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Abstract

Circulant graphs are useful networks because of their symmetries. For
k > 2and n > 2k + 1, the circulant graph C,(1,2,....k) consists of
the vertices vy, v1, v2, ..., vn—1 and the edges vivier, wvies, .. viVisg,
where 1 =0,1,2,...,n — 1, and the subscripts are taken modulo n. The
metric dimension 3(Cr (1,2, ..., k)) of the circulant graphs Cr(1,2,..., k)
for general k& (and n) has been studied in several papers. In 2017, Chau
and Gosselin proved that 3(C,(1,2,....k)) = k for every k, and they
conjectured that if n = 2k 4+ r, where k is even and 3 < r < k- 1,
then A(CL(1,2...., k)) = k. We disprove both by showing that for
every k > 9, there exists an n € [2k + 5.2k + 8] C [2k + 3.3k — 1]
such that #(CL(1,2,...,k)) < [%1 + 2. We conjecture that for k > 6,
B(C,(1.2, ..., k)) cannot be less than {%1 + 2.

Keywords: metric dimension, resolving set, distance, Cayley graph, cir-
culant graph.

1 Introduction

@e metric dimension is an invariant which has applications in pharmaceutical
chemistry (see [4]), pattern recognition and image processing (see [16]), robot
navigation (see [14]), and Sonar and coa.@mrd Loran (see [18]).

In a graph G having vertex set V(('), the number of edges in a shortest path
connecting two vertices w, v € V() is the distance d(u, v) betwg'l wand v. If
d(u,w) # d(v, w), then a v@llex w resolves two vertices u and v. For an ordered
set W = {wy,wo, ..., w,}, the ordered z-tuple

r(v|W) = (d(v,un), d(v,wa), ..., dv,w.))
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isge representation of distances of v in terms of W. If all the vertices of G have
different representations, then W € V(@) is a resolving set of G. The metric
dimension 3(G) is the number of vertices in a smallest resolving set.

Circulant graphs afff very useful networks becanse of their symmetries. For
k> 2and n > 2k+1, the circulant graph C.(1,2, ..., k) has the vertices vg, v1,
Va,..., U1 and the edges v;v; 1, ViViro,. .., ViVipk, wherei =0, 1,2, ... ,n—1,
and the subscripts are taken modulo n. We assume that n > 2k + 1, because
for n < 2k, C\,(1,2,...,k) would contain multiple edges. So, {£1,42,..., +k}
is the set of generators of C',(1,2, ... k).

In this paper, we focus on the following question: For a fixed k, find

min{3(C,(1,2,...,k)) | n > 2k + 1}.
By [3] and [13], we have

4 ifn=1 (mod4),
3(Cn(1,2)) =
B(Cn(1,2)) {3 ifn =023 (mod4).
1
By [3] and [9], for !2 8, B

5 fn=1 (mod6),

(/'n 1323 —]
B(Cu 3) {4 itn=0,2,3,4,5 (mod 6).

Since 3(C,(1,2)) = 3 and 3(C,,(1,2,3)) > 4, Grigorious et al. [8] assumed and
proved that 3(Cn(1,2,...,k)) = k+1. Their result does not hold. In [20] it was
proved that 3(C,(1,2,...,k)) can be k, and that for n > k? + 1 where k > 2,

}@((1‘11(1:2: e sk)) 2 k:
and for n = r (mod 2k) where kb + 2 < r < 2k + 1 and k > 2, we have
ACL(1,2,.. k) = k+1.

Chau and Gosselin [5] obtained several strong results, but their inequality (1)
is incorrect. They proved that for g = r (mod 2k),

BC.(1,2,..,k)) = & (1)

it 3 <r <k, and
ﬁ(("n(ls?s"'sk)) = kE+1

it k+1<r <2k+ 2. They also conjectured that if n = 2k + r where k is even
and 3 <r < k — 1, then

BC(1,2.... k) = k. (2)

We disprove (1) and (2) by showing that for every k > 9, there exists an n €
[2k + 5,2k + 8] C [2k + 3,3k — 1] such that

2k
mcuhmuwm)g[?W+z




The importance of this result is that it has not been known before that 2(C, (1,
2,....k)) can be less than k.

Let us note that the graphs €, (1,3) were studied in [12], C},(1,4) in [2],
Co(2,3) in [6], Cu(1,2) for even n in [17), C(1,2,4) in [11], Cy (1, 2,5) in [10],
Cn(1,2,3,4) in [7] and [21], Cu(1,2,....k) also in [19], and some interesting
networks were investigated also in [1] and [15].

