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Some New Constructions of Minimal Efficient Circular Nearly
Strongly Balanced Neighbor Designs

Abstract

Neighbor designs are popular to control neighbor effects. Among neighbor designs, strongly
balanced neiglfffor designs are important to estimate treatment effects and neighbor effects
[fAdependently. Minimal circular strongly balanced neighbor designs (MCSBNDs) can be obtained
only for odd v (number of treatments). For v even, minimal circular nearly strongly@f}lanced
neighbor designs are used which satisfied all conditidils of MCSBNDs except that the treatment
labeled as (v-1) does not appear as its own neffhbor. These designs can be converted directly in
some other useful classes of neighbor designs. These designs are efficient to minimize the bias due
to the neighbor effects.
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1. Introduction

If response of a treatment (treatment effect) is {gfi§cted by the treatment(s) applied in neighboring
units then such neighbor effects become major source of bias, in estim@fing the treatment effects.
This bias can be minimized with the use of neighbor balanced designs, see Azais (1987), Azais et
al. (1993), Kunert (2000) and Tomer ef al. 6005).

e A circular design in which every treatment appears once as neighbors with all others
(excluding it) is called a minimal circular balanced neighbor design (MCBND). If it also
appears as if§pwn neighbor then itis called MCSBND. MCBNDs and MCSBNDs can only
be obtained for v odd.

e A circular design is called minimal circular nearly SBND (MCNSBND) if each treatment
appears once as neighbor with other (v-2) treatments exactly once and (i) agjpear twice with
only one treatment, labeled as (v-1), (ii) appear once as neighbor with itself except the
treatment labeled as (v-1) which does not appear as its own neighbor. For v even,
MCNSBNDs should be used as the best alternate of the MCSBNDs.

Rees (1967) introduced MCBNDs in serology for v odd. Azais et al. (1993) corflructed some
CBNDs using border plots. Jaggi et al. (2006) constructed some partially BNDs. Nutan (2007),
Kedia & Misra (2008), Ahmed et al. (2009) constructedgfgeneralized neighbor designs (GNDs).
Igbal et al. (2009) constructed some classes of CBNDs using cyclic shifts. Akhtar et al. (2010)
constructed CBNDs for k = 5. Meitei (2010) constructed new series of (i)ﬂBNDs and (ii) one-
sided CBNDs. Ahmed and Akhtar (2011) constructed CBNDs for k = 6. Shehzad et al. (2011)
constructed some CBNDs. Jaggi et al. (2018) desc§ffd some methods to construct CBNDs and
circular partially BNDs. Singh (BZJ19) developed new series of universally optimal one-sided
CBNDs. Meitei (2020) presented a new serieffjf universally optimal one-sided CBND for k = 5.
Salam et al. (2022) introduced MCNSBNDs for (i) v = 8i+4, k =4, (ii) v = 10i+6, k = 5, (iii)) v =




12i48, k=6, (v) v=2iki+2, ki=4j, ke=3,(v) v=2iki+4, ki =4j, ko= 4, (vi) v = 2iki+2, k1> 3
and k2 =3, (vii) v=2iki+4, k1> 4 and ko = 4, and (viii) v=2iki+6,ki> 5 and k2= 5.

In this article, (i) a generator is developed which produces the MCNSBNDs in equal as well as in
unequal block sizes, with slallest of size at least three, (ii) some generators are developed which
produce the MCNSBNDs which can directly be converted into MCSBNDs and MCBNDs, in
blocks of equal as well as in unequal sizes, where smallest block size should be at least six.

23 Method of Construction

Igbal (1991) introduced method of cyclic shifts (Rule I & II) to construct experimental designs of
several types. Its construction procedures are described here for MCNSBNDs, MCSBNDs and
MCBNDs.

21 Rule II to obtain MCNSBNDs

Let S;=[qj1, 92, ..., qix-1) and Si = [qi1, a2, ..., Gik-2)]t be the sets, where 0 < g < v-2. If each of
0,1, 2, ..., v-2 appears once in S*, where S* = [q;1, qp, ..., Qik-1), (Q1+ge+ ... Fqix-1)) mod (v-1),
(v-1)-gji, (v-1)-qi2, ..., (v-D-gjs-1), (v-D-[(qii+get+ ... +@-1) mod (v-1)], qi1, qi2, ..., Qik-2),
(v-1)-qi1, (v-1)-qa2, .. EEv-1)-gice2)] then it is MCNSBND. In Rule 11, at least one set will contain
k-2 elements which will be expressed as [q1, q2, ..., q-2]t. Here ‘t’ is just to specify the set
containing k-2 elements.

