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Abstract

In this paper, the use of bootstrap method with Monte Carlo integration
is introduced for one dimension. This approach is based on generating
ohservations from a known distribution for the bootstrap samples, then
apply the Monte Carlo method on each bootstrap sample to estimate
the integral of interest. The empirical distribution, or the bootstrap dis-
tribution, of the estimation results can be used as a good proxy for
the distribution of the integral of interest. Based on the bootstrap dis-
tribution, the standard error of the estimate of the integral of interest
can be derived. Also, the percentile and Normal confidence intervals
with confidence level (1 — )% can be derived as well. The bootstrap
method with Monte Carlo integration is easy to implement and straight-
forward to provide well results. Moreover, it provides small variance for
the estimate of the integral of @erest. Four examples with different
functions and different domains are used to present the performance of
the proposed method. From the study, we find that the method pro-
vides nearly identical results for the standard errors. regardless of the
distributions used for generating observations for the bootstrap samples,

Keywords: Parametric bootstrap method, Monte Carlo integration,
percentile confidence interval, Normal confidence interval, standard error.

1 Introduction

In the real world applications, the standard or classical mathematical methods
have been widely used to compute the exact integral of a function g defined
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on an interval [a,b]. This can be achieved if the situation is simple; however,
if the situation is complicated, the computation is quite hard or impossible
in some cases. Therefore, the approximation methods can be good choices to
compute the integrals for the complicated functions with minor errors. One of
these approximation methods is the Monte Carlo integration method, which
is deseribed in many references, see e.g. [15, 21, 26] for more details.

This approximation method for integrals is built with respect to the sam-
pling distribution. It is erucial to choose a sunitable distribution, which should
be close to the function g. to generate random observations. The suitable dis-
tribution can lead to have a better approximation for the integral with small
variance. Many references in the literature discussed the importance sampling
or variance reduction, see e.g. [12, 20, 21, 22, 24, 25| for detailed presentations.

Surely, the importance sampling is crucial for the Monte Carlo integra-
tion to derive a well approximation with small variance, but the importance
sampling requires a long computational time and some information about the

pe of g. These requirements motivate to use the bootstrap method with the

onte Carlo integration. Based on the bootstrap distribution, it is possible to
derive well approximations for integrals with small standard errors. Moreover,
the percentile and Normal confidence intervals of any integral can be derived
witq:igh accuracy.

This paper is organized as follows: Section 2 presents the Monte Carlo
integration for one dimension along with some descriptions. In Section 3, the
bootstrap method is deseribed with explanations of computing the standard
error and deriving the percentile and Normal confidence intervals for the inte-
gral of interest #. Section 4 presents the performance of hootstrap with Monte
Carlo integration. The last section presents some concluding remarks.

2 Monte Carlo integration

The Monte Carlo method is a well-known concept used to derive the approx-
imate integrals for complicated functions defined on certain domains. This
method is built based on the probability theorem [3, 14, 16|, where the inte-
gral of a function g can be C‘Olt{‘d by taking the expectation of function
g. E{g}. For univariate data, suppcof® that X is a random wvariable follow-
ing a probability density function f. The expectation of g( X'} can be written
mathematically as follows

E{g(X)} = f g(2)f(z)dz (1)

Dy

where Dy is the support of probability density fifgltion f.

Let # = ffg(;r] dr and the random variables Xy, Xy, ..., X, are indepen-
dent and identical BRdistributed from the Uniform distribution with parameters
a and b. Further suppose that z,,25,...,2, are the corresponding observa-
tions to the random variables X, X.,..., X,,. The estimated result of # can
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be found by

~ h_ n
6=—"3 glx:) (2)

It shoulmn noted that the estimated value # converges to E{g(X)} = bl—iu as
n — oo with probability 1 based on the strong law of large numbers theorem,
which is presented in [10, 11]. To make the Monte Carlo integration easy to
follow and apply, we list its algnrﬁm in three steps as follows:

1. Generate n observations from the Uniform distribution with parameters a
and b.

2. Find g(z;) foralli =1,2,..., n.

3. Compute = 225" g(x;).

n

The Uniform distribution can be replaced by any known distribution to gener-
ate the observations in the first step, but we choose the Uniform distribution
here for simplicity in application.

