were assigned to three EB index groups. EB index 1
indicates the day of EB transition was within DIM < 70. The EB indexes 2 and 3 were 70 < DIM < 140
and 140 < DIM < 305, respectively. The EB index | group rapidly converted from NEB to PEB in the
early lactation period, and EB index 2 remained NEB during early lactation and then transitioned to
PEB in the mid-lactation period. In addition, EB index 3 maintained NEB he early and mid-lactation
periods and was only converted to PEB during late lactation.

The average EB, ECM, feed efficiency, and calving interval are shown in Table 3. The EB values
differed significantly based on the EB index. The means of EB (+ SD) were 45.22 = 48.31, 37.68 =
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32.14, and 493 + 50.47 MJ/d in the EB indexes 1, 2, and 3 during the period of DIM 10-305,
respectively. EB index 3 had the lowest EB, which is the latest transition from NEB to PEB, compared
with EB indexes 1 and 2. Estimates of EB became zero at approximately DIM 66, 105, and 200 for EB
indexes 1, 2, and 3, respectively. The highest ECM (38.89 + 4.33) and feed efficiency (1.49 + 0.48)
were found in EB index 3, which is the latest to transition from NEB to PEB. The ECM vyields were
33.08 = 7.96 and 37.74 + 5.66 kg/d for EB indexes 1 and 2, respectively. The feed efficiencies were
1.09 £ 042 and 1.14 + 0.24 in EB indexes 1 and 2, respectively. The calving interval was the shortest
at 379.32+ 4525 in EB index 1, which was the earliest to transition from NEB to PEB. Calving interval

means were 488.00+ 74.65 d and 561.07 + 99.92 d for EB indexes 2 and 3, respectively.

4. Discussion
Monitoring the EB of individual cows is essential for their proper management and breeding
(Miintysaari et al., 2019). It assists farmers in recognizing cows that might be pmnemetabolic stress
and production diseases, while also verifying the adequacy of existing management and nutritional
approaches. Changes in the EB throughout a cow's lifespan might serve as a valuable prospective
selection objective due to the genetic differences in EB profiles observed among bull daughter groups
in their initial lactation (Coffey et al., 2001). Although several methods have been proposed to estimate
EB using BW changes, body condition scores (Friggens et al., 2007), and analysis of metabolites in
blood and milk (Moore et al., 2005), these are difficult to apply to large herds (Coffey et al., 2001;
Alvarez et al., 2018), making it challenging to monitor the individual EB of cows in the field. Therefore,
an easy and effective method for monitoring EB in cows is required. The daily EB can be determined
by subtracting the measured energy intake from the demand (G{E, 2001). However, this calculation
requires BW and%k yield and composition measurements, which can be challenging to acquire at the
farm level (Mintysaari et al_, 2019).

This study predicted BW in lactating cows based on milk trait (ECM, DIM, and fat-to-protein ratio)
data using automatic milking systems and parity information, which are more broadly available on

commercial farms. In our study, we utilized daily measurements of milk yield and composition instead

of relying on monthly evaluations. Frequent measurements enabled us to smooth the milk production

8
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data prior to the modelling analysis. The predicted BW was used to calculate the energy required for
maintenance (GfE, 2001). Using predicted BW has the advantage of being simple to integrate with
automatic milking systems and sensor-based monitoring systems, allowing for almost continuous BW
monitoring. The BW of cows decreases sharply %‘ing the first 3—5 weeks of lactation and then
increases atge end of'lactation (Vanrobays et al., 2015; Mintysaari et al., 2019). During early lactation,
insufficient feed intake triggers the mobilization of energy from body reserves, ultimately causing a
decline in BW (Mintysaari et al., 2012). In contrast, lost body reserves are restored er in lactation
with elevated feed intake and reduced milk yield, leading to an increase in BW.

During the initial stages of lactation, the energy demands of high-producing cows are rarely met by
their feed intake (Méntysaari et al., 2012), which results in energy mobilizationm their body reserves
to make up for the energy deficit, causing NEB during the early lactation period. Notab]y,least 80%
of dairy cows undergo NEB during early lactation (Nigussie, 2018). In general, when NEB occurs in
early lactation of dairy cows, EB reaches zero during mid-lactation and becomes positive in late
lactation. Cows experiencing body tissue and energy loss in the early lactation typically reach PEB
around DIM 40-80 (Coffey et al., 2001). However, several cases of negative EB ng the mid- and
late lactation periods in high-yielding dairy cows with relatively high milk yields were observed. In this
study, cows on average achieved PEB at DIM 66, 105, and 200 for EB indexes 1 (early lactation period),
2 (mid-lactation period), and 3 (late lactation period), respectively. ffey et al. (2001) reported that
the cumulative body energy loss in the first lactation period was fully regained at approximately DIM
200. Further, the more delayed the transition from NEB to PEB, the higher the ECM and feed efficiency.
This was due to the dairy cows mobilizing the necessary energy requirements from body fat to produce
large amounts of milk, leading to the cows remaining in the NEB state until the mid-lactation period
(Table 3). In addition, for EB index 3, the daily EB remained negative until mid-lactation, which
suggests that milk productivity increases but reproductive efficiency may decrease. NEB leads to
decreased fertility metabolic disorders, such as ketosis and mastitis. (Puangdee et al., 2016), and
severe NEB postpones arly ovulation and recuperation of postpartum reproductive function and exerts
carryover effects that diminish fertility during the breeding period (Nigussie, 2018). Moreover,

postpartum reproductive activity may resume only once the nadir of NEB is reached (Coffey et al.,
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2002), indicating that the transformation from NEB to PEB could serve as a valuable sign of the
restoration of reproductive activity.

