Revised JKS

by Nazir Uddin

Submission date: 07-Apr-2023 12:01AM (UTC+0800)
Submission ID: 2057659541

File name: Final_text_6_April2023.docx (14.28M)
Word count: 8286

Character count: 48960



Supercritical fluid extraction of torch ginger: encapsulation, metabolite profiling, and
antioxidant activity

Abstract

Objectives

The objective of this study was first to perform the supercritical fluid extraction (SFE) and
encapsulation of torch ginger (Eilingera elarior) inflorescences into a functional powder. Second

objective was to evaluate the powder’s characteristics, metabolite profiles, and antioxidant activity.

Methods

Torch ginger inflorescences were extracted via SFE technique, and the obtained extract was
encapsulated by a spray-drying process with maltodextrin as an encapsulating agent. Subsequently, the
powder was evaluated for its physical characteristics, determination of metabolite profiles by using a
Fourier Transform Infrared Spectrophotometer (FTIR) and Gas Chromatography-Mass Spectrometry

(GC-MS). and antioxidant activity.

Results

Spray drying encapsulation process managed to yield around 59.8% of torch ginger extract powder
(TGEP) by using 10% of extract, which the obtained yield was twice higher than in another study.
TGEP showed inconsistent agglomeration behaviour in particle size examination with distinct sizes
concentrating at 2.2 pm and 17.4 pm, respectively. Brunauer-Emmett-Teller (BET) analysis of TGEP
unveiled a considerably high surface area (1.13 m2/g), pore volume (0.218 cm3/g), and pore size (384.6
nm). The metabolites profile of TGEP was studied and characterized using two spectroscopic analyses.
Analysis by the FTIR showed the presence of O-H, C-H, C=C, C=0, CO-0-CO, C-N, and C-O
functional groups in the sample. Subsequently, the result of the GC-MS characterization revealed about
59 metabolites that predominantly fatty acids (30.5%), terpenes and derivatives (20.3%), fatty acid
esters (16.9%), and alcohols (8.47%) were present in TGEP. The powder also demonstrated a high

antioxidant activity based on the evaluation of its total phenolic content (23.3 + 0.662), 2.2-diphenyl-




I-picrylhydrazyl radical scavenging capacity (1.31 + 0.002), and ferric reducing antioxidant power
(2919.5 £ 19.9), which were better than previous studies.

Conclusion

Therefore, this study unveiled TGEP as a functional powder with a high content of bioactive compounds

with excellent bioactivity.

Keywords: Erlingera elatior, Encapsulated torch ginger extract powder, Supercritical fluid extraction,,

Spray drying, Encapsulation, Metabolite
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1. Introduction

Torch ginger or scientifically known as Etlingera elatior is a perennial herbaceous plant belong in the
Zingiberaceae family which is endemic to the Southeast Asian region. It grows in a large colonies and
has a pink, ovoid-shaped, intlorescence with a unique fragrance (NParks, 2019). In the Southeast Asian
gastronomy, torch ginger is synonymous in various cuisine such as Asam Laksa in Malaysia, Pecel in
Indonesia, and added to traditional Thai meat dishes in Thailand (Rachkeeree et al., 2018).

Torch ginger has been receiving major traction among researchers and various studies have been
conducted to unveil its promising medicinal value. Torch ginger has been reported to contains various
phytochemical constituents specifically secondary metabolites that serve a multitudes of biological
functions. Secondary metabolites in the class of lipids, phenolics, and terpenes are often found in torch
ginger’s extract and its metabolites profile was well documented in literature (Ghasemzadeh et al., 2015;
Marzlan et al., 2020; Wijekoon et al., 2011; Wijekoon et al., 2013). As mentioned earlier, these classes
of secondary metabolites have been scientifically proven to render various biological functions namely,
as antioxidant, antimicrobial, and antibiotic (Hussein & El-Anssary, 2018; Lachumy et al., 2010).
Furthermore, torch ginger also distinctively known as an aromatic flower and this aroma is fundamental
in the Southeast Asian gastronomy (Oh et al., 2019; Raji et al., 2017). Hence, apart from elevating
the sensory experience of food, the inclusion of torch ginger in daily diet is presumed to elicit
the functional importance of bioactive compounds, which are vital for optimal human health
(Abdelwahab et al., 2010; Lachumy et al., 2010).

In recent decade, supercritical fluid extraction (SFE) has been well reported as a safe and efficient
extraction technique for various plant-based natural products in broad array of application. SFE utilise
supercritical carbon dioxide (SCO,) as a solvent in which this unique state delivers a gas-like diffusivity
and liquid-like solubility throughout the extraction process (Sunol et al., 2019). These properties are
important to induce the penetration of solvent deep into the plant matrices which it will increase the
rate of mass transfer between the extracted material and the solvent used (Arumugham et al., 2021).
Additionally, the use of CO:also provides an added advantage to this technique as the Food and Drug

Administration (FDA) has classified the substance as Generally Recognized as Safe (GRAS) (FDA.,
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2020). Hence, this unique mechanism of SFE promotes the extraction, isolation, and retention of plant’s
beneficial compounds, such as terpenes. flavonoids and phenolics in the obtained extract (Caballero et
al., 2020).

