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Jaffrey-Hamel flow features of Oldroyd-B model through
intersecting plates

Abstract:

We evaluate the steady Jaffrey-Hamel flow of a viscoelastic fluid using Oldroyd-B model in a
deformable channel formed by twogintersecting plates. To be more precise, we offer a
mathematical structure for computing the leading-order impacts of the fluid viscoelasticity on the
flow in the setting of relaxation and temporal retardation interactions between the fixed walls of
the channel. The typical dimensionless variables influencing the interaction of fluid andmucture
in both wider (divergent) and narrower (convergent) channels are primarily identified. The flow
originates from a source located at the apex, travels from convergent to divergent zone, and exists
at the outlet to the reservoir. Only radial component of velocity contributes to the fluid velocity
while the azimuthal component is zero. The fluid attributes are independent of hydraulic pressure
and temperature. We hiﬁight the respective contributions of various components of momentum
equation coupled with pressure gradient along the radial and tangential direction. The pressure
gradient is omitted since gradients of viscoelastic shear stresses predominantly cause the
contribution for narrower/expanding geometries. We further demonstrate that, although the
pressure is minimal along the midline line for narrow geometries, viscoelastic stresses are equal to
or greater than shear stresses across the domain. Applying the principle of momentum and mass
conservations in a cylindrical polar framework, the system of governing equations is constructed.
The computer-based MATLAB code (bvp4c tool) is used to numerically solve the consequent set
of modelled equations. The results pertaining to a Navier-Stokes fluid, and a Maxwell fluid exist
as limiting instances of our formulations. Effect of inertial forces (20 < Re < 140) and channel
opening have similar effects on converging and diverging section of the channel. A higher strain
delaying time and a shorter stress relaxation phase produce an improved velocity profile, but both
viscoelastic times have the opposite effect.

Keywords: Relaxation and retardation effects; intersecting plates; Modelling and similarity

solutions; Reynold and Deborah numbers.

1. Introduction

In many real-life scenarios, e flow over a diveﬁing or deviating channel is significant. The
polymeric industry, rheological fluids in conduits and cavities, blood flow via ve'ﬂls and arteries,
ecological and civil engineering, and aircraft are examples of this sort of flow. The flow of the
viscous liquid along aligned surfaces has been extended within the framework of several unique

Newtonian and non-Newtonian liquid model, in the perspective of a wide range of scientific and

technical applications. For example, it will make a substantial contribution to the transmission of
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crucial production processes extruded die designs. Additionally, they are important for a number
of scientific projects in the disciplines of engineering, biology, manufacturing, and biomechanics
(Coussot, 2014), (Boujelbene et al., 2023). This type of flow was first identified by (Jeffery, 1915)
and afterward (G, 1917). Anﬁalytical elucidation to the Navier-Stokes equations was investigated
by (Sadeghy et al., 2007). The Jeffery-Hamel (J-F) flow of a non-Newtonian liquids does not
adhere an exact solution. Howe\!ﬁ the use of similarity variables making it possible to test the
viability of rheological models (constitutive relations connecting the stress vector to the rate of
deformations tensor). In response to the broad spectrum of applications in industry, numerous
scientists&ve investigated the transmission across intersecting plate’s channels in the setting of
different non-Newtonian fluids. In a convergent or diverging chanﬁl with permeable walls,
(Kazakia and Rivlin, 1997) reported a computational simulation for a non-Newtonian fluid
following a power-law constitutive model. Later, (Straul, 1974) explored the fundamental
problem and offered the powers series approaches for the steady 2D isothermal flow of a Maxwell
liquid across two colliding surfaces. (Ara et al.,2019) examined heat transmission in the J-F flow
of a Bingham liquid in the backdrop of a Lorentz forces using the straightforward Bingham fluid
(ignoring regularization). He assumes an optimal viscous dissipation flow while the fluid was
supplied throughout the channel. Even the preceding assumption may not be true for flows where
the degree of clatortion is zero at a few points in the outcome domain. Several investigator
(Peddieson Jr., 1973), (Hooper et al., 1982), (Shibanuma and Kato, 1980), (Balmer, 1971),
(Langlois, 1996), and (Rehman et al., 2023) examined the convergent divergent conduits flow

problem in depth using different rheological models.