These results suggest that the present model is an appropriate method for evaluating EB on a
commercial farm without measuring BW daily. Monitoring the EB of individual cows has clear benefits
from the perspective of using EB as a diagnostic tool for nutrition and reproduction. In addition, EB
indexes can be used as indicators for farm management decision-making. These advanced modeling
techniques offer concrete benefits to dairy farmers in real practice. The precise anticipation of BW and
EB has a pivotal role in guiding decisions related to feed management, allowing for meticulous
adjustments in the dietary plans of individual cows. By integrating readily accessible information, such
as milk traits, parity, and DIM, the devised models can provide tailor-made recommendations for the
specific nutritional requirements of each EB index group. This customized approach enhances feed
utilization efficiency and enables economically efficient milk production, considering the reproductive
efficiency of the next parity. Further, it facilitates the early identification and prompt intervention of
metabolic disorders. The outcomes highlighted in this study underscore the potential significance of
advancing dairy farming practices, thereby contributing to progress in sustainable livestock
management.

Our research had some Emitations that should be taken into account when interpreting the findings.
The data used for model training and testing were derived from only one farm, which could have
contributed to an unbalanced distribution of BW values for model training, and farm-specific BW and
EB patterns may exist. Therefore, models must be trained on data from a larger number of farms to

ensure the robustness of the predictions.

5. Conclusion

We developed a BW prediction model for individual cows using milk production traits and parity
information and estimated their daily EB based on the predicted BW. In this study, milk production
traits readily available on commercial dairy farms ere used as input variables for BW prediction. The
DNN model demonstrated the highest predictive accuracy during the lactation period, outperforming

the LOESS and MLR models in the ten-fold cross-validation. This investigation highlighted variations
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in the transition of EB status from negative to positive among cows, leading to the classification of
cows into three EB index groups based on DIM, which captured different EB transition patterns.
Notably, EB index 3 exhibited the slowest transition from negative to positive EB, accompanied by the
highest FE and ECM values. The EB of individual cows during gctation can be estimated and
monitored with moderately high accuracy using EB indexes. In conclusion, EB indexes could be used
as indicators for individual and herd management. Future work will aim to validate these models on

multiple dairy farms.
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Figure and table legends

Fig. 1. Milk production variables in the first and second principal components. DIM days in milk; DMI,
dry matter intake; EB, energy balance; ECM, energy corrected milk; FE, feed efficiency; FPR, milk fat-
to-protein ratio; SCC, somatic cell counts

Fig. 2. Relationship between days in milk (DIM) and (A) the mean of energy corrected milk (ECM)

and (B) dry matter intake (DMI) in Holstein cows (mean + SD)

3
Fig. 3. Relationship between days in milk (DIM) and (A) the mean of energy demand (ED), (B) energy

intake (EI), and (C) energy balance (EB) in Holstein cows (mean = SD)

Table 1. Descriptive statistics of the dataset
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Table 2. Predictive performance of different modeling approaches for prediction of body weight (BW)

using ten-fold cross validation

Table 3. Results of energy balance (EB), energy corrected milk, feed efficiency, and calving interval

according to the EB index
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Table 1. Descriptive statistics of the dataset

Variables Mean SD Median Min Max
Days in milk (d) 170.79 81.38 180.00 10.00 305.00
Parity 2.81 1.13 3.00 1.00 6.00
Energy corrected milk (kg/d) 37.36 6.05 37.07 21.75 59.67
Fat protein corrected milk (kg/d) 34.56 5.58 34.30 20,01 55.02
Milk fat-to-protein ratio 1.23 0.27 1.23 0.50 1.97
ilk yield (kg/d) 36.26 6.26 35.80 18.30 54.70
Milk fat (%) 375 0.66 3.81 1.85 523
Milk protein (%) 3.10 0.29 3.08 241 4.10
Body weight (kg/d) 730.30 58.63 731.00 587.00 861.00
ergy balance (MJ of NEy) 25.64 38.75 2530 -104.76 136.83
Energy intake (MJ of NE;) 177.00 43.04 175.03 64.80 301.26
Energy demand (MJ of NEy) 151.36 19.70 150.32 97.44 228.01
Dry matter intake (kg/d) 31.55 7.67 31.20 11.55 53.70
Feed efficiency 1.24 0.34 1.17 0.66 3.66

Milk fat-to-protein ratio = milk fat (% )/milk protein (%)
5
Feed efficiency = energy corrected milk (kg/d)/dry matter intake (kg/d)

300
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301

Table 2. Predictive performance of different modeling approaches for prediction of body weight

(BW) using ten-fold cross validation

Models RMSE MAE
Multiple Linear Regression (MLR) 50.94 38.15
Local Regression (LOESS) 40.93 32.73
Deep Neural Network (DNN) 32.92 25.65

The features were days in milk (DIM), energy corrected milk (ECM), fat-to-protein ratio, and parity.

MAE, mean absolute error (obtained using ten-fold cross validation); RMSE, root mean square error

(obtained using ten-fold cross validation)
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Table 3. Results of energy balance (EB), energy corrected milk, feed efficiency, and calving interval

according to the EB index

Groups

Items p-value
EB index1 EB index2 EB index3

Energy balance (MJ/d) 4522°+4831 37.68°+32.14 493+ 5047 <0.0001

Energy corrected milk (kg/d) 33.08°+7.96 37.74°+ 5.66 38.89°+ 433 <0.0001

Feed efficiency 1.09°+0.42 1.14°+0.24 1.49°+ 048 <0.0001
Calving interval (d) 379.32°+ 4525 488.00°+74.65 561.07°+99.92 <00001

Feed efficiency = energy corrected milk (kg/d)/dry matter intake (kg/d)

302
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