The encapsulation technique has ushered in a multifaceted benefit to the plant extract. This technique
has been claimed to protect bioactive compounds against oxidation, creates a thermal barrier, preserve
the physical structure of the compounds, and conserve the organoleptic attributes of the compound
(Mooranian et al., 2014). The aforementioned benefits are made possible via this technique as the
bioactive compounds are trapped in a capsule-like structure with a shell made up of biomaterials or
synthetic polymer that serves as a protective layer (Onsaard & Onsaard, 2019). Therefore, researchers
and industry players have preferred the encapsulation technique to produce bioactive compound-rich
extract suitable for various applications.

Several studies have been conducted on developing plant-extract-based powder from various herbal
plant species in literature (Rajabi et al., 2015; Simon-Brown et al., 2016). However, to the authors’
knowledge, only one study on developing torch ginger extract powder using the encapsulation
technique exists in the literature, which has been published by Anuar et al. (2021). Consequently, due
to insufficient studies on torch ginger-extract powder, information about its phytochemical composition
and bioactivity remain scarce in the literature. In this study, the torch ginger extract powder (TGEP)
was developed, the retention of bioactive compounds in the powder was evaluated, and its bioactivity
was tested. Therefore, the objective of this study was first to perform the supercritical fluid extraction
(SFE) and encapsulation of torch ginger (Etlingera elatior) inflorescences into a functional powder.
Meanwhile, the second objective was to evaluate the powder’s characteristics, metabolite profiles, and

antioxidant activity.

2. Materials and methods

2.1. Torch ginger sample and chemicals

Torch ginger (Etlingera elatior) inflorescences were procured from a farm in Kuala Pilah, Negeri
Sembilan, Malaysia. The sample was harvested and delivered to the authors’ laboratory within the same

day. Subsequently, the sample was stored in the laboratory's refrigerator for storage under refrigerated
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conditions (£ 4 °C). Analytical grade organic solvents and chemicals were used in the experiments for
an optimum precision. The N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) used for the
analysis was bought from Thermo Fisher Scientific (Waltham, MA, United States of America).
Denatured ethanol (99% purity) and acetic acid (glacial, =99% assay) were obtained from HmbG
Chemicals (Hamburg, Germany). Additionally, hydrochloric acid (fuming 37%). gallic acid, Folin-
Ciocateu phenol reagent, and ferric chloride hexahydrate were purchased from Merck (Darmstadt,
Germany). Meanwhile, anhydrous pyridine (99.8%), methoxyamine hydrochloride (98%), sodium
acetate (anhydrous), sodium carbonate (anhydrous), gallic acid (TraceCERT®), 22-Diphenyl-1-
picrylhydrazyl radical (DPPH), and (+)-6-Hydroxy-2.5.7.8-tetramethylchromane-2-carboxylic acid

(Trolox) were procured from Sigma-Aldrich (St. Louis, MO, United States of America).

2.2. Preparation

2.2.1. Pre-processing of torch ginger

The inflorescences were separated from its stalk and later, they were cut into smaller pieces.
Subsequently, the sample was lyophilized by using the Labconco FreeZone Benchtop freeze dryer
(Missouri, United States of America) that was operated at -40 °C and the vacuum level was set at 133
x 107 mBAR. The drying process was conducted until the sample was sufficiently dried (£ 10%
moisture content) which it took approximately four days to complete. Using a RT-CR30S 3HP cutting
mill with a cyclone powder collector (Rong Tsong Precision Technology Co., Dawei Rd., Taichung,
Taiwan), the dried sample was pulverized into powder with particles approximately 0.22 mm in size.
Following that, the remaining debris were removed from the powder by sieving it using a 200 x 50 mm

sieve with the aperture size of 0220 mm and the powder was stored in an airtight container.

2.2.2. Supercritical fluid extraction of torch ginger
Supercritical fluid extraction (SFE) technique was performed to extract and isolate essential oil from
torch ginger by using a laboratory scale extraction plant (Deven Supercritical Pvt. Ltd., Phatak Baug,

Navi Peth, Pune, India). The extraction process was carried out according to method used in our
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previous study with some modifications (Naziruddin et al., 2022). In brief, a filter bag with a pore size
of 450 ym was filled with approximately 200 g of torch ginger powder and subsequently positioned
within the high-pressure extraction vessel of the SFE unit. Stream of liquid CO2(99.8% purity, 1.2 kg/h)
was flowed into the chiller for it to be cooled at 5 °C and it was later pressurised by a high-pressure
pump before entering the extraction vessel. Inside the extraction vessel, liquid CO> was converted to a
supercritical state (SCO2) upon being pressurised to 28 MPa at 50 °C. Consequently, the SCO:
penetrated the sample’s microporous matrix to induce the extraction and isolation of the desired
compounds. The entire extraction process took about six hours to complete, by which the yield was
collected every consecutive hour and dispensed into an amber glass bottle. The bottle was tightly capped

and hermetically sealed by wrapping it with a sheet of parafilm for storage at 4 °C.