In response to its significance in many fields of engineering, science, and technology, especially
in the material manufacturing, biological, and nuclear sectors, geophysia the dynamics of non-
Newtonian fluids is currently gaining tremendous significance. Due to its applications in many
fields of science, engineering, and technology, particularly in the material processing, chemical
and nuclear industries, geophysics, and bioengineering, the flow of non-Newtonian fluids has
recently attained enormous importance. Non-Newtonian fluids are categorized based upon the
manner they bﬁve in applied shear for an assortment of characteristics. A fluid is considered
classical if the shear stress and shear rate have a direct relationship that results in an equilibrium
viscosia. Since several fluids exhibit uniform viscosity but are undoubtedly not Newtonian, such

as the second-order fluid, a Maxwell model, and the Oldroyd models A and B. The traditional
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Newtonian and the Maxwell fluid model are two specific examples of the Oldroyd-B fluid, which
has recently gained a particular standing within various fluids of the rate kind. Other mathenatical
frameworks that can forecast the motion of such materials have been developed because of the
Navier-Stokes theory limitations in representing rheologically complicated fluids used in
manufacturing procedures, such as polymeric solutions, melting, and pigments. The Oldroyd-B
fluid model constitutes among them (Oldroyd, 1950), (OLDROYD, 1951). This fluid, which
accounts for the elastic and memory characteristics discloses that most polymers and biological
fluids display, are applied in a variety of settings, and simulation findings generally agree with
experimental data (Bird, 1987). (Rajagopal and Bhatnagar, 1995) explored two straightforward
flows as a follow-up to their analysis of an Oldroyd-B fluid. Several researcher (Hayat et al., 2001),
(Fetecau et al., 2007), (T Hayat et al., 2004), (T. Hayat et al., 2004), (Cui et al., 2022), (Cui et al.,
2021), (Jan et al., 2022) explore the effect of non-Newtonian and Oldroyd-B fluid in a different

geometry.

A review of the prior discussions, it appears that no work has been done on the Jeffery-Hamel
flow of the Olclryod-Béuid although substantial work has been done on the conduit flow of
coupled stﬁsses fluids. As a result, the goal of the current study is to examine the flow behavior
in the J-H flow of a coupled stresses fluid while handling the convergent and divergent flow zones.
The two rigid boundaries, which intersect together with some angle, a&chos&:n as flow domain.
The flow is caused by a source located at the inlet and maintained under a constant pressure
gradient between two boundaries of the channel. The expression of pressure gradient is negligible
because we believe that the flow attributes in both sections are different and the contribution of
pressure to flow characteristics are negligible as compared to fluid geometry, rheological behavior,
and inertial forces. For convenience of brevity, it is believed that fluctuations in pressure and
temperature have no effect on the fluid characteristics. As a result, the momentum equation, which
is a partial differential equation, can be independently converted into ODE's using similarity
transformation while omitting the pressure term. Numerical solutions are found for extremely
nonlinear momentum equation using bvp4c routine. The ﬂowdissemination across the conduit is
determined by solving the momentum equation after finding the velocity profile and considering
the flow to be a balanced viscous dissipative flow, (fluids blended thermal fluctuations through

the conduit are small).




2. Conservation equations

The fundamental equations governing the flow of steady and incompressible viscoelastic fluid are

presented here (Brandi et al., 2019), (Varchanis et al., 2022):

V'VZU., (1)
DV .
pop =V (=pl +uy+1). (2)
&t .
T+AE—,upy. (3)

r
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Where, —pl is the indeterminate spherical s.tress. The convected derivative, oo s given as: —- =
30

% +V-VV,y=2D=(VV+VVY), is the rate of deformation tens.or, A, and A4, are fluid
E

relaxation time is the polymer-contributed viscosity, respectively, p is the fluid density, V=

(6 14 4

§’;£’a_) is the Hamiltonian operator, V' is the velocity vector, T is the stress tensor of the
Z

Oldryod-B fluid (Bhatnagar et al., 1993), (Huang et al., 1998).

o P . . . .
The upper convective time derivative 5; 0 equation (3) is mathematically written as (Zhao et al.,
2013),

T E

VT —T-VV — tr,
w =TV VT W v - 1. (4)
Here, for steady flow % = 0. In a limiting case A, = 0, the problem revert to Maxwell’s fluid
(Razzaqetal.,n.d.) and 4, = 0 = 4, the problem revert to traditional viscous fluid. Thus, the Eq.
(2), simply takes the form:

p(V.V)V = =Vp + uv-y. (5)
3. Problem statement and formulation

The investigation of converging and diverging channels is depicted schematically in Fig. 1. It can
be seen from the schematic, that the 2-dimensional conduit walls are oriented at an angle of 2a.

Both the radial and z directions of the channel reach to infinite direction, having the z direction

acting as the unaffected direction (;—z = U) and z = 0. The cylindrical polar coordinate (r, 8, z) is
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positioned at the conduit’s apex. The converging channel can be studied using the same
dimensions as the diverging channel. In actuality, it is realistic to assume that the flow in a
converging conduit is inadequate (Rezaee et al., 2023). By doing so, we can establish boundary
constraints that apply to all sorts of networks without defining the limits for a converging channel.