Example 2.1: Following MCNSBND is constructed from S1=[4,5,6,7,9,10,11],S2=0,1,3,8,13]t

forv=26ki=8& k2=7.

Take (v-1) blocks for every set of shifts to get the complete design through Rule II. Consider 0, 1,

..., v-2 as 1°" unit of each block. Obtain 2™ unit elements by adding 4 (mod (v-1)) to 1* unit

elements, where 4 is the 1% element of Si. Obtain 3™ unit elements by adding §Jmod 25) to 2™

unit elements, where 5 is the 2" element of S1. Similarly add 6,7,9, 10 and 11, see Table 1.
Table 1: Blocks obtained from S =[4,5,6,7,9,10,11]

Blocks
1 |2 |3 |4 |5 |6 |7 |8 |9 (10111213
O |1 |2 |3 |4 |5 |6 (7 |8 [9 [10]11]12
4 |5 |6 |7 |8 |9 |10[11]12[13[14[15]16
O |10 |11 [12]13 |14 15|16 |17 18|19 |20 |21
1516|1718 (1920212223 124|0 |1 |2
22123124|0 [1 |2 |3 |4 |5 |6 |7 |8 |9
6 |7 O 1011|1213 ]14 15|16 1718
16 |17 1819120212223 (24|0 |1 |2 |3
2 13 516 |7 |8 |9 J10)11]12]13]14

Blocks

14 |15 |16 |17 [18 [19 |20 |21 |22 |23 |24 |25
13 |14 |15 |16 [17 |18 |19 |20 |21 |22 |23 |24




17 |18 |19 |20 |21 |22 |23 |24 |0 1 2 |3
22 |23 |24 |0 1 2 |3 |4 |5 |6 |7 |8
3 14 |5 6 |7 |18 |9 10 [ 11 [12 |13 |14
10 |11 |12 |13 [14 |15 |16 |17 |18 [19 |20 |21
19 120 |21 |22 (23 |24 |0 1 2 |3 |4 |5
4 |5 |16 |7 |8 |9 10 |11 [ 12 |13 |14 |15
15 |16 |17 |18 [19 |20 [21 |22 |23 |24 |0 1

For S», take (v-1) more blocksEPbtain the blocks as are taken from S except one extra row
containing (v-1) in its each cell, see Table 2.

Table 2: Blocks obtained from S2=[0,1,3,8,13]t

Blocks
1 /2 |3 |4 |5 |6 |7 (8|9 (1011 12|13
O |1 |2 |3 |4 |5 |6 |7 |8 [9 [10f11]12
O |1 |2 |3 |4 |5 |6 |7 |8 [9 [10[11]12
1 12 |3 [4 (5 |6 |7 |8 [9 |10]11]|12]13
4 |5 |6 |7 |8 |9 |10]11]12[13[14[15]16
1211314 |15[16 |17 |18 |19(20 21|22 23|24
O |1 |2 |3 |4 |5 |6 (7 |8 [9 [10]11]12
25125|25|25[25|25|25|25[25|25|25|25|25

Blocks

14 |15 [16 [17 [18 |19 |20 |21 [22 |23 |24 |25
13 |14 |15 |16 |17 [18 |19 |20 |21 [22 |23 |24
13 |14 |15 |16 |17 [18 |19 |20 |21 [22 |23 |24
14 |15 |16 |17 |18 [19 |20 |21 [22 {23 |24 |0

17 |18 [19 |20 |21 |22 |23 |24 |0 |1 |2 |3

0 |1 |2 (3 |4 |5 |6 |7 [8 |9 |10 |11
13 |14 |15 |16 |17 [18 |19 |20 |21 [22 |23 |24
25 |25 |25 |25 |25 [25 |25 |25 |25 [25 |25 |25

1
Table 1 & 2 jointly present MCNSBND g)r v=26,ki =8 and k> =7, using 50 blocks.




22 Rule I to obtain MCSBNDs and MCBNDs

LetS;= [qj-l, Gjz>-> qj(,(_l)] be isets,wherej=1,2,...,iand u=1, 2,..., k-1. If $* contains
each of:

e 1,2 ..., v-1onceand | =qu=<v-1 then design will be MCBND.

e 0,1,2,...,v-1 once and 0 < gju < v-1 then design will be MCSBND.
Here S* contains:

(i) All elements of S;.