2.2.3. Spray drying encapsulation of torch ginger extract

Prior to the process, a mixture made up of torch ginger extract (10%), water (80%), maltodextrin as an
encapsulating agent (7%), and emulsifiers (glyceryl monostearate and sodium stearoyl lactylate) each
at 1.5% was prepared. Subsequently, the prepared mixture was evenly mixed and homogenised for 15
minutes at 6000 rpm by using a Silverson L5SM-A laboratory mixer (Silverson Machines, Inc., East
Longmeadow, Massachusetts, United States of America). The aforementioned machine was operated
with a short stop at every consecutive S-minute to allow the cool down of the rotor blades. The mixture
was further homogenised for 30 minutes by applying speed at 5800 rpm using a GEA Lab Homogeniser
PandaPLUS 2000 (GEA Group Aktiengesellschaft, Diisseldorf, Germany). The formed emulsion was
dried using a Biichi B-290 spray dryer (Biichi Labortechnik AG, Flawil, Switzerland) which equipped
with an atomiser nozzle (0.5 mm in diameter) at 15 MPa. The spray drying process was conducted
under the following conditions: inlet air temperature at 130 °C, outlet air temperature at 50 + 1 °C, flow
rate fixed at 150 L/h, and feed suspension rate set at 180 mL/h. Upon completion, the obtained powder
was transferred into an amber glass bottle and tightly sealed. The bottle was stored in a refrigerator for
storage at a refrigerated condition (+ 4 °C). Schematic diagram of the supercritical fluid extraction

(SFE) process and the encapsulation of torch ginger extract by spray drying is showed in Fig. 1.
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[Fig. 1 about here]

Yield of the encapsulated torch ginger extract powder (TGEP) obtained from the process was

determined according to the equation used by Navarro-Flores et al. (2020) which given as follows:

Yieldrgep (%) = Powder obtained (g) / Solids in the feed solution (g) x 100 % (1)

2.3. Analysis of Powder Characteristics

2.3.1. Particle size analysis and BET analysis

The particle size distribution of TGEP was studied using a Mastersizer 2000 particle size analyser
equipped with Scirocco 2000 sample dispersion unit (Malvern Instruments Ltd., Malvern, United
Kingdom). Prior to analysis, the refractive index of TGEP was determined at 1.52 by using a PAL-RI
refractometer (ATAGO Co., Ltd., Tokyo, Japan). TGEP was precisely weighed at 2.0 g, and it was
loaded into the hopper attached to the Scirocco 2000 sample dispersion unit, and the pressure was set
at 4 bar. In addition, the specific surface area and porosity distribution of TGEP were investigated with
Brunaver-Emmett-Teller (BET) analysis through a Micromeritics ASAP 2000 equipment. Before

analysis, the sample was degassed for 30 min at 60 °C under a continuous nitrogen gas flow.

2.3.2. FTIR spectroscopy analysis

The metabolite screening of TGEP was performed using a Spectrum 100 Fourier Transform Infrared
Spectrophotometer (FTIR) (PerkinElmer Inc., Waltham, United States of America) by using method
used in our previous study (Naziruddin et al., 2021). The scanning range of the FTIR was set from 4000
— 600 cm™ with a scanning resolution of 4 cm ', By grinding, potassium bromide (KBr) was combined

with TGEP and the powder mixture was pelletised before analysis.

2.4. Metabolites Profiling by GC-MS
Prior to Gas Chromatography-Mass Spectrometry (GC-MS) analysis, TGEP was derivatized according

to the method used by Robinson et al. (2005). Briefly, 25.0 mg of TGEP was placed inside a 2.0 mL
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centrifuge tube, and about 50.0 pL of anhydrous pyridine was then added into it. The mixture was
subjected to sonication for a duration of 10 minutes at 30 °C by using an Elmasonic S 30 (H) ultrasonic
device (Elma Schmidbauer GmbH, Singen, Germany). Subsequently, about 100 puL of methoxyamine
HCI (20 mg/mL in pyridine) was pipetted into the solution and it was vortexed for one minute. Two
consecutive incubation was conducted by which the solution was initially incubated for 2 hours at 60
°C and it was again incubated for 30 minutes at 60 °C upon the addition of 300 pL of MSTFA. Lastly,
the solution was filtered using a 0.22 um nylon syringe filter, and the filtered liquid was then transferred
to an amber vial to be left at room temperature overnight.

The GC-MS method used in our previous study was followed for the identification of metabolites in
TGEP and some modifications were made to improve the detection (Naziruddin et al., 2022). The
derivatized fraction of TGEP was analysed by using a TSQ Quantum XLS GC-MS system (Thermo
Scientific, United States of America). TGEP’s aliquot was injected (1 pL injection volume) into an
Agilent J&W DB-5MS column (length: 30 m, inner diameter: 0.25 mm, and film thickness: 0.25 mm)
(Agilent Technologies, California, United States of America) in split-less mode and the carrier gas used
was helium at 1.0 mL/min. The column was first held at 80 °C for 5 min and afterwards increased at 8
°C/min to 200 °C. Subsequently, the temperature of the oven was gradually raised to 280 °C at a ramp
rate of 4 °C/min, and maintained at that level for 15 minutes. The temperature of the ion source and
interface were regulated at 280 °C and 250 °C, respectively. The GC-MS analysis was performed in a
total ion chromatography (TIC) mode and the full scan data was collected within a mass scan range of
40 to 600 m/z. To identify the compounds present, the acquired mass spectra for each chromatographic
peak were compared with a retention time index and mass spectral libraries for GC-MS that were
created by the National Institute of Standards and Technology (NIST). The data version used for this

analysis was NIST17 (NIST, 2017).

