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Synergistic toxicity of NiO nanoparticles and benzo[a]pyrene co-exposure in liver cells:

Role of free oxygen radicals induced oxidative stress
Abstract

Current attention has been given on health effects of combined exposure of nanoscale
materials and organic pollutants. Nickel (II) oxide nanoparticles (NiO NPs) displays
exceptional properties and is being used in various areas such as batteries, diesel-fuel
additives, and biomedicals. Benzo[a]pyrene (BaP) is a ubiquitous pollutant. Cigarette smoke,
diesel exhaust, and grilled foods are main sources of BaP exposure. Therefore, combined
exposure of NiO NPs and BaP to humans is unavoi@le. There is a dearth of knowledge on
combined effects of NiO NPs and BaP in humans. This study was aimed to investigate co-
exposure effects of NiO NPs and BaP in human liver cells (HepG2) and primary rat
hepatocytes. We observed that individual and co-exposure of NiO NPs and BaP induced
cytotoxicity, lactate dehydrogenase leakage, lipid peroxidation, depletion of mitochondrial
membrane potential, and activation of caspases (-3 and -9) in both types of cells. Individual
and co-cwsur& of NiO NPs and BaP further accelerated the generation of free oxygen
radicals (reactive oxygen species and hydrogen peroxide) and depletion of antioxidants
(glutathione and various antioxidant enzymes). Remarkably, NiO NPs and BaP exerted
synergistic toxicity to both HepG2 cells and primary rat hepatocytes. Moreover, combined
toxicity of NiO NPs and BaP in both cells was mediated through free oxygen radicals
induced oxidative stress. This work warrants further research on risk assessment of co-

exposure effects NiO NPs and BaP in an appropriate in vivo model.

Keywords: Combined toxicity; NiO nanoparticles; Benzo[a|pyrene; Liver cells; Human

health; Cytotoxicity; ROS




1. Introduction

Humans and other environmental organisms are being exposed to a mixture of
environmental contaminants. However, recent studies mainly focus on health effects of single
contaminants representing a crucial information gap in understanding the health hazard of
environmental exposure (Bellavia et al., 2019). Indeed, some current reports indicated that
co-exposure effects of nano-scale materials and pre-existing environmental pollutants could

be significantly different from their individual effects (Ahamed et al., 2020a, 2020b).

Nickcﬁll) oxide nanoparticles (NiO NPs) have attracted great attention for diverse
applications due to their excellent chemical stability, lﬁgnetic, electrical, optical, and
catalytic properties (Adinaveen et al., al 9). Engineered NiO NPs are being used in solar
cells, catalysts, lithium-ion batteries, light emitting diodes, electrochemical sensors, and
diesel-fuel additives (Diallo et al., 2018). Besides, NiO NPs also present in condensed
aerosols produced by traditional metallurgical and arc-welding technologies (Sutunkova et
al., 2019). Possible biomedical application (e.g. antimicrobial agent) of NiO NPs was also
previously reported (Behera et al., 2019). These applications may increase the chances of

NiO NPs exposure and possible risk to human and the environmental health.

A number of studies on different types of cell lines demonstrated that NiO NPs cause
cytotoxicity, severe DNA damage, mitochondrial dysfunction, cell cycle arrest, oxidative
stress and induction of apoptosis (Chang et al., 2020; Liu et al., 2017). Particularly, our
previous study showed that NiO NPs induced cytotoxicity through free oxygen radical
generation and stimulate apoptosis in human liver cells (HepG2) by bax/bcl2 activation
(Ahamed et al., 2013). Toxicity of NiO NPs was also reported in non-mammalian organism
e.g. Daphnia magna and Drosophila melanogaster (De Carli et al., 2018; Gong et al., 2016).
Multi-orgaﬁ. toxicity of NiO NPs was also reported (Hussain et al., 2020). These studies
suggested that liver is one of the target organs of NiO NPs. Furthermore, oxidative stress,
mitochondrial dysfunction, and caspase activation were possible mechanisms of NiO NPs
toxicity (Marzban et al., 2020). Currently, it is an important issue to study the effects of NiO

NPs in combination with pre-existing pollutants on humans and the environmental health.