3 The bootstrap method

The bootstrap method is a resampling concept proposed to measure the accu-
racy of a statistical estimate and to make inferences about unknown population
parﬁ.met?, e.g. mean, median, variance and confidence interval. In the liter-
ature, it has been widely nsed due to its simplicity to apply and efficiency to
provide well estimates. With high accuracy, the bootstrap distribution for any
statistic of interest can mimic the sampling distribution, where the sampling
distribution is not always easy to obtain in real applications.

To implement the bootstrap method, parametric and nonparametric mod-
els are used to create @iltiple bootstrap samples, then the statistic of interest
is computed based on each bootstrap sample. The empirical distribution of the
results can be used as a proxy distribution for the sampling distribution and
this allows making inferences about the statistic of interest. For more detailed
presentation, it is beneficial to see the book of " An Introduetion to The Boot-
strap” by Efron and Tibshirani [9] and the book of "Bootstrap Methods and
Their Application” by Davison and Hinkley [3].

To use the bootstrap method with Monte Carlo integration, we first need to

roduce some notations. Suppose that the random quantities X, Xo, ... X,
are independent and identically distributed following the probability dis-
tribution f and supported on [a,b]. Let xy.x9,..., 2, be the observations
corresponding to these random quantities. Furthermore, let the integral of
interest be # = jfg(;r]d;r. Now, it is easy to present the algorithm of the
bootstrap method with Monte Carlo integration throngh the following steps.

. Generate n observations from the probghility distribution f.

Find g(x;) foralli =1,2,...,n.

. Compute * = boa 370 glxs).

. Perform steps (1),(2) and (3) B times; this leads to gL g*2 . g*B,

M LD
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For better performance, the value of B is suggest@fto be large; e.g. B = 1000
[1, 2, 6, 7]. To derive a bootstrap estimate of ¥, we compute the average

of é*l,é*g,...,é*‘g, nld to provide a bootstrap standard error estimate for

Ei;:m =+ Zle #*1, we compute the standard deviation of #*1,8*2, ... 6*B by
8]
B s (525, d+)2
_ B (friy2 = L= P
SEEE;:}:)!] - Zj_ll: B—-1 . |:3]

For the (1 — «)% percentile confidence interval, we order the values
EAR 6“’gn. . ,é*B from least to largest, then take the (5 )th and (1—5 )th ordered
values, where the former is the lower bound and the latest is the upper bound.
This can be written as follows

b€ (éf‘%)réfl—'—ﬂ) (4)

For the (1 — a)% Normal confidence interval, it is needed to compute é;m:

and SE(},,,), then we use the following equation [13]

- Z'x L—x) S EE ﬂ;:m! :I 7 E;:):}! T Z( 1—a) lgE(Hi::}:}! J) Ek.

6e(6*

bt

iy |
S

where Z;; ) is the (1 — a) percentile of the standard Normal distribution.

4 Simulation studies

In this section, we present different bounded integrals needed to be computed
analytically based on the bootstrap method with Monte Carlo integration. We
choose different domains and functions as shown in Figure 1. Also, we deter-
mine the Uniform and Normal distributions, restricted to the domain of the
integral @Rinterest, to generate observations for the bootstrap samples. To
compute the bootstrap estimate of integral # with the standard error and the
percentile and Normal confidence intervals, we set B equal to 1000 and the
sample size of each bootstrap sample n equal to 1000. This means that the
iteration of bootstrap is 1000 as B = 1000. Table 1 presents different bounded
integrals with their analytical results, and these integrals will be estimated
based on the bootstrap method with Monte Carlo integration to make com-
parisons with the true results. By this strategy, we can make investigations on
the performance of our method.

Tables 2 to 5 present the bootstrap estimates # along with the stan-
dard errors of A and the 90% percentile and Normal confidence intervals of #
for all examples presented in Table 1. It is obvious that the bootstrap esti-
mates are nearly identical to the exact results. This is the power of using the
bootstrap method with Monte Carlo integration, which is more needed for
complicated integrals that is impossible to be computed theoretically. Through
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Table 1 The exact values of different integrals.

Example f —
1 ffz ° dr = 5.333
2 J'[F sin(x) dr = —1
3 J[[}rJ 3x” 4+ 22° + 1 dr = 8130
: J[F x® — sin(x) dx = 0.292

4 = 4
=
o
- 77
4
E
B " B
e
-7 =
El
a4 a
! T
= 1 o 1 2 = " B o
u x

(b) g(x) = —sin(x)

g .
] -
F
F g "]
LR -
(¢) glx) = 3r° + 268 4 1 (d) glx) = o sin(r)

Fig. 1 The shape of each function g(x} presented in Table 1.