2.5. Analysis of Antioxidant Activity
2.5.1. Quantification of the Total Phenolic Content
Total Phenolic Content (TPC) in TGEP was quantified using the Folin-Ciocalteu method (Xiao et al.,

2020). TGEP (precisely weighed at 0.5 mg) was dissolved in 1 mL ethanol and shaken for 1 minutes.




166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

193

Meanwhile, ethanolic gallic acid (GA) calibration solutions were prepared at five concentration levels
which ranging from 6.25 x 10° mg/mL — 0.1 mg/mL. Briefly, approximately 0.1 mL of the extract was
pipetted into a test tube and mixed with 0.5 mL of 50% Folin-Ciocalteu reagent. Subsequently, the
solution was mixed using a vortex mixer (OHAUS Corporation, New Jersey, United States of America)
for 3 minutes and about 7.9 mL of distilled water was added to the tube. The solution was allowed to
set at room temperature for 5 minutes. Following that, 7.5% sodium carbonate solution was added to
made the final volume of 10 mL and later it was incubated in a dark room (+ 28 °C) for 2 hours.
Throughout the incubation, the tube was periodically shaken at every 30 minutes to ensure it was fully
reacted. Both sample and calibration standard solutions were determined for its absorbance at the
wavelength of 765 nm by using a ultraviolet-visible (UV-Vis) spectrophotometer of the GENESYS™
10S model (Thermo Fisher Scientific, Waltham, United States of America). The TPC’s result was
expressed as milligram (mg) of gallic acid equivalents (GAE) per gram (g) of TGEP (mg GAE/g
TGEP). Calibration curve of the gallic acid standard was constructed and its linear equation was used

to estimate the TPC value of TGEP.

2.5.2. DPPH radical scavenging capacity assay

The DPPH assay was performed based on previously reported methods with minor alterations (Trucillo
et al., 2018). Sample was prepared by dissolving TGEP in ethanol at five different concentrations (0.1
mg/mL, 0.05 mg/mL, 0.025 mg/mL, 0.0125 mg/mL, and 6.25 x 107 mg/mL in ethanol). Meanwhile,
all five levels of GA calibration solutions were also prepared in ethanol which ranging from 0.05 mg/mL
to 3.125 x 10? mg/mL in concentration. Precisely weighed DPPH at 0.0197 g was dissolved in 500 mL
ethanol to make a 10* M solution. Briefly, about | mL of the diluted TGEP was mixed with 3.0 mL
DPPH solution in a test tube and intensely shaken for 1 minutes. The test tube was allowed to incubate
for 30 minutes in a dark environment at ambient temperature. A UV-Vis spectrophotometer (similar
model used for TPC assay) was used to measure the absorbance at a wavelength of 517 nm for the
sample, standard, and control (diluted DPPH in ethanol absolute). Scavenging capacity (%) of the

sample and standards were estimated by solving the equation (2) as follows:
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Scavenging capacity (%) = [1 — (abs. A / abs. B)] x 100 % (2)

Where abs. A is the absorbance of sample or standards and abs. B is the control’s absorbance. Reduction
of the initial DPPH radical concentration by 50% based on its respective TGEP’s concentration was

represented by ECs, value.

2.53. Ferric reducing antioxidant power (FRAP) assay

FRAP assay was conducted by applying methods described by Benzie and Strain (1996) and Tomasina
et al. (2012) with slight modifications. Freshly prepared FRAP reagent solution was prepared by
combining 300 mM acetate butfer (pH 3.6), 10 mM TPTZ solution (in 40 mM hydrochloric acid), and
20 mM ferric chloride hexahydrate (FeCls) with a volume (mL) ratio of 25: 2.5: 2.5. Ethanolic TGEP’s
extract was prepared by dissolving the sample (1 mg) in 1 mL of ethanol. Meanwhile, Trolox calibration
solutions in the concentration of 19.977 uM, 9.988 uM, 4.994 pM, 2.497 uM, and 1.251 pM were also
prepared in ethanol. The assay was performed by mixing 8.7 mL of FRAP reagent with 0.3 mL TGEP’s
ethanolic extract and it was put aside to incubate at 50 °C for 1 hour. Using a UV-vis spectrophotometer,
the absorbance at 593 nm was measured to monitor the reduction of ferric iron (Fe*") to ferrous iron
(Fe*) by the antioxidants present in both TGEP and the standard. Results were expressed as micromolar
(uM) of Trolox equivalents (TE) per g of TGEP (uM TE/g TGEP). Calibration curve based on the

Trolox standards was constructed and the obtained equation was used to calculate the FR AP value.

3. Results and Discussion

3.1. Yield of the encapsulated torch ginger-extract powder

In the process, about 400 g of the prepared emulsion with a total solid mass of 80.0 g (50:50 torch
ginger’s extract and encapsulating agent) was fed into the spray dryer, which produced 47.8 g of TGEP.
Hence, based on the determination by equation (1), the process managed to yield around 59.8% of
TGEP. The obtained yield in this study was found to be substantially higher than the yields reported by

Anuar et al. (2021) which were in the range of 15 % — 36 % based on various formulations tested.