2 New bounds

We show that for every k > 7, there exists an n such that 3(C,(1,2,...,k)) <
%—| + 2. The case k = 1 (mod 3) is studied in Theorem 1, & = 2 (mod 6)
is studied in Theorem 2, k& = 3 (mod 6) is investigated in Theorem 3, k = 5
(mod 6) is considered in Theorem 4 and k& = 0 (mod 6) is studied in Theorem

5. Note that the subseripts of the vertices v; are taken modulo n.
Theorem 1. Let n =2k + 5 where k =1 (mod 3) such that k > 7. Then

2!;—1_
3

Proof. Let W = {wg} U {v; : i = 2,5,...,2k +3}. We have n = 2k + 5, so
PEY any vertex v; € W (where 4 = 2,5,...,2k + 3 or 0), there are 4 vertices
Vit ket Vit 2 Vi kb3 U 4 at distance 2 from v; (and 2k vertices at distance
1 from v;). Let V; = {ﬁkﬂ, Vigpktos UVigktas Vipkid ;o 1t follows that the
representations of a vertex of V(Ch(1,2,...,k)) "\ Vi and a vertex of V; are not
the same in terms of W.

For the vertices of V; wherei = 5,8,..., 2k and the ordered set {v,_;;. 1.',+;:,} C
W, we get

2.

ﬁ(("n(lrQr---rk)) S

r ?"x'+k-+1\{?"f—3.~ 1’:’+3} =

( )=(2

T'(?"i+k-+2\{?"i—3.~1’:‘+3}) = (1,

7'(““:‘+k+:4‘{“:‘—3.~1’:‘+:4}) =(1
( )=(1

T 1’:‘+k+4\{?"f—3.~ l’x‘+:;} =

3
Since v 4o € W lor i = 5,8,...,k+ 1, and viypys € Wlori = k+4,k +
T,....2k, the vertices of V; are resolved (for i = 5,8,...,2k). We have

VaU Ve U UVap = {Uktt, VkdT,. ..  U3kta}

Note that 3k +4 = k — 1. Finally, we need to resolve vi, viq1,. .., vkts. We
have 41, V44 € W and

T(?t’k|{”2k+:;.~U[}J"Q}) =1(2,1,1)
r(vese{vonsa, vo, va}) = (2,2,1),
7'(?"&-+3|{?"2k+3.~ 1"[131"2}) =(1,2,2),
r(Vhgs {var1a, vo, ve}) = (1,1,2)




..., k) are resolved. So, W is a resolving set and

Thusﬂ the vertices of C'), (1, 2,
)< W= 2EE 2 O

we obtain 3(C},(1,2,...,k)
Theorem 2. Let n = 2k + 8 where k =2 (mod 6) such that k = 8. Then

- 2};+2+

}(3(("11(1:2:"'3}‘:)) - 2.

Proof. For i = 0,1,2,... ,%, let W; = {vgi,vi12}. We show that W =

WoU Wi U U Wi resolves (0n(1,2,..., k). We have n = 2 8, so for
3

any vertex vj where j = 0,1,...,n — 1, there are 7 vertices vjtk+1, Ujtkt2.

Vipht3s Vjidhtds Uj4ktsr Vjthtt Vjhsr at distance 2 from v; (and 2k vertices

at distance 1 from v;). Thus there are exactly 7 vertices at distance 2 from

v € Wi where 1 = 0,1,2, ... ,k—'ﬁ:l Those vertices are the vertices of the set

Vi = {U6 ikt 1> V6itk+2> Voi+h+3s Voi-thtds Voi-thts: Ubitkt6: Voith+7 -

So, the representations of a vertex of V(C,(1,2,...,k))\ V; and a vertex of V;
are not the same in terms of W. For the vertices of V; and {vgi—g, vei—4, Veit2,
vsire} C W, we get

T(?"ux‘+k+1|{?"fii—n, Vgi—as Viit2y ?"m+u}) =(2,2,1,1),
T(?"zn+k+2|{?"m—u, Vgi—as Vaita, ?"m+u}) = (1, 2,1, 1):
T(?"ux‘+k+3|{“Uu:'—f;,?"fix'—4,?"fix+2,?"m+u}) =(1,2,2,1),
T(?"s;i+k+4|{?"us—u, Vgi—a, Vgita, ?"Eh‘+u}) = (1, 1,2, 1)s
T(i"ux‘+k+5|{i"fii—n, Uhi—as VGita, i"fn‘+u}) = (1, 1,2, 1):
T(?"ux‘+k+u|{“Uu:'—f;, Vgi—as Vi, ?"m+u}) = (1, 1,2, 1):
T(i"ux'+k+7|{?"ui—u,1"{1:‘—4,1"fh+2,l’fix‘+fi}) = (1, 1,2,2)-