(ii) Sum of all elements (mod v) in each of S;.

(iii)  Complements of all elements in (i) and (ii). In Rule I, the complement of ‘a’ is ‘v-a’.

Example 2.2. Following M(ZND is constructed from Si = [4,5,6,7,9,10,11] and S2= [1,3.8] for
v=25,ki=8 & k2 =4 using Rule I.

Take v blocks for every set of shifts to get the complete design through Rule I. Consider 0, 1, ...,
v-1 as 1° unit of each block. Obtain 2™ unit elements by adding 4 (mod 25) to 1* unit elements.
Similarly add 5,6,7,9,10 and 11, see Table 3.

Table 3: Blocks obtained from S1={4,5,6,7,9,10,11]

Blocks
1 |2 |3 |4 |5 |6 |7 (8 |9 (1011 [12]13
O |1 |2 |3 |4 |5 |6 [7 |8 [9 [10f11]12
4 |5 |6 |7 |8 |9 (1011 ]12[13[14[15]16
O J10|11 12|13 |14 |15|16[17 18|19 20|21
151161718 (1912021 |22({23 24|10 |1 |2
22123124|/0 |1 |2 |3 |4 |5 |6 |7 |8 |9
6 |7 9O 1011|1213 ]14 15|16 17|18
16 |17 18192021 22|23 (240 |1 |2 |3
2 13 516 |7 |8 |9 J10)11]12]13]14

Blocks

14 (15 (16 (17 |18 |19 |20 |21 |22 |23 |24 |25
13 |14 |15 |16 |17 |18 |19 |20 |21 |22 |23 |24
17 |18 |19 |20 |21 |22 |23 |24 |0 1 2 3
22 123 |24 |0 1 2 3 4 5 6 7 8
3 4 5 6 7 8 9 10 |11 |12 |13 | 14
10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20 |21
19 |20 |21 |22 |23 |24 |0 1 2 3 4 5
4 5 6 7 8 9 10 |11 |12 |13 |14 |15
15 |16 |17 |18 |19 |20 |21 |22 |23 |24 |0 1
Take more 25 blocks for Sz and obtain blocks as taken from Si1, see Table 4.




Table 4: Blocks obtained from Sa=[1,3.8]

Blocks
1 |2 |3 (4 |5 |6 |7 (8 |9 (1011 [12]13
O |1 |2 |3 |4 |5 |6 [7 |8 [9 [10f11]12
1 12 |3 [4 [5 |6 |7 |8 [9 |10]11]|12]13
4 |5 |6 |7 [8 |9 |10]11]12]13][14]|15]16
1211314 [15[16 |17 1819202122 23|24

Blocks

14 |15 |16 |17 [18 [19 |20 |21 |22 |23 |24 |25
13 |14 |15 |16 [17 |18 |19 |20 |21 |22 |23 |24
14 |15 |16 |17 |18 [ 19 |20 |21 [22 |23 [24 |0
17 |18 |19 |20 |21 |22 |23 |24 |0 1 2 |3
0 1 2 |3 [4 |5 |6 |7 |8 |9 10 |11

Table 3 and Table 4 jointly present MCBND for v =25ki =8 & k2 =4.

23  Efficiency of Separability
Divecha and Gondaliya (2014) derived following expression for the efficiency of Separability (Es)
which is also applicable for MCNSBNDs.

ES — [ vgr—1—1 ]x 100<% - Where v is the number of treatments.

valv —1
MCNSBND possessing Es at least 70% is considered efficient to reduce bias due to neighbor

effects.