10
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3.2. Particle size analysis and BET analysis

Fig. 2 displays the distribution of particle size for encapsulated torch ginger-extract powder. The median
diameter, Dy s for TGEP was measured at 6.188 + 0.771 um. Meanwhile, the sample revealed two
distinct particle sizes concentrating at 2.2 um and 17.4 pm, respectively. This non-uniform size
distribution was likely due to the formation of large agglomerates as a result of spray drying at low inlet
air temperature (< 140 °C) (Both et al., 2020). Additionally, Siccama et al. (2021) also mentioned that
the presence of high residual moisture content and low glass transition temperature of the spray dried
powder might increase its stickiness which leads to agglomeration. Nonetheless, the produced TGEP

showed relatively small size of particles which was less than 50 pm.

[Fig. 2 about here]

In BET analysis (Table 1), TGEP was examined with the presence of considerably high surface area,
pore volume, and pore size features. Surface area purportedly affected the functionality of powders:
solubility, flowability, rehydration, and wetting characteristics. Furthermore, high surface area of
functional powder also contributed to a high degree of solvation which is paramount for the absorption
of retained compounds (Burgain et al., 2017; Ko¢ & Kaymak-Ertekin, 2014). The outcomes’ trend of
BET analysis were in agreement with results reported by Zhang et al. (2018), as the spray-dried powder
obtained from their research exhibited higher surface area (ranging from 1.54 to 2.18 m%g) with greater
porosity. The authors also reported that the physical characteristics of spray-dried powder often atfected
by the spray drying inlet air temperature and type of atomiser. Zhang et al. (2018) also reported that the
inlet air temperature in between 120 °C to 160 °C can induced the increased of powder’s surface area
due to formation of particles with dryer and harder coating. The aforementioned inlet air temperature
reflected to this study as the spray drying process was conducted at 130 °C. Hence, similar powder

characteristics reported by Zhang et al. (2018) were expected

[Table 1 about here]
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3.3. FTIR analysis

The FTIR spectrum of TGEP is displayed in Fig. 3, and the peaks in the fingerprint region were assigned
based on their corresponding functional groups in Table 2. A wide band was observed extending from
3000 cm™ to 3600 cm™', which corresponded to the O-H stretching vibration of alcohols and carboxylic
acids in the sample. Several researchers have been reported the present of alcohols, such as 1-
Dodecanol, Tetradecanol, and 1-Undecanol in the torch ginger extract. Meanwhile, carboxylic acid that
predominantly fatty acids such as Hexacosanoic acid, Decanoic acid, and Hexadecanoic acid also has
been reported to present in torch ginger extract (Al-Mansoub et al., 2021; Anzian et al., 2020; Marzlan
et al., 2020). The spectra showed two intense sharp peaks at 2853 cm™ and 2925 cm™ which were in
relation to the C-H stretching vibration of alkyl group. Additionally, the presence of alkene in TGEP
can be identified by a medium peak formed at 1463 ¢cm™ which corresponded to C-H bending of
methylene group and a 1652 cm™' shoulder band which representing the double bonds (C=C) vibrational
stretching of alkenyl group. Alkane and alkene which belong to the class of hydrocarbons also has been
reported by Al-Mansoub et al. (2021), as the author managed to identify the presence of Cyclododecane,
Heptadecane, 1-Decene, and 1-Tetradecene in the ethanolic torch ginger extract. The sample also
exhibited a sharp peak at 1727 cm’ which indicating the C=0 stretching of carbonyl group such
aldehyde, ester, and carboxylic acid. This finding was in agreement with results reported by Marzlan et
al. (2020), as the authors identified esters such as Lauryl acetate, Myristyl myristate, and (E)-9-
Tetradecen- 1-0l acetate in torch ginger oil extracted by supercritical fluid extraction. Anhydride group
also potentially present in TGEP as indicated by the intense peak formed at 1025 cm™ which attributing
to the CO-O-CO stretching of the functional group. Subsequently, a sharp peak present at 1200 cm™
signalled the C-N stretching of amine, while a broad peak formed at 1250 ecm™ to 1310 cm™ might be
corresponded to the C-O stretching of aromatic ester. Lastly, a noticeable peak formed at 750 cm™ could
be associated to C-H bending of 1,2-disubstituted and monosubstituted compounds that present in
TGEP. Hence, the results proved that the presence of chemically-diverse compounds in TGEP was

valid.

[Fig. 3 about here]
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[Table 2 about here]

3.4. Metabolite profiling and identification by GC-MS

GC-MS chromatogram of the detected metabolites in TGEP was showed in Fig. 4. Broad array of
masses was acquired (scan range 40 — 600m/z) within the scan time of 5.0 to 55.0 minutes and presence
of metabolites were monitored at various retention times (RTs). The metabolites’ identities were
confirmed by comparing the generated spectral pattern with those of established spectral library
developed by National Institute of Standards and Technology (NIST), data version NIST17 (NIST,
2017). Additionally, the detected metabolites were classified by referring to the comprehensive
database of FooDB which was developed by the renounce research teams specialising in metabolomics

(TMIC, 2021).

[Fig. 4 about here]

Altogether, about 59 metabolites belong to the 19 different classes of compounds were identified in
TGEP as listed in Table 3. The number of metabolites able to be detected in this study is substantially
higher and more diversified than other reported torch ginger’s metabolite studies. In literature, studies
conducted by Marzlan et al. (2020) and Anzian et al. (2020) reported the numbers of metabolite found
in torch ginger’s essential oil at 20 and 33 respectively. In brief, most of the detected metabolites were
belong to four major classes which were fatty acids (30.5%), terpenes and derivatives (20.3%), fatty

acid esters (16.9%), and alcohols (8.47%).