The vertices vgiyit4, Vsithtrs € W, so the vertices of V; are resolved (where
i=0,1,2,. . B) gmee Vo UV Us U Vies = V(Cu(1,2,., k), the set W
resolves the vertices of C(1,2,...,k). Therefore 3(C,(1,2,...,k)) < [W| =
2(EE ). O

Theorem 3. Let n = 2k + 6 where k =3 (mod 6) such that k = 9. Then

2k
2.
3 +

.

B(Cu(1.2,... k) <

Proof. For i =0,1,2,..., %, let W; = {vgi.vgiq2}. We show that W = W, U
Wil .. H-’% resolves Cn(1,2,..., k). We have n 2k +6, so for any vertex v;
where j = O,'l,. ..,n — 1, there are 5 vertices Vjthtls Vitht2s Vithtd: Vjithtd:
Vj k45 at distance 2 from vj. For each Wi = {vgi, vgi42} where i = 0,1,2,.. ., %,
there are 7 vertices at distance 2 from at least one of vg;, vg;40. Those vertices
are the vertices of the set

Vi = {v6i 8B 1, Vit kt2, Vit k3, Voidtkds Vit hth> V6it k6 Ubi-tht7 -




So, the representations of a vertex of V'(C}(1,2,...,k)) "\ V; and a vertex of V;
are not the same in terms of W. For the vertices of V; and the ordered set
{l’m‘—.h Vtiis V24 Um‘-m} C W, we get

T(Vgipht1 {1'm—4,1'm,1'm+z,1m+b}) (2,2,1,1),
(U6t k2 { Vi — 4, Vois Ugigns Vaigo ) = (1,2,1,1),
T(?'m+k+3\{l'm —4.Vgis 1"{;:‘+2J"ﬁx+b}) =(1,2,2,1),
T(Vgiphta H“Um —41 Vgis l'm+2ﬂ"m+u}) =(1,2,2,1),
(U6t k5 { Vi — 4, Voir Ugigns Vaigs ) = (1,2,2,1),
T(?'m+k+u {1'us—4,1'm,1'm'+2,1'm+u}) (1, 1,2,1),
r(v m+k+7\{?'m—4,?’m,?'m+z,?’m+u}) (1,1,2,2).

The vertices 1rf,l+k+;,1vf,l+k+5 < W, so the vertices of V; are resolved (where
i=0,1, q . . Since VpU WV U+ U V% =V(Cu(1,2,...,k)), W resolves the
(vfl

vertices . k). Therefore ﬁ((j'n(l,?, k) < |W| = 2( +1). O
Theorem 4. Let n = 2k + 6 where k =5 (mod 6) such that k = 11. Then

2k +2

3
f’mof. For i = 0,1,2,...,%, let H’"i = {‘Ufiis ‘Ufii+2} and H"’; = {”Eii+k+:h
Vgitkys | Let W= {vp_1, vopqo} and

W= (WouWi U UWes)U(WiUuWiU --uwﬁ)uwf
[

*9(6(11(1323"'3;‘:))5 +2.

Note that |W| = 2( )+ 2( D )+2 = ““'H + 2. We prove that
W resolves C,(1,2,... ,k). We h'.ne n k+6, so for any vertex v; where
j=0,1,...,n—1, there are 5 vertices Vjpkbds Vit kb2 Vi phetds Vjrktds Vj k45 at
distance 2 from v;.

For each W; = {wgi, vgit2} where i = 0,1,2,. , there are exactly 7
vertices at distance 2 from at least one of 1!;,,,1:;,,_,_ 7. Tho.se vertices are the
vertices of the se

Vi= {l'm'+k+ Ly V6itk+2y Viit+k+3y Vit k44, Vei+k+5, Voi+k+6, 1"&:‘+k+7} .