The flow is anticipated to be incompressible p =constant, continuous, completely developed in
terms of hydrodynamics, steady state (% = 0) , and devoid of body forces. Since the

&w investigation area is sufficiently removed from the channel’s apex and inlet, it is believed that
the velocity component in the 8 —direction is zero ie., ug(r,8)ég = 0. To simplicity, we have
presummated that the viscosity and density of the fluid are unaffected by the fluid temperature and

pressure. The velocity vector is interpreted as V = w,.(r, 8)é,.

Fig. 1: Geometrical description and flow orientation.

Assuming velocity vector V = u,(r, 8)é,, the tensor y becomes:

up(r,6) 10urp(re)

E dar r de 0
y = ) 2w o0l (6)
r d8 r
0 0 0

Taking divergence of y, we have




. (8%u,(1,6) 1 9%2un.(r6) | 19up(r6) u,.(r,a)) ~ (3 du.(r,6) 162ur(r,6))A
vy '( arz r2 962 roor 2 )t (=5 r aroe ) ° 7
The term (V - V)V elucidate the inertial expression and written as:
du (r 8)
(V V)V _ur( 9) €r. (8)

Using Eq. (6), (7) and (8), in Eq. (5), we have

ap ou (rﬂ) 92u (rﬂ) 1 32uy(r.8) up(r,8) 83up(r,8)
PP = —uy (r, ) 5 - 1, [ (r,0) TG o o (57D 4 g, (MDD

r rZ 962 r2 0ron?
Uy (r,0) 82Uy (r,8) _i(aur(r,a))Z
3 362 73 96 ! 9)
1dp iau,-(r,ﬂ) _ u,-(rﬂ) duy(r.g)
P (1 +4, at) rog 2u I FY bul, a0 (10)

The realistic no slip-boundary conditions at the inlet and wall are (Rezaee et al., 2023), (Hashim

etal., 2022):

As (8 = 0):
u, (r,0) = U, 2252 = g, (11)

As (6 - *a):
u,(r,8) = 0. (12)

The continu'%equation yield to a dimensional velocity u, (r,8)r = F(8), implying u,(r,0) =
F(0) = rU, where U is the midline velocity.
The total volumetric flux crossing the channel can be estimated using the following relation:

= [* ru,(r,0)do. (13)
The positive and negative flux correspond to inflow and outflow at the inlet of the channel.

Adopting the dimensionless procedure, we introduce the following scaling variables (Rezaee et

al., 2023), (Hashim et al., 2022):

F‘(ﬂ)

= f(n), where n =~ (14)

Here, f(n) signifies the normalized veloicty. n symbolizes a dimensionelss angle, and Q* is the

volumetric flow rate between the upper and lower plates of the conduit:

-~

Q" === [ fndn. (15)




Implementing Eq. (14) into Eq. (9) and (10), and omitting the pressure gradient terms, the

governing PDE’s takes the following normalized form:
(f"" +4a*f") + 2aRef f' — 6aReDe  f*f' — De, (6f'f" + 2f f"' + 24a*ff') = 0. (1)

with the following geometric restictions at the midline and wall

f=1 f'=0asp—0and f=0.Asn— +1. (17)
Where Re = ﬁt—u: Reynolds number, De, = A:—U First Deborah numbers, De, = :—Uﬁ =
D

De, = Dey j: Second Deborah numbers, respectively.
2l

The problem Eq. (17) revert to classical Jaffrey-Hamel by taking De; = De, = 0.
4. Computational solution

écomputational technique bvp4c is durable and capable for managing this kind of com

boundary value problem. The MATLAB bvp4c (Kierzenka and Shampine, 2001) process is a
simple and user-friendly tool that uses finite- difference algorithm to handle this challenging
task. The problem is reverted to first order using shooting mechanism. Establishing a preliminary
guess at a various mesh point, the results are produced by boosting the step size An = 0.01 unless

the needed precision 107° is obtained.

We delineate different variables:

- [ o B N o

"-"1_f1 '-'Z_fﬁ'-'?!_f! (19)
251 = v, = (—4a? 2,—2aReZ,Eo+6aReDey E1% E;—Dey(6 Ep Eg+24a? 4 Ey)) (20)
== Y3 1-2De; 2,

2,(0) =1, 2,(0) =0, E,(+1) = 0. (21)

If the outcome does not satisfy the precision requirements, the solver modifies the mesh structure

and keeps going until the accuracy requirements of 107 are satisfied.

Table 1. Validation of the present outcomes with available studies for f(7), when De; =0,

De, = 0 (vsicous fluid).