[Table 3 about here]

Among these major classes of metaholites, alcohols particularly 1-Dodecanol was reported to render a
potent antibacterial activity against several bacterial species (Marzlanet al., 2022; Marzlan et al., 2020).

Additionally, the pharmacological activities of terpenoids were also well-known and heavily studied in

13
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the literature. Uvaol, a triterpene, was reported by Agra et al. (2016) to be effective as an active

ingredient for the treatment of inflammation caused by allergic reaction.

Torch ginger notoriously known for its distinctive aroma which is a vital characteristic of Southeast
Asian’s cuisine. Expert described that torch ginger embodies a sweet, tangy, and lemongrass-like aroma
profile (Khor et al., 2017). Although the key aromatic compounds that responsible for torch ginger’s
aroma have never been reported in literature, such study was already being conducted for ginger
(Zingiber officinale Roscoe) and galangal (Kaempferia galanga L.) which also belong in the
Zingiberaceae family. The researchers identified the presence of metabolite composition that consist of
aldehyde, alcohol, hydrocarbon, ketone, terpene, and ester to be accountable for the distinctive aroma
of both herbs (Hasegawa et al., 2016; Pang et al., 2017). In spite of the differences in species, similar
composition as previously mentioned was also found in TGEP and the aroma profiles exude by the
compounds could be assumed similar to torch ginger. Pang et al. (2017) mentioned that the presence of
primary odorants in ginger namely , monoterpenes and sesquiterpenes could be associated to the woody,
minty, citrusy, and herbal-like aroma. The researchers also attributed the sweet notes (balsamic and
floral) of ginger to the presence of metabolites in the class of alcohol, aldehyde, terpene and terpene
derivative. Additionally, humulene, a sesquiterpene found in TGEP was also reportedly presence in
galangal and it was presumed to emits the unique galangal-like aroma (Hasegawa et al., 2016). The
formerly defined aroma profile of ginger and galangal are noticeably similar to the general description
of torch ginger’s aroma. Therefore, it is presumed that the key aromatic compounds of torch ginger

were retained in the TGEP, which would be beneficial for the application in food.

3.5. Antioxidant activity

The antioxidant capacity of TGEP was evaluated based on the performance of TPC, DPPH, and FRAP
as showed in Table 4. The quantified value of TPC for TGEP was found to be higher than other reported
values in literature which were in the range of 2.12 — 19.4 mg GAF/g (Anzian et al., 2017; Yan &
Asmah, 2010). The TPC values of the aforementioned studies were based on the quantification in the

fresh and dried forms of torch ginger. Therefore, it indicates that the phenolic compounds present in
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torch ginger retained at an exceptional level in TGEP. Additionally, this claimed also supported by the

presence of Hexadecyl-(E)-p-coumarate which is a phenolic acid identitied in TGEP by the GC-MS.

[Table 4 about here]

The free radical scavenging capacity of TGEP was predicted based on its antioxidants ability to reduce
DPPH radical. The activity of scavenging DPPH radicals was measured by the ECso value in which it
indicates the effective TGEP’s concentration needed to reduce the DPPH radical’s absorbance by 50%.
The value of ECsy for TGEP was determined at 1.31 + 0.002 mg/mL, which was substantially lower
than such value reported by Nurain et al. (2013) at 3.47 + 0420 mg/mL based on the determination in
ethanolic torch ginger’s extract. This low value of ECs, for TGEP signified its high antioxidant activity
which could potentially linked to its high TPC value. Additionally, the quantified FRAP value of TGEP
also was found to be substantially higher as compared to such values reported by Bunleu and Buavaroon
(2018) and Wijekoon et al. (2011) which were in the range of 9.0 — 130 uM Fe(Il)/g. The excellent
performance of TGEP’s antioxidants in the assay demonstrated its high reactivity against the Fe’* -
TPTZ and effectively reduced it to Fe** - TPTZ. Hydroxyl and carbonyl-rich compounds in plants have
been associated with excellent reducing capabilities and stabilisers (Mohamad et al., 2014; Pradeep et
al., 2022). Based on Table 3, TGEP possessed abundant compounds with sufficient hydroxyl and
carbonyl groups present, such as dodecanal (aldehyde), xanthophyll, and B-Sitosterol (terpene)
(Mahavy et al., 2022; Tovey. 2019). The oxidation-reduction abilities of these compounds allow the

binding of metals and inactivate them via chelation (Azri et al., 2019).

The outstanding performance of TGEP in the aforementioned antioxidant assay could be linked to the
existence of various metabolites in the class of terpenoids as profiled in Table 3. Terpenoid has been
vastly studied in literature and the evidences for its potency as an antioxidant were well recorded.
Terpenoids, namely humulene and uvaol found in TGEP have been reported in multiple studies able to
induce the reduction of oxidative stress by effectively control the autoxidation reaction (Allouche et al.,

2010; Gunawan et al., 2016). Additionally, the abundance of TGEP’s metabolites with a hydroxyl,
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methoxy, and carboxylic acid groups could potentially contribute to the high antioxidant capacity as
these functional group were reported to render a vital effect on the antioxidant ability (Chen et al.,

2020).