Table 2 The bootstrap estimate of @ in Example 1 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(-2, 2) | Normal(0, 5) (restricted on [-2, 2])
] 5.339 5.228
Standard Error ().158 (1.151
Percentile confidence interval (5.0493, 5.596) (4.982, 5.463)
MNormal confidence interval (5.136, 5.541) (5.036, 5.421)

Table 3 The bootstrap estimate of # in Example 2 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(0), 5) | Normal(0,5) (restricted on [0, 5])
] -1.000 -0.993
Standard Error 0.015 (.015
Percentile confidence interval | (-1.026, -0.976) (-1.020, -0.968)
MNormal confidence interval (-1.020, -0.981) (-1.013, -0.973)
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Table 4 The bootstrap estimate of # in Example 3 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform{0, 5) Normal(3,5) (restricted on [0, 5])
] B146G.495 8155.398
Standard Error 85 AHE S8T.T29
Percentile confidence interval | (7514.391, 8T83.074) (TH50.591, B808.027)
Normal confidence interval (TG52.471, BG40.518) (THHR.503, B652.202)

Table 5 The bootstrap estimate of # in Example 4 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(0), %} Normal(3.5) (restricted on [0, %]}
f (.293 (.317
Standard Error (0.024 (0.024
Percentile confidence interval (0.254, 0.332) (0.280, 0.355)
Normal confidence interval (0.262, 0.323) (0,286, 0.347)

the bootstrap procedure, we use Uniform and Normal distributions with differ-
ent parameters, but restricted to the integral’s bounds, and this leads to have
nearly 1de?c‘al standard errors. From this observation, we can assure that the
bootstrap distribution can be a good proxy distribution for the integral #; there
is no need to estimate the shape of g(x) for importance sampling, or variance
reduction. This helps to conserve time to running codes and it is possible to do
analysis with less information. Also, based on the bootstrap method, the 90%
percentile and @@rmal confidence intervals can be easily derived. From Tables
2 to 5, we note that the 90% percentile confidence intervals are all wider than
the 90% Normal confidence intervals.

5 Concluding remarks

In this paper, we illustrated the bootstrap method with Monte Carlo integra-
tion for one dimension, and the method was used through multiple examples.
From the examples, it can be concluded that the bootstrap method with Monte
Carlo integration is a good approach to compute well approximate integrals
for different functions in different domains with small variances, regardless to
the distribution being used to generate observations for the bootstrap sam-
ples. Based on the bootstrap estimates, the (1 — )% percentile and Normal
confidence intervals for # can be derived with high accuracy. Our method can
be beneficial for integrals that may be ditfhicult or impossible to compute. Also,
the method is easy to implement and straightforward, which is only relying
on sampling from a known distribution, then taking the evaluation. This is
repeated multiple times and this should be large, e.g. B = 1000. To put the
method into a practical use, we included the R codes in the appendix. To run
the codes, it reguires about ten seconds, which is nothing in real applications
and this is one of the advantages.

As a future research, the method will be generalized for multiple dimensions
with more complicated functions and domains. To achieve this generalization,
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we may use the copula concept, which is able to take the dependence structure
between the variables into account, to generate observations for the boot-
strap samples. For more detailed presentations about the copula concept, it is

advised to see [4, 17, 18, 19, 23].
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Appendix

# First Example

# The domain of x is (=2,2)

a==32
b=2
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# The exact integration is equal to

theta=(1/3}*((b) "3-(a) "3}
theta

# The bootstrap method with Meonte Carle integration

h_theta=NULL

for (i in 1:1000}{

# generating observations from the Uniform distribution with a=-2 and b=2
x=runif (1000 ,a,h)

g=x"2

h_thetalil=(b-a)+*mean{g)
I

# To provide the bootstrap estimate of theta

mean (h_thetal

# To provide the bootstrap standard error estimate
sd(h_theta)

# To provide the 90% percentile confidence interval
c{gquantile(h_theta ,0.05) ,quantile(h_theta,0.95))

# To provide the 90% Normal confidence interval

c{mean(h_thetal -gqnorm(0.90,mnean=0,sd=1)+sd(h_thetal,
mean (h_theta)+gnorm(0.90,mean=0,sd=1) *sd(h_theta))}

LR E S E S R R RS R RS RS R R R R R R
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