So, the representations of a vertex in V(C,(1,2,...,k))\ V; and a vertex of V;
are not the same in terms of W. For the vertices of V; where i = 0,1,2,..., j“_““
in terms of the ordered set {vg;,- 4 Uiy Vit 2, l’u:‘+u} C W, we get

T(Vgipht1 H? U6i —41 Uiy l'm+2ﬂ"m+u}) (2,2,1,1),
T(Vgiphio \{“Um —4 Uiy Vgig 2y “Um+n}) (1,2,1,1),
T("m+k+:4\{l'm — 4. Vi, l's;x‘+2,l's;x+u}) =(1,2,2,1),
(U6t k4 [{ Vi — 4, Vois Ugigas Vaits ) = (1,2,2,1),
(Vi p et s Hl'm —45 Vi ?"fix'+2,?"m+u}) =(1,2,2,1),
T(?'m+k+u\{?'m —45 Vi, ?'m'+2,?'m+u}) (1, 1,2, 1),
r(v m+k+7\{?'m—4,1'm,1'm+z,?'m+u}) (1,1,2,2).




The vertices vgiipia. Voirhrs © W, so the vertices of V; are resolved by W
_— k—11
(where i = 0,1,2,...,%5=).
Similarly, for each W} = {vgiy 43, Veitkt5} Where i = 0,1,2,..., %, there
are exactly 7 vertices at distance 2 from at least one of vg; 43, Vsitrrs. Those
vertices are the vertices of the set

r
V,- = {i"fix'—Zsi"Eii—ls Uiy Vit 1s Veit2s Vbitas ?"m‘+4}-
So, the representations of a vertex of V, and a vertex of V/(C,,(1,2,....k))\ V/
are not the same in terms of W. a the vertices of V) wherei =0,1,2,..., k*“l
in terms of the ordered set {vgitk—1. Vgit ket 3: Voit+hta, Usickrar C W, we get

=

T‘(Um—2|{l'm'+—1,1.'m'+k+3,1.'m'+:c+5,i.'m'+k+.r;}) = (2,gml,1),
T‘(Um—1|{l'm'+k—1,1.'ux'+k+3, Viitk+5, i.'m'+k+.r;}) = 1 1),

T(V6i [{V6i+ k=1 U6i+k-+3: Usi+k+5, Usi+k+0 ) = (@02, 2,1),
P (U6it 1] {V6i4 k-1, V6i-t k3, Voith+5, Voir ko ) = (1,2,2,1),
7(vgital {'UE}H-al UG 3y Ui k5 Ui ko b)) = (1,2,2,1),
T'(Um+3|{l'm+al,“Um'+k+3, Vi k+5, i"m+k+.{;}) =(1,1,2,1),
T(T"u:'+4|{l'm+k—1,?"u:‘+k+3, Vgitk+5y i"u:‘+k+.{;}) =(1,1,2,2).

The vertices vy, vgipe € W, so the vertices of V/ are resolved (where i =
0.1.2 k—11
3Ly Sy s—)'

]

We have
VoUWV U U Vi = {0kg1, Vkpa, .o, U2k—a}
&)

and
Viuviuy.ee-u Ve —{r 1 Ty 1 ' }
0 1 k—11 = {V2k4a, Vok4s, Vo, U1 ooy V=71
[

Finally, we resolve the vertices
Uk—ts Uk—5 .« Uk and Uog—3,V2k—2, .. ., U2k43.

Note that vg_g5, Up_3, Uk—1, Vok—2, Usk, Va2 € W and

6|{vk—5, Vk—3, vp—1, vak—2, v }) = (1,1,1,2,1),
1,1,1)2,2 ]
1,1,1,1,2

r(Uk—a|{vk—5, Vk—3, Vk—1, Vak—2, vok }

)

)

T‘(“Uk V-5, V-3, V-1, U2k -2, VoL } )
rm’”k—ﬁ JUk—3, Uk—1, Uzk—2, U2k })

)

)

)

( )
( )
( ),
(1,1.1,1,1),
(2,1,1,1,1),
( )
( )
( )

r 3|{1’k—5,1":;—3,1':;—1,1"2:;—2,1"2&}

2!2!1)1!1 )
1!2!2)1!1 )
1,1,2,1.1).

r 1|{vn—5. vk—5, vk—1, Va2, var }

r(vaks|{ve—s, vk -3, P 1, Ugk—2, U2k }

r(varsal{ve—s, vi—a, Vk—1, Vok—2, 21 })

Thus g the vertices of C,(1,2,...,k) are resolved. So 3(C,(1,2,...,k)) <
W[ = 2t 4 2, a




The proof of Theorem 5 is longer than the previous proofs, because the
resolving sets used in the proof of Theorem 5 are not as simple as resolving sets
used in the previous proofs.