3.6. Potential future as a plant-based functional food additive

The development of functional food additives derived from plants has aroused the interest of consumers
for a much healthier alternative and reduced the dependency on its artificial counterparts (Dominguez
et al., 2021). However, various shortcomings in applying plant extract at the industrial scale might
induce complexity in the manutfacturing process and not be economically sound. Plant extract must be
handled with the utmost care as it is highly volatile, hydrophobic, and prone to stability issues when
exposed to environmental stressors (e.g., extreme temperature, light) (Kfoury et al., 2016; Rezaei &
Nasirpour, 2019). The encapsulation technique has been known to offset these problems as it can trap
the plant’s bioactive compounds in an encapsulating agent and makes it more stable (Mutioz-Shugul{
et al., 2021). Based on the evaluations, TGEP has demonstrated the retention of various metabolites
with different bioactive functions and maintained its antioxidant capability. This technique also captures

the key aromatic compounds of torch ginger, which would be vital for its application as a food additive.

4. Conclusion

Present study revealed the extraction, encapsulation and comprehensive metabolite profiling of torch
ginger-extract powder. Spray drying encapsulation process managed to yield around 59.8% of TGEP
by incorporating 10% supercritical fluid-torch ginger extract into encapsulating agent mixture, which
the obtained yield was twice higher than other study. Based on the performed analyses, the developed
powder showed the present of varying valuable bioactive compounds. From the particle size analysis,
TGEP revealed aggregated feature, which shown by two distinct particle sizes concentrating at 2.2 pm
and 17.4 pm, respectively. BET analysis of TGEP unveiled a considerably high surface area (1.13 m%g),
pore volume (0.218 cm?/g), and pore size (384.6 nm) which were purportedly affected by the spray
drying inlet air temperature. The FTIR analysis revealed the presence of O-H, C-H, C=C, C=0,C0O-0O-

CO, C-N, and C-O functional groups in the sample. Meanwhile, based on the GC-MS analysis, about
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59 metabolites that predominantly fatty acids (30.5%), terpenes and derivatives (20.3%), fatty acid

esters (16.9%), and alcohols (8.47%) were identified in TGEP. TGEP also demonstrated an excellent

antioxidant capacity based on its high activity in the DPPH radical scavenging capacity (1.31 + 0.002),

ferric reducing antioxidant power assay (2919.5 + 19.9), and high value of total phenolic content (23.3

+ 0.662) in comparison to the previous studies. Therefore, this study has indicated that the developed

encapsulated torch ginger extract powder able to retain the beneficial bioactive compounds which

makes it a promising functional powder.
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Tables and figures

Table 1. BET analysis data of TGEP

Sample

Surface Area (m*/g)

Pore Volume (cm'"‘fg)

Pore Size (nm)

TGEP

1.131

0.218

384.6

Table 2. Assignment of FTIR spectra peaks and corresponding functional groups

Wavenumbers (cm™)

Band assignment

3000 em™ to 3600 cm™!

2853 cm™ and 2925

1250 ecm ™ to 1310 cm!
750 cm!

C-H bending of methylene group
Double bonds (C=C) vibrational stretching of alkenyl group
C=0 stretching of carbonyl group

CO-0-CO stretching of anhydride group
C-N stretching of amine
C-O stretching of aromatic ester
C-H bending of 1.2-disubstituted and monosubstituted compounds

O-H stretching vibration of alcohols and carboxylic acids
C-H stretching vibration of alkyl group

Table 3. Metabolites composition in TGEP as identified by GC-MS.

Nr.  Metabolite Retention  Molecular Molecular  Probability
time formula weight (%)
(min) (g/mol)
Acetate Esters
1. I-Tetradecyl acetate 20.14 CisH3202 256 23.72
2. Lauryl acetate 17.39 CsH>30- 228 36.04
Acid anhydride
3. 2.5-Furandione, 3-dodecyl- 32.45 Ci16H2603 266 10.42
Alcohols
4. 1-Dodecanol 15.35 C12H20 186 13.35
5. 11-Tetradecen-1-ol, (E)- 18.22 C1:H2:0 212 11.34
6. cis-9-Tetradecen-1-ol 18.22 C14H2:0 212 10.46
7. cis-11-Tetradecen-1-ol 18.22 CisH20 212 10.06
8. 1-Heptatriacotanol 29.96 C37H+0 536 2473
Aldehyde
0. Dodecanal 10.09 C2H240 184 44 48
Amine
10.  2.6-Octadien-1-amine, 11.76 CioHisN 153 12.92
3,7-dimethyl-
Carboxylic esters
11. 4-Azido-2-nitrobutyric 34 .96 C1oHasN4Os 392 21.06

acid,
2 6-di-t-butyl-4-methoxyph
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12.

13.

14.

15.
16.

17.

18.
19.

20.
21.
22,
23.
24,
25.
26.

217.
28.

29.

30.

31.

32.

33.