(Bégetal., 2022)

Present study

n Re =110 Re =80 Re =50 Re =110 Re =80 Re =50
a=3° a=-5° a=05° a=3° a=—5" a=5"°
0 1 1 1 1 1 1
0.1 097923571 0.99596063 098243124 0.9789 0.9955 0.9818
0.2 0.91926589 0.98327554 0.93122597 09188 0.9830 0.9309
0.3 0.82653362 0.96017991 0.85061063 0.8261 0.9201 0.8502
04 0.71022119 0.92352159 0.74679081 0.7101 0.9231 0.7469
0.5 0.58049946 0.86845888 0.62694818 0.5804 0.8882 0.6263
0.6 044693507 0.78809092 049823446 04461 0.7880 0.4980
0.7 0.31740843 0.67314363 0.36696635 0.3169 0.6728 0.3664
0.8 0.19764109 0.51199109 0.23812375 0.1972 0.5118 0.2379
0.9 0.09123042 0.29155874 0.11515193 0.0910 0.2913 0.1149
1 0 0 0 0 0 0

5. Results and discussions

The behavior of flow f(n) against various physical parameters is depicted in Figs. 2—5.
The lower and upper portion of the channel are taken within the domain of n € [0,1] and n €
[—1, 0], respectively. Similar effects of Reynold number Re and channel semi-apex angle on the
velocity profile can be seen in Figs. 2 and 3. In a diverging channel, a rise in Re and & reduces the
gradient of velocity at the surface and slows down the fluid constituents in some manner, which
lowers the surface shear stress. The decrease in the wall shear stresses caused by Re and
a indicates the development of an unfavorable pressure gradient, which result in the separation of
flow phenomena in divergent conduit. It is intriguing to note that the conduit apex angle and the
Reynolds number 'ﬁﬂuence the flow in opposite manner in a converging channel. Physically, the
overall dimension of the velocity contour and the gradient of velocity at the boundary grow with
increasing Reynolds number and channel apex angle. The impact of first De; and second Deborah
number De, are plotted in Figs. 4 and 5. The parameter De, refers to relaxation time 4,, which
spectacles a decline in momentum resulting from the fluid viscoelastic characteristic. The temporal
relaxation parameter A,is accountable for Deborah number De;, which is present in the non-

dimensional momentum equation (17). Physical, since momentum is associated with increased
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values of the material parameter De, therefore stronga viscous forces repel fluid molecules.
Additionally, the flow rate declines because of amplified friction caused by the contracting channel
(Fig. 4(a)). As a result, velocity of fluid particles decreases as relaxation time extends the elastic
forces that govern the fluid mobility. Thus, deformation rate develops, and the fluid ultimately
take more time to pretend solid-like characteristics. Fig. 4b suggests that the motion of fluid
constituents adjacent to the boundary speeds up more intensely as De, increases (for instance, by
raising the quantity of the polymers additives). Due to the fluid components unilateral and bilateral
extensions, significant elastic stresses develop in the flow direction. The Deborah number De, on
the other hand, exhibits a reverse behavior, resulting in a decrease in the flow fields in bo

conduits, as seen in Figs. 5a and 5b. Additionally, it can be seen from Fig. 4b, a significant fall in
the fluid velocity is observed for diverging flow fields with increase in De,. The rise in
elongational stresses explains that there is an interruption in the particle transfer velocity caused
by its elastic properties when De, is elevated. It is also important to remember that the fluid

elements of the flow pattern constantly return in a radial manner.
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Fig. 2: Flow attributes against Re when De; = De, = 0.2, with a apex angle (a) —5° and (b) 5°.
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6. Final remarks

We provide a mathematical model and computational results for the flow features of Oldroyd-
B fluid within intersecting surfaces having convergent and divergent cross sections. This
formulation is typically uncommon in published work. The self-similar solution is accompanied
by computational solutions using the Bvp4c method. Modelling viscoelastic fluid with rising
Deborah numbers allows us to understand how the viscous and elasticity affects the velocity field
of viscoelastic fluid in conduits, ducts, and cavities. At the conclusion, the findings are cross-
checked against data that have already been published in the available literature. From the current

investigation, the following conclusions may be drawn:

e With increased Reynolds number Re (inertial force)in converging channel, a sharper
profile can be achieved at the conduit midline.

e The effect of inertial forces Re and apex angle a are similar for both conduits.

e The increased channel width and inertial factor for favorable pressure gradient in
converging section, while conflicting behavior was seen in divergent section.

e The higher estimation of time relaxation 4, detract the flow field in diverging conduit.

e With higher estimation of retardation time A, the distribution of flow diminished in both

sections.
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The analysis can be extended by taking the slip at the interface (lubricated walls), heat and mass

transfer attributes, and more realistic situation (nozzle design).
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