Benzo[a]pyrene is among thﬁommon environmental contaminants that humans are
being exposed. BaP is a member of polycyclic aromatic hydrocarbons (PAHs) that generated
in the environment by incomplete combustion of organic matters (Sun et al., 2020). BaP is

categorized as a human group 1 carcinogen by the IARC (Einem Lindeman et al., 2011).




Cigarette smoke, diesel exhaust particles as well as smoked andérilled food contained high

level of BaP (Kazerouni et al., 2001). For non-smoker,_diet is the main source of BaP
exposure (Wang et al., 202%Earlier report demonstrated that the total average dietary intake
of BaP for humans is 8-9 ng/day (Alomirah et al., 2011). This in&cates that humans are
getting exposure to a low dose of BaP over a lifetime. BaP enters human body mainly via
inhalation and ingestion, and transported to other body organs through blood and lymph (Ba
et al., 2015). After internalization into cells, BaP undergoes metabolic activation and
generates free oxygen radicals that causes toxicity in almost all vital organs including lung,
liver, and kidneys (Deng et al., 2018). Previous research on BaP was mainly focussed on
single exposure. Studies on co-exposure effects of BaP with other environmentally relevant

materials (e.g. NPs) on human health are scarce.

Due to wide-spread application of NiO NPs and ubiquitous BaP, co-exposure of both
materials to humans is unavoidable. However, combined effects oaio NPs and BaP and
their toxicity mechanisms have not been addressed before. We aimed to investigate the
combined effects of NiO NPs and BaP in human liver cels (HepG2) and primary rat
hepatocytes. Possible mechanism ofﬁ)mbined toxicity of NiO NPs and BaP was also

explored through free oxygen radicals induced oxidative stress.

2. Materials and methods
2.1. NiO nanoparticles anﬁenzo{ alpyrene
Nickel (II) oxide (NiO) %Ps and benzo[a]pyrene (BaP) were obtained from Sigma-

Aldrich (St. Louis, MO, USA). X-ray diffraction (XRD) (PanAnalytic X'Pert Pro, Malvern
Instruments, UK) with Cu-Ka radiation (A = 0.15405 nm, at 45 kV and 40 mA) was
employed to asscss;érystallinity and phase purity of NiO NPs. Morphology and size of NiO
NPs was assessed by field emission scanning electron microscope (FESEM, JSM-7600F,
JEOL, Inc., Tokyo, Japan) and field emission transmission electron microscope (FETEM,
JEM-2100F, JEOL).

2.2, Cell culture and exposure protocol

Human liver (HepG2) cell line was ghtained from American Type Culture Collection
(ATCC) (Manassas, VA, USA). Primary rat hepatocytes were isolated from collagenase
fusion technique as described by Moldeus and co-workers (Moldéus et al., 1978). Cells
were cultured in Dulbecco’s modified cac's medium (DMEM) (Invitrogen, Carisbad, CA,
USA) with the supplementation of streptomycin (100 pg/ml)-penicillin (100 U/ml)




(Invitrogen) and 10% fetal bovine serum (FBS, Invitrogen). Cell were maintained in a
humidified incubator at 37 °C with 5% CO: supply. At ~80% confluence, cells were
harvested with trypsin (Invitrogen) and sub-cultured for toxicity studies.

Stock solution (1 mg/ml) of NiO NPs was prepared in distilled water and BaP was
dissolved in dimethyl sulfoxide (DMSO). Stock solutions were further diluted in culture
medium as per the requirement of the experiments. Individual cytotoxicity of NiO NPs and
BaP were examined by following exposure of different concentrations of concentrations of
NiO NPs (0, 1, 5, 10, 25, 50, 100, and 200 zg/ml) E BaP (0,1, 5, 10,25, 50, and 100 zM)
for 24 h. For combined toxicity studies cells were exposed for 24 h to NiO NPs (25 ug/ml)
and/or BaP (10 xM). Basis of selection of dosages of NiO NPs and BaP is described in

results section (Fig. 2). In some experiments, N-acetyl cysteine (NAC, 2 mM) was pre-

exposed (30 min before) to cells with or without NiO NPs and/or BaP.
2.3. Biochemical studies