3. Construction of MCNSBNDs and Their Conversion info MCSBNDs and MCBNDs

Here, the procedure to obtain the sets of shifts from generators developed in Section §Jis described.
Non-zero elements of generator ‘A’ are divided into the required number of groups such that sum
of elements in each group is divisible by (v-1). Sets to generate MCNSBNDs are obtained by
deleting one value (any) from each group containing non-zero values. The group containing ‘0’
will remain unchanged.

MCNSBNDs which can directly be converted into MCSBNDs and MCBNDs are constructed for
following cases. Here i (integer) > 0 and A will be selected from Section 4.

¢ For equal block sizes

(i) v=2(i+1)k-4,k > 5. Divide the non-zero values of selected A into i groups each of k
elements. Last will contain the remaining k-2 values.

e For two different block sizes




(1) v=2ki+2ks-4, ki> k2> 5. Divide the non-zero values of selected A into i groups
each of ki elements. Last will contain the remaining ka-2 values.

(i) v = 2iki+dka-4, k1> ko> 5. Divide the non-zero values of selected A into i groups
each of ki elements and one group of k2 elements. Last will contain the remaining kz-
2 values.

¢ For three different block sizes
7

(i) v =2iki+2k>+2ks-4, k1> k2 > ks > 5. Divide the non-zero values of selected Agto i
groups each of ki elements and one group of ko elements. Last will contain the
remaining k-2 values.

(ii) v = 2iki1+4k2+2ks-4, k1> k2 > ks > 5. Divide the non-zero values of selected A into i
groups each of ki elements and two groups of k2 elements. Last will contain the
remaining k-2 values.

(iii) v = 2iki+2ko+4ks-4, k1> k2 > k3 > 5. Divide the non-zero values of selected A into i
groups each of ki elements, one group of k2 elements and one of ks elements. Last
will contain the remaining k3-2 values.

(iv) v =2iki+4k2+4ks-4, k1 > ko2 > k3 > 5. Divide the non-zero values of selected A into i
groups each of ki elements, two groups of k2 elements and one of ks elements. Last
will contain the remaining k3-2 values.

4, Generator to generate MCNSBNDs which cannot be converted directly into
MCSBNDs and MCBNDs

Generator 4.1: A=1[0, 1, 2, ..., m] produces sets of shifts to obtain MCNSBNDs for every block
sizes with smallest of size at least three, where m = (v-2)/2. The designs obtained from generator
4.1 cannot be converted directly into MCSBNDs and MCBNDs.

Example 4.1.1. S; =[35,6,7.8] and S2= [0,1,2.4]t produce MCNSBND for v = 20 & k = 6 with
Es =0.7415.

(4]

Example 4.1.2. S1=[2,3,5,6,7.9] and S2= [0,1 48]t produce MCNSBND for v =22, ki=7 &
k2 =6 with Es = 0.7837.

5. Generators to generate MCNSBNDs which can directly be converted into MCSBNDs
and MCBNDs

According to the value of m, generators ‘A’ are developed here using the logic behind Rule 1I,
where m = (v-2)/2. These generators produce the sets of shifts to obtain MCNSBNDs which can
directly be converted into MCSBNDs and MCBNDs.




Generator 5.1: A = [@1, 2, ..., j-1, j+1, j#2, ..., m, v-j] produces sets of shifts to obtain
MCNSBNDs for m =0(mod 8), j=m/8,j > 1.

Example 5.1. S1=[5,6,7,8,10,18 23 24], S»=[4,9,11,12,13,14,16,17], S3=[0,1,15,19,20,21 22]t
obtained from A =1[0,1,246.4,...,24] produce MCNSBND for v =50 & k =9 with Es =0.8574.

Generator 5.2: A =[0, 1,2, . @83/, 3j+2, 3j+3, ..., m-1, m+1, v-(3j+1)] produces sets of shifts to
obtain MCNSBNDs for m = 1(mod 8), j = (m-1)/8,j = 1.

Example 5.2.5:=[1234,5,6,78,11,14],8:=[9,12,13,15,17,18,19.24],83=[0,16,20,21,22, 23]t
obtained from A = [0,1,2,...,9.41,11,12,....24,26 ] produce MCNSBND forv=52ki=11,k2=9
& k3 =8 with Es =0.8439.