Theorem 5. Let n =2k + 6 where k =0 (mod 6) such that k > 12. Then

B(Ca(1,2,...,k)) < —+2

Proof. Fori=0,1,...,% — 1 let W, = {wg;, vi2}. Fori=1,2,..., 5 2 let

"6 "6

r I
W= {i"u:‘+k+:;,i"u:‘+k+5}- Let W' = {“k—u;“kw,i"k+5,i"uk—:;;£’2kﬂ"2k+4} and

W=WoUuWiu- - UWe_ ) U (WiuWs U UWE_,JU W’
[

Note that |[W| = 2(£) +2(£ - 2) +6 = Z£ + 2. We prove that W resolves
Co(1,2,..., k). We haan = 2k+6, so for any vertex v; where j =0,1,...,n—1,
there are 5 vertices v 41, Ujqkp2s U4kt Vjphpds Uj 4 hps at distance 2 from v;.
For each W; = {m;,-, m;,-.;.g} where 1 = 1,2, ... ,% — 2, there are 7 vertices at
distance 2 from at least one of vg;, vg;42. Those vertices are the vertices of the
set
Vi = {U6 4kt 1> V6it k2, V6ith+3s Vbi-phtds Voi-tht5s VGitkt6: Ubitk47 -

So, the representations of a vertex of V(C,(1,2,...,k)) "\ V; and a vertex of V;
are not the same in terms of W. For the vertices in V; and the ordered set
{“Uu:'—.h Vi Vii2y 1’{1:‘4—{1} C W, we get

T(Vgit k41 \{l'm —42 Vs Ugitas ?"m+u}) =(2,2,1,1),
T(“Um'+k+2 ‘{“Um' —45 Ui, ?"six'+2,?"m+u}) = (1, 2,1, 1),
T(“Um+k+3\{l'm —4s Utiiy 1-'tix+2,‘i"m+u}) = (1, 2,2, 1),
(Vi k4 [{V6i —4, Voi, Uiz, Veits}) = (1,2,2,1),
T(“Um'+k+5 \{“Um' —4, Vi, l'si:'+2,l'm+u}) = (1, 2,2, 1),
r(Veithto|{ Ui -4, Veis Usiye, sive}) = (1,1,2,1),
(U6t k7 [{V6i — 4, Voi, Ugig 2, veivs ) = (1,1,2,2).

The vertices vgiypia. Vsirrrs € W, so the vertices of V; are resolved by W
(where i =1,2,...,5 —2).

Similarly, for each W] = {v6ik+3.V6ithts} where i =1,2,... ,% — 2, there
are 7 vertices at distance 2 from at least one of vg; 4 k43, Vithts. Lhose vertices
are the vertices of the set

L
L,- = {“Eii—Zsi"Eii—ls Uiy Vit1s i"EiéQsi"Eii+:‘}s i"m‘+4}-

For the vertices of V/ and the ordered set {vg; 4k—1, V6i4+k+3» Voi+h-+5> Vgithta} C




W, we get

T(T'm—zH?'m-Hc —15 V6it+k+3: Voi+k+5, v E}t+k+[}})
T(“m—1|{l'm+k—1 s Uit k432 Vit k45, U m+k+l}})
r “s;s|{”s;s+k71 > Ui k43 Vit k5, U m+k+f}})
m+1|{?’m+k 1> V6itk+3: Voitk+5, U m+k+l}})

T\ Vit 1| {““m 1> V6it+k+3: Voit+k+5: i'm+k+f;})

(v
7 (vgiya| {?'m+a1 s Vit k43 V6itk+51 i'm+k+l;}
(
(

(V6ita| {V6i+k=1, V6itk+3: Vbi+hkt5, Voitkt9 }) =

The vertices vg;, Vg2 € W, so the vertices of V/ are resolved.
We have

ViuVaU--UVe = = {Vkq 7, Vb8, ..., V2k—5}

and
!

' ’
V]_ I Vg (W V%_2 = {1.’4,‘!,’5, R ,‘i,'jc_g}.