Cell viability was determined using modified MTT assay (Ahamed et al., 2011;
Mosmann, 1983). Lactate dchydrogcnﬁ (LDH) enzyme leakage was assessed as described
earlier (Welder, 1992). Intracellular ROS was assayed using a fluorescent probe 2°-7"-
dichlorodihydrofluorescein diac%te (H2DCEDA, Sigma-Aldrich) (Siddiqui et al., 2013).
ROS level was quantitatively measured by a micro-plate reader (Synergy-HT, BioTek
Winooski, VT, USA). lntra&llular hydrogen peroxide (H20) level was estimated employing
a kit from Sigma-Aldrich. Glutathione (GSH) (Ellman, 1959) and malondialdehyde (MDA)
(Ohkawa et al., 1979) were determined as described earlier. Activity of several ant'ﬁidant
enzymes; superoxide dismutase (SOD) (Cayman chemical kit, Michigan. USA), catalase
(CAT) (Sinha, 1972), and glutathione peroxidase (GPx) (Rotruck et al., 1973) were assayed
&reported previously. Mitochondrial membrane potential (MMP) was determined using a
fluorescent probe tetramethylrhodamine methyl ester (TMRM) as described previously
(Ahamed et al., 2022). MMP level was quantitatively assessed by a microplate reader
&nergy-HT, BioTek). The mRNA expression of caspase-3 and -9 genes were assessed by
real-time PCR (ABI PRISM 7900HT Sequence detection system) (Applied Biosystem, Foster
city, CA, USA) as explained in previous work (Ahamed et al., ZOII)éfaspase-ii and -9
enzymes activity was assayed using BioVlsion kits (Milpitas, CA, USA). Protein content was
measured using Bradford's method (Bradford, 1976).

24. Statistical analysis




One-way analysis of variance (ANOVA) and Dunnett’s multiple comparison tests
were used for statistical analysis. The p<0.05 was assigned as statistically significant
difference between two groups. Data depicted as mean+SD of five individual experiments
(n=

3. Results

3.1. Characterization of NiO NPs

Fig. 1A represents the XRD spectra of NiO NPs. Presence of strong aa sharp

diffraction peaks at 26 values 37.58, 43.56, 63.16, 75.68, and 79.61 corresponding to (111),
(200), (220), (311), and (222) crystal planes of NiO, respectively (JCPDS Card No. 04-0385).
The sharpness of diffraction peaks&dicates the high crystallinity of NiO NPs. Impurity peaks
were not detected XRD spectra. The average crystallite size of NiO NPs calculated from
Scherrer's formula was around 29 nm. Figs. 1B and C depict the typical SEM and TEM
images of NiO NPs, respectively. These images suggested polygonal morphology and smooth
surfaces of NiO NPs. Average particle size measured from random selection of >100 particles
from TEM image was around 27 nm, which&as according to XRD data. High resolution
TEM image (Fig. 1D) demonstrates clear lattice fringes with a spacing of 0.241 nm,
corresponds to (111) plane of NiO phase.

3.2. Dose-dependent cytotoxicity of NiO NPs and BaP in HepG2 cells

First of all, a screening test was performed to obtain suitable concentrations of NiO
NPs and BaP for co-exposure experiments. In brief, HepG2 cells were individually treated
with different concentrations of concentrations of NiO NPs (0, 1, 5, 10, 25, 50, 100, and 200
,ug/mlﬁld BaP (0, 1, 5,10, 25, 50, and 100 M) for 24 h. After the completion of treatment
time, MTT cell viability assay was conducted to examine the cytotoxicity of these two
materials. Results demonstrated that both NiO NPs and BaP induced dose-dependent
cytotoxicity in HepG2 cells (Figs. 2A and B). On the basis of these screening data, one
moderate cytotoxic concentration of NiO NPs (25 ug/ml, 59% cell viability) and one
moderate concentration of BaP (10 M, 57% cell viability) were chosen to investigate their

individual and combined toxicity in liver cells.
3.3. Synergistic cytotoxicity of NiO NPs and BaP in HepG2 cells