34,

35.

enyl ester

Coumaric acid ester
Hexadecyl-(E)-p-coumarate,
trimethylsilyl ether

Dithiane
2-[3-(1-Ethoxyethoxy)prop
yll[1.3]dithiane

Fatry acids

Dodecanoic acid,
3-hydroxy-

Dodecanoic acid
Dodecanoic acid, TMS
derivative

Undecanoic acid, TMS
derivative
Tetradecanoic acid
Myristic acid, TMS
derivative

Tridecanoic acid
Pentadecanoic acid
Palmitelaidic acid, TMS
derivative

Petroselinic acid, TMS
derivative

Palmitic Acid, TMS
derivative

Tridecanoic acid, TMS
derivative
Pentadecanoic acid, TMS
derivative

Octadecanoic acid
9,12-Octadecadienoic acid
(Z.Z)-, TMS derivative
Stearic acid, TMS
derivative
Heptadecanoic acid, TMS
derivative
2-Oleoylglycerol, 2TMS
derivative

Fatty acid esters
9-Octadecenoic acid (£)-,
oxiranylmethyl ester
9(E),1 1{E)-Conjugated
linoleic acid, trimethylsilyl
ester

Butanoic acid,
4-cyano-2-nitro-,

2 6-bis(1,1-dimethylethyl)-
4-methoxyphenyl ester
cis-9-Tetradecenoic acid,

38.38

2429

10.43

16.04
17.59

18.06

19.55
20.71

22.34
22.34
2322
2322
23.68
11.42

10.98

25.54
2642

26.90

26.90

35.50

2554

2642

3496

43.13

CasHa05Si

C11H»n 08,

C12H2405

Ci12H2404
C;sH;3,0-S1

Ci14H30:8Si

Ci14H2:02
Ci7H360:Si

Ci13Hz604
Ci5Hz002
C9H330-8i
C,Hy 081
Ci9HyyO-S1
C1sH340Si

C3H3305Si

Ci3Hs60:
C21H100:Si

CyHayy0-S81
CxHa0:Si

C27Hs56048i12

C21H3305

C21Hy0:Si

CzH2sN:205

C21H404

460

250

216

200
272

258

228
300

214
242
326
354
328
286
314

284
352

356

342

500

338

352

376

324

36.63

28.96

12.20

63.76
56.20

10.35

39.02
68.45

30.30
18.22
58.40
11.55
45.52
11.42

10.98

11.19
22.10

37.56

25.76

16.18

12.67

3647

13.18

43.13
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36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

heptyl ester
cis-9-Tetradecenoic acid,
isobutyl ester
Tetradecanoic acid,
2-oxo0-, ethyl ester
Hexadecanoic acid,
octadecyl ester
Hexadecanoic acid,
tetradecyl ester
Hexadecanoic acid,
hexadecyl ester

Oleic acid, eicosyl ester

Hydrocarbon
17-Pentatriacontene

Ketones

Cyclododecanol
(Z£)-18-Octadec-9-enolide
15-Isopropenyl-3-(trimethy
Isilyl)oxacyclopentadecan-2
-one

Phytoestrogen and derivative
Estra-1,3 5(10)-trien-17p-ol

Xanthophyll
.psi.,psi.-Carotene,
1.1'2.2'-tetrahydro-1.1"-
dimethoxy-

Terpenes and derivatives

48.

49,

50.

51.

52.
53.

54.
55.
56.
57.

Monoterpenes
3-Cyclohexene- 1 -methanol

, 5-hydroxy-o,o4-trimethyl-
trans-3(10)-Caren-2-ol

Monoterpene derivative
Sobrerol 8-acetate

Sesquiterpenes

1.4,7 -Cycloundecatriene,
1.5.9 9-tetramethyl-. Z.Z.Z-
Humulene

Formic acid,
3.7.11-trimethyl-1.6,10-do
decatrien-3-yl ester

Triterpenes
¢-Sitosterol
[B-Sitosterol
Uvaol, 20-TMS
B-Sitosterol, TMS
derivative

3588

37.61

39.29

39.29

39.29

46.10

41.55

10.09
25.16
2642

2554

45.88

13.79

13.79

13.79

15.17

15.17
15.68

46 .47
46.67
47.19
47.51

CiyH30s
Ci6H300s
C33Hgg O
C3HeOa
CHeaOn

CisH7402

Cﬁj H]‘"F

Ci2H20
CizH3:0:
CyH3:0:Si

CisH20

CHgO4

C]l)H]KOZ

CioHisO

C12H2005

CisHyy

CisHzy
Ci6Ha602

CaHs5O
CxoHs0O
Ci6Hes0:S81a
C3Hs3OS1

282

270

508

452

480

562

490

184
280
338

256

600

170

152

212

204

204
250

414
414
586
486

10.33

51.47

23.56

16.16

11.41

14.32

14.77

16.24
14.66
2642

14.99

1.79

14.18

13.79

14.18

33.15

2407
11.47

15.68
3042
10.48
10.54

20




410

411

412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

58.  Stigmast-5-cne, 47.51 C3,Hs5308i 486 5232
3p-(trimethylsiloxy)-,
(248)-

Terpene alcohol
59.  7.8-Epoxylanostan-11-ol, 41.08 C3Hs104 502 17.48
3-acetoxy-

Table 4. Antioxidant activity of the encapsulated torch ginger-extract powder.

TPC (mg GAE/g TGEP) ECs of DPPH radical FRAP (uM TE/g TGEP)
scavenging ability (mg/mL)
23.3+0.662 1.31 £0.002 29195+ 199

Values are means of riplicate determination + SD
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