Finally, we resolve the vertices
U7y Uk — G- - Vs AN Vg g, Vago g, -+ -5 Ungor 5-00, V1, V2, U3

if & > 18, and it remains to resolve all the vertices if k = 12. Note that
17
UVk—tiy Uk —4s Vk—25 U2, U5 V2k— 3 U2k s U2k 4y Vo, V2 € W,

so those vertices are resolved. We obtain

(2,1,1,1,1),
(2,2,1,1,1),
(1,2,1,1,1),
(1,2,2,1,1),
(1,1,2,1,1),
( )
( )
( )
( )

(v 7| ?'Qk—:;,1"2:“?"2k+4,?"u,?"2}

(
(
(
(

Tl U Uok—3, Vaky U2k 44, Vo, ?"2}

v -—;| ?Qk—:;,1"2:“?"2k+4,?"u,?"2}

U — 1| ?'Qk—:h1"2:“?"2k+4,?"0,?"2}

{ )=
s/ )
{ )
{ )
r i'kHi' -—:;,?"2:“i"2k+4,i"u,i"2})
{ )
{ )
{ )
I )=

2k
r ?'k+1| ?Qk—:;,1"2:“?"2k+4,?"u,?"2}

1,1,2,2,1),
1,1,2,2,2),
1,1,1,2,2),
1,1,1,1,2).

(

(Vs 1'2:;—:-},1"2:“1"2k+4,1"0,1"2}

(Vg a{V2k— 3, Vok s Vok 4, Vo, Vo }
(

LUk 6 [\ Vak—3. Voks Uokeqa, Up, Uz }




and

r(Vog—a|{U—g: Vk—a, Vg —2, Vgo. g5 }) = (2,1,1,1,1),
r(von @0 ve—6, Vk—a, Vk—2, Vhgo U5 ) = (2,2,1,1,1),
r{vag Uk—6, Vk—4, Uk—2, Uk42, Vkps 1) = (2,2,2,1,1),
7 (V241 | {Uk—6+ Vk—1, Uk —2, Uk2, Vg5 }) = (1,2,2,1, 1),
r(vakt2 | {PR-6, Ve—a, V-2, vky2, vkys }) = (1,1,2,1,1),
(v Uk—6s Uk—4, Uk—2, k42, Ukt ) = (1,1,2,2,1),
T (V2k 45 6y Uk, Uk—2, Uk42, Ukts }) = (1,1,1,2,1),

r(v1 [{@R—6, Vk—4, Vk—2, Uk2, Vg5 }) = (1,1,1,2,2),

7 (va [{Uk—6, Vk—a4, Uk—2, Uk, Ukgs }) = (1,1,1,1,2).

Fori=k—-T7k—-0L—3.k—1kk+1,k+3k+4k+0, we obtain
(v ’U,ic_ﬁ,’v,ic_.;,1ch_2,1):¢+2,1‘ch+5}) =(1,1,1,1,1),
and for 1 = 2k — 4,2k — 2,2k — 1,2k + 1,2k + 2.2k + 3.2k + 5,1,3,
rvil{ver—3, vor, vk, 0, v2}) = (1,1,1,1,1).
Than

the vertices of C',(1,2,...,k) are resolved for k > 18.
If k = 12, it remains to consider vy and v19. We have

T(?"«1|{1o'k+ y Unge— 4} =T 1'4|{?'17,?'21} (2,2)

and
7'(”1.!;|{1'2,?"k—u}) = r(?"u;|{?"2,“u}) =(2,2).
It can be seen above that no other vertex has such representation in terms a

the ordered sets {vg45.vap—3} and {ve, vi_g}. So, W resolves all the vertices o
Cn(1,2,.... k). Thus B(Cn(L,2,....k)) < |W| =2 +2. O

From Theorems 1, 2, 3, 4 and 5, we obtain the following corollary.

Corollary 1. For every k > 7, there exists an n € 2k + 5,2k + 8] such that

BCa(L2,... k) < [ﬂ L2

Let us note that for & = 7 and 8, we have [%1 + 2 =k, so Corollary 1 is
important for k£ > 9.

3 Concluding remarks and further work

We showed that for every k > 7, there is an n € [2k + 5,2k + 8| such that
ACL(1,2,...,k) < [%] + 2. The importance of this result is that it has
not been known before that 3(C,(1,2,...,k)) can be less than k. We believe
that 3(C,.(1,2,...,k)) cannot be less than [%1 + 2 for k = 6, thus we pro-

vide Conjecture 1 as a possible future work. Note that n > 2k + 1, otherwise
C,(1,2,..., k) would contain multiple edges.




Conjecture 1. For every k > 6 (and n > 2k + 1),

2k
B(Cn(L.2..... k) = [?—‘ +2.
ConffBture 1 would not hold for k = 4 and k = 5. For example, for k = 5 and
n = 13, the set {vg, U1, U2, V4, 1.'5} is one possible resolving set of Ci3(1,2,...,5).
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