Cell viability of HepG2 cells treated for 24 h to NiO NPs (25 g g/ml) and/ or BaP (10
#M) is presented in Fig. 2C. Results showed that cell viability in NiO NPs, BaP, and co-
exposure (NiO NPs+BaP) groups were 59%, 57%, and 28%, respectively. These results
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suggested that NiO NPs and BaP co-exposure synergistically enhanced the cytotoxicity in
HepG2 cells. LDH enzyme leakage assay demonstratewat individual exposure of NiO NPs
and BaP significantly increased the LDH leakage in comparison to the control group
(p<0.05). Furthermore, in co-exposure group (NiO NPs+BaP), LDH leakage was
significantly higher than those of individual group of NiO NPs or BaP (p<0.05) (Fig. 2D).
This data indicated the synergistic effects of NiO NPs and BaP on cytotoxicity parameters of
HepG2 cells.
34. Synergistic oxidative stress response of NiO NPs and BaP in HepG2 cells

Several biomarkers of oxidative stress were examined in HepG2 cells following
exposure to NiQ NPs and/or BaP for 24 h. As we can in Fig. 3A, individual exposure of NiO
NPs and BaP significantly induced ROS generation (p<0.05). Besides, co-exposure of NiO
NPs and BaP synergistically induced ROS generation (p<0.05). In comparison to control,
significantly higher levels of H202 and MDA (one of the final products of membrane lipid
peroxidation) were also observed upon individual exposure of NiO NPs or BaP (p<0.05) (Fig.
3B and C). Again, H,O> and MDA levels were significantly higher in co-exposure group

(NiO NPs+BaP) than those of individual group of NiO NPs or BaP (p<0.05).

Individual and combined effects of NiO NPs and BaP on antioxidant levels of HepG2

cells were further examined. Figs. 4A-C demonstrated that level of antioxidant molecule
GSH and activity of several antioxidant enzymes (e.g. GPx, SOD, and CAT) were lower in
NiO NPs or BaP treated cells as compared to control group (p<0.05). Furthermore, co-
exposure of NiO NPs and BaP synergistically decreased these antioxidant levels than those of
individual exposure of NiO NPs or BaP (p<0.05). This section of results suggested that NiO

NPs and BaP synergistically induced oxidative stress in HepG2 cells.
3.5. Synergistic apoptotic response of NiO NPs and BaP in HepG2 cells

Apoptosis study following exposure to NiO NPs and/or BaP were assessed in HepG2
cells by examining the regulation caspase-3 and -9 genes along with MMP level. Real-time
PCR data showed that NiO NPs and BaP individually upregulated the mRNA level of
caspase-3 and -9 genes (Fig. 5A). Besides, co-exposure of BONPs and BaP exerted
synergistic effects on upregulation of these two apoptotic genes. Enzymatic activity of
caspase-3 and -9 enzymes (protein level) was further assessed to support mRNA results. Fig.
5B demonstrated higher enzymatic activity of caspase-3 and -9 upon individual or co-

exposure of NiO NPs and BaP. Moreover, co-exposure of NiO NPs and BaP had synergistic




effects on these enzymes. Fig. 5C showed that individual exposure of NiO NPs and BaP
significantly depleted MMP level (p<0.05) and co-exposure of BONPs and BaP had
synergistic effects on MMP depletion (p<0.05).

3.6. Synergistic toxicity of NiO NPs and BaP in primary rat hepatocytes

Individual and combined effects of NiO NPs and BaP was further investigated in
primary rat hepatocytes. Cells were exposed for 24 h to NiO NPs (25 pg/ml) and/ or BaP (10
pg/ml) and cytotoxicity, oxidative stress, and apoptosis biomarkers were measured. Fig. 6A
showed that NiO NPs and BaP co-exposure synergistically reduced cell viability in primary
rat hepatocytes. Cell viability reduction following exposure to NiO NPs, BaP, and NiO
NPs+BaP was 56%, 54%, and 26%, respectively. LDH leakage in NiO NPs and BaP groups
was significantly higher as compared to the control group (p<0.05). Interestingly, LDH
leakage in co-exposure group (NiO NPs+BaP) was significantly higher as compared to
individual group of NiO NPs or BaP (p<0.05) (Fig. 6B). Fig. 6C showed that intracellular

S generation was significantly higher in NiO NPs or BaP group in comparison to control
group (p<0.05). Intracellular GSH level was signiﬁcantlﬁow&:r in primary rat hepatocytes
exposed to NiO NPs or BaP than those of untreated control group (p<0.05) (Fig. 6D).
Remarkably, effects of combined exposure of NiO NPs and BaP on ROS generation and

GSH depletion were synergistic.