Generator 53: A=[0, 1,2, ..., @1, 5/+3,5/44, ..., m-1, m+1, v-(5j+2)] produces sets of shifts
to obtain MCNSBNDs for m = 2(mod 8), j = (m-2)/8,j = 1.

Example 53. S1=[234,5,6,7], S2=[1.8,9,11,13,15] and S3 = [0,14,16,19.25]t obtained from
A=[0,1,2,...,11,25,13,14,15,16,17,19] produce MCNSBND for v =38 & k =7 with Es =0.8513.

5
Generator 5.4: A = [0, 1, 2, g, m-1-j, m+1-j, m+2-j, ..., m, v-(m-j)] produces sets of shifts to
obtain MCNSBNDs for m = 3(mod 8), j = (m-3)/8,j = 0.

Example 54. S1=[1,345,6,79], S2=[0,2,8,13]t obtained from A = [0,1,2,...,9,13,11] produce
MCNSBND for v = 24, ki = 8 & k2 = 6 with Es =0.7680.

Generator 5.5: A=[0,@2, ..., j,j+2,j+3, ...,m-1,m+1,v-(j+1)] produces sets of shifts to obtain
MCNSBNDs for m =4(mod 8), j = (m-4)/8,j = 0.

Example 5.5. S1=[1345,6,7,11], S2=[0,8,9,10,23]t obtained from A =[0,1,2334,56,7.8,9,
10,11,13] produce MCNSBND for v =26, ki=8 & ko =7 with Es = 0.7581.

Generator 5.6: A=[0,@2, ..., 3j+1,3j+3,3j+4, ..., m, v-(3j+2)] produces sets of shifts to obtain
MCNSBNDs for m = 5(mod 8), j = (m-5)/8,j =2 0.

Example 5.6. S1=(346,10,11,12,13], S2= [0,1,2,7,8 9]t obtained from A = [0,1,2,3422.6,7,
...,13] produce MCNSBND for v =28 & k = 8 with Es = 0.8318.

Generator 5.7: A = [0f), 2, ..., 5j+3, 5j+5, 5j+6, m, v-(5j+4)] produces sets of shifts to obtain
MCNSBNDs for m = 6(mod 8), j = (m-6)/8,j = 0.

Example 5.7. S1=[1234,6,78,1@, S2 = [0,5,10,11,12,20]t obtained from A = [0,1,2,...,8,20,
10,11,...,14] produce MCNSBND for v = 30, k1 = 9 & k2 = 8 with Es =0.7963.

Generator 58: A=[0,1,2, ..., g -j, m+1-j, m+2-j, ..., m-1,m+1, v-(m-j)] produces sets of shifts
to obtain MCNSBNDs for m = 7(mod 8), j = (m-7)/8,j= 1.




Example 58.1. S1=[12,345], S2=(7.8,9,10,11], S3= [0,6,12,13] obtained from A =[0,1,2,...,
13,17,16] produce MCNSBND for v = 32 & k = 6 with Es = 0.8404.

Catalogues are also presented in Appendix A, B, and C.
6. Conversion of proposed MCNSBNDs into MCSBNDs and MCBNDs

Conversion 6.1: Corfffidering the Rule II as Rule I, MCNSBNDs constructed in Section 5 for
v=2ik-4,i>1,k> 5 can be converted into:
(i) MCSBNDs for v = 2ik-5, ki = k, k2
(ii) MCBNDs for v = 2ik-5, ki =k, ko
from the set containing ‘0’.

=k-2. For it, delete ‘0’ from the set of shifts.
= k-3. For it, delete ‘0’ and one more value (any)
Example 6.1. MCNSBND constructed in example 5.2.1 for v = 20 and k = 6 through S =
[12,3,7,10], S2=10,5,6 8]t will be converted into:
(a) MCSBND for v=19,ki =6 & k2 =4, with §1=[1,2,3,7,10],
(b) MCSBND for v=19,ki =6 & k2 =3, with §1=[1,2,3,7,10],

S>=15,6.8].
S>=156].
7. Remarks

Salam et al. (2022) introduced MCNSBNDs for some specific cases of 3 < ko < 5. In this article,
generator is developed for MCNSBNDs in equal as well as in unequal block sizes, with smallest
block size at least three. Some generators are developed MCNSBNDs for v even with smallest
block size at least six and these designs can directly be converted into MCSBNDs and MCBNDs
for v odd.