Expression (mRNA) of caspase-3 and -9 genes were upregulated in primary rat
hepatocytes upon individual or co-exposure of NiO NPs and BaP as compared to control
group (p<0.05) (Fig. 7A). This data was further supported by higher activity of caspase-3 and
-9 enzymes upon individual or co-exposure of NiO NPs and BaP (p<0.05) (Fig. 7B). Fig. 7C
demonstrated that individual or combined exposure of NiO NPs and BaP significantly
depleted the MMP level of primary rat hepatocytes as compared to control (p<0.05).
Interestingly, effects of combined exposure of NiO NPs and BaP on apoptotic markers were

synergistic.

3.7. Oxidative stress mediated cytotoxicity of NiO NPs and BaP co-exposure in
HepG2 cells and primary rat hepatocytes

Role of ROS in individual or combined exposure induced toxicity of NiO NPs and
BaP was investigated in HepG2 cells and primary rat hepatocytes. Both types of cells were
treated for 24 h to NiO NPs (25 pg/ml) and/ or BaP (10 pg/ml) with or without NAC (2 mM)

pre-treatment (30 min). Results showed that NAC pre-treatment remarkably reverted the
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cytotoxicity exerted by NiO NPs, BaP, or NiO NPs+BaP in both HepG2 cells (Fig. 8A) and
primary rat hepatocytes (Fig. 8B). This data suggested that cytotoxicity exerted by individual
or combined exposure of NiO NPs and BaP was mediated through free radicals induced

oxidative stress.
4. Discussion

The liver is the main organ that metabolizes exogenous materials including
carbohydrates, proteins, drugs, and toxins. Hence, environmental exposure
pollutants/toxins might lead to liver injury, dysfunction, and even organ failure (Siddiqui et
al., 2013; Ahamed et al., 2013). Co-exposure of NiO and BaP to humans is unavoidable
because of their consistent release in the environment. This is the first study that examined
the individual and combined toxicity of NiO NPs and BaP in HepG2 cells and primary rat
hepatocytes. Results showed that individual and combined exposure of NiO NPs and BaP
induce cytotoxicity, LDH leakage, caspases (-3 and -9) activation, MMP depletion, pro-
oxidants generation, and antioxidants depletion in both HepG2 cells and primary rat
hepatocytes. Interesting finding of this work was that NiO NPs and BaP acts synergistically

in exerting the toxicity to both types of liver cells.

Our data suggested that NiO NPs potentiate the BaP-induced toxicity in liver cells.
Erlier studies also reported that nano-scale materials could exacerbate the toxicity of BaP.
Asweto et al. found that joint exposure of silica NPs and BaP cause more severe toxicity on
immunity and cardiovascular development of zebrafish embryo as compared to single
exposure of silica NPs and BaP (Asweto et al., 2018). Fullerene C60 increased the toxicity
BaP in hepatocytes of zebrafish (Ferreira et al., 2014). Some other studies observed that
metal oxide NPs worsen the toxicity of organic chemicals upon co-exposure. For insance,
TiO2 NPs enhanced the teratogenicity of tributyltin (TBT) in abalone embryos (Zhu et al.,
2011).

Adsorption of organic contaminants on the higher surface area of NPs might play
crucial role in combined toxicity of NPs and organic pollutants (Liu et al., 2018). In this
condition NPs can serve as a carrier for transportation of organic polluatants into the cells.
The NPs-organic complexes might subsequently be released once internalized in the cells.
Hence, bioaccumulation and toxicity of organic chemicals might enhance by the NPs through
&ﬁjan horse mechanism (Deng et al., 2017). Fang and co-workers found that TiO; NPs serve

as a carrier for bisphenol A (BPA) in Zebrafish and exert reproductive toxicity (Fang et al.,




2016). Another study also reported that TiO2 NPs increased %e bioaccumulation of BDE-209
in Zebrafish producing greater developmental neurotoxicity (Wang et al., 2014).

It is crucial to explore the underlying mechanisms of combined toxicity of
%vironmentally relevant NPs and ubiquitous contaminants. In this sfudy, we further explore
the possible mechanisms of combined toxicity of NiO NPs and BaP in both HepG2 cells and
primary rat hepatocytes. Results showed that individual and combined exposure of NiO NPs
and BaP induced intracellular ROS and H»O»x levels in both types of liver cells. MDA is one
of the final products of membrane lipid peroxidation and higher production of ROS leads to
lipid peroxidation (Ahamed et al., 2013). We observed that MDA level was higher upon
individual or combined exposure of NiO NPs and BaP in liver cells. Moreover, antioxidant
molecule GSH depletion and lower activity of several antioxidant enzymes (e.g. GPx, SOD,
and CAT) in liver cells following individual or co-exposure of NiO NPs and BaP. Free
oxygen radicals serve as signalling molecules in apoptotic pathway and GSH depletion is also
linked with apoptosis (Ahamed et al., 2020a). Mitochondria contains key regulator of
caspases, a family of proteases that play critical role in apoptosis (Balakireva and Zamyatnin,
2019). Caspase-3 and -9 are suggested to be crucial in apoptotic response. Besides, MPP loss
is an early indicator of apoptosis (Chang et al., 2020). In this study, we found the activation
of caspase-3 and -9 genes and depletion of MMP in liver cells upon individual or co-exposure
of NiO NPs and BaP. Interesting finding was that both NiO NPs and BaP acts synergistically
in irﬂlcing oxidative stress and apoptosis.

5. Conclusion

This study demonstrates the formerly unrecognized combined toxicity of NiO NPs
and BaP in liver cells. Individual exposure of NiO NPs and BaP exert cytotoxicity, membrane
damage, activation of caspase genes (-3 and -9), MMP depletion, pro-oxidants generation,
and antioxidants depletion in both HepG2 and primary rat hepatocytes. Besides, NiO NPs or
BaP induced toxicity was mediated through ROS-induced oxidative stress. Interestingly,
combined exposure of NiO NPs and BaP acts synergistically in causing toxicity to liver cells.
These results warranteHurther study on risk assessment of combined effect NiO NPs and

BaP in suitable animal model.
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Figure 1. Characterization of NiO NPs. XRD spectra (A), SEM micrograph (B), low-

resolution TEM micrograph (C), and high-resolution TEM micrograph (D).
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Figure 4. Antioxidants depletion in HepG2 cells exposed &Nio NPs (40 pg/ml) and/or BaP
(10 uM) for 24 h. GSH level (A), GPx enzyme ﬁivity (B), SOD enzyme activity (C), and
CAT enzyme activity (D). *p<0.05 compared to the control group. p<0.05 compared to the
NiO NPs group or BaP group.
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Figure 5. Apoptosis induction in HepG2 cells exposed to NiO NPs (40 pg/ml) and/or BaP
(10 uM) for 24 h. mRNA level of caspase-3 and -9 genes (A), activity of caspase-3 and -9
enzymes (B), and MMP level (C). *p<0.05 compared to the control group. “p<0.05 compared
to the NiO NPs group or BaP group.
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Figure 7. Apoptosis induction in primary rat hepatocytes exposed to NiO NPs (40 pg/ml)

and/or BaP (10 #M) for 24 h. mRNA level of caspase-3 and -9 genes (A), activity of caspase-

3 and -9 enzymes (B), and MMP level (C). #p<0.05 compared to the control group. "p<0.05

compared to the NiO NPs group or BaP group.
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Figure 8. Role of ROS in cytotoxicity ofﬁlividual or co-exposure to NiO NPs and BaP in

HepG2 cells and primary rat hepatocytes. Cells were exposed to NiO NPs (40 yg/ml) and/or
BaP (10 M) for 24 h with or withoutﬁIAC (2 mM) pre-treatment. Cytotoxicity in HepG2

cells (A) and primary rat hepatocytes (B). *p<0.05 compared to the control group. *p<0.05

compared to the NiO NPs group or BaP group.
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