MCSBNDs require at least v(v-1) experimental unffd for v even while our proposed MCNSBNDs

require v(v-1)/2 units. Our proposed designs lose %% neighbor balance and saﬁat least 50 %

experimental material. Our designs possess Es at least 70% therefore, these are efficient to
minimize bias due to neighbor effects.

Acknowledgement: Authors are thankful to anonymous Reviewer for the valuable corrections.
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Appendix A

Catalogue of MCNSBNDs for 6 <k <8 and v <60

v k Sets of Shifts Es
20 | 6 |[5,3,15,73]+[1,8,100]t 0.7415
32 | 6 [[12,345]4[7,89,10,11]+[13,12,6 0]t 0.8404
44 | 6 |[21234,7]+5,9,1035,11]+[1,15,19,13,20]+[14,17,12 0]t 0.8363
56 | 6 |[124,25,1,10]+[14,26,21,16,11]4[17,20,15.27 8]4[9,7,19,13 5]+(6,31,18 0]t| 0.8653
24 | 7 [[62,34,13,11]+[8,9,5,1,0]t 0.8215
38 | 7 [[1,2,3456]+[19,17,10,25,11,14]+(7,13,9,8 0]t 0.8513
52 | 7 |[2423456]+(26,9,23,11,12,13]+(22,16,17,19,18 20]+[15,21,1,14,0]t 08510
28 | 8 |[1,2,34,22,7,6]+8,10,11,12,13,0]t 0.8318
44 | 8 |[22,23456,10]+(15,7,11,1,13,14,9]+(17,18,19.20,12,0]t 0.8474
60 | 8 [[1,25345,6,7]+[9,2948.27,13,15,20]+[242621,14,19.22 23]+ 0.8699

[17,18,12,10,2.0]t
Appendix B

Catalogue of MCNSBNDs in twegggifferent block sizes

v | ki |k Sets of Shifts Es
22 |7 |6 [193,654]+(82,110]t 0.7837
36 |7 |6 11823,45,1014[1,96,15,12,13]+[11,16,80]t 0.8027
50 |7 [ 6 [242464,56]4(23,9,20,7,12,13]+([1,16,15,10,17,18]+(22,8,19 0]t 0.8140
24 |8 |6 |[11,23456,7]+[9,13,10]t 0.7680
40 | 8 | 6 [[12,3459,7]+[19.18,10,12,13,15,14]+[22,11,6 0]t 0.8996
56 | 8 | 6 [20234,57,61+4[9,10,11,12,13,14,25]+(17,26,19,1,21,27 23]+ 0.8418

[15,18.22 0]t
26 | 8 | 7 |113234,3,11,6,7]+[9,105,1.0]t 0.7581
42 | 8 | 7 [[1,2,38,54,6,7]+(159,16,21,13,18,14]+[12,10,11 8 0]t 0.8320
58 |8 |7 12923,50653,7]+(8,10,26,12,13,14,15]+ 0.8650
[17,18,1927.21,22 23]+[25,11,20,1,0]t
Appendix C

Catalogue of MCNSBND:s in three different block sizes

v | ki | k2 ks Sets of shifts Es
38| 8| 7 |6 [[12345,6,7]+17,10,25,11,19,14]+(8,16,13,0]t 0.8514
5418 | 7 |6 [[182345,6,7]+(9,10,11,12,1320,15]+ 0.8722

[36,24,19,14 22 21]+([1,25,27,0]t




40 [ 9 6 [[19.2,1845,6871+[10,11,12,13.14,15]+[22,16,1 0]t 0.8545

589 6 |[122353.6,5,78]+[1,292725,14,15.16,17]+ 0.8453
[9,1221.2,2423]+[26,20,11 0]t

4219 6 |[123854,6,78]+[18.921,13,14,16,15]+[10,19,12 0]t 0.8575

60 | 9 6 |[25.16322523.7.8]+[10,11,12,13,1421 2,17+ 0.8779
[28,20,15,29.27 24.1]+[6,19 4 30]t

44 9 7 [[723.174,6,151+[19,10,1121,14,16,20]+[3,12,13,150]t 0.8877
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