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Original Article

Determining Confidence Interval and Asymptotic Distribution for
Parameters of Multiresponse Semiparametric Regression Model Using
Smoothing Spline Estimator

Abstract

The multiresponse semiparametric regression (MSR) model is a regression model with more
than two response variables that are mutually correlated. and its regression function is composed
of parametric and nonparametric components. The study objectives are propose a new method
for estimating the MSR model using smoothing spline. Also, find the confidence interval (CI) of
parameters and the distribution asymptotically of the model parameters estimator. Methods used
in this study are reproducing kernel Hilbert space (RKHS) method and a developed penalized
weighted least squares (PWLS), and apply pivotal quantity, central limit theorem, and theorems
of Cramer-Wold and Slutsky. The results are an 100(1-a)% CI estimate and an asymptotic
normal distribution for the parameters of the MSR model. In conclusion, the estimated MSR
model is a combined components estimate of parametric and nonparametric which is linear to
observation, and Cls of parameters depend on t distribution and estimator of parameters is
asymptotically normally distributed. Future time, this study results can be used as theoretical
bases to design standard growth charts of the toddlers which can then be used to assess the
nutritional status of the toddlers.

Key words: Asymptotic distribution, confidence interval, nutritional status, semiparametric
regression, smoothing spline

1. Introduction

Regression models are widely applied to analyze functional association between response and
predictor variables for prediction and interpretation purposes. Based on regression function
shapes, the regression models consist of parametric regression (PR) and nonparametric

regression (NR) models. The PR and NR models combination forms semiparametric regression




(SR) models. The SR model will form MSR model when it has two or more variables of
response that are mutually correlated.

In regression modeling, determining estimators of regression functions such as spline,
kernel, PWLS, local linear, local polynomial, is main problem. Some estimators were used to
estimate the regression functions, namely splines (Eubank, 1988; Wahba, 1990; Wang et al.,
2000; Gu, 2002; Wang, 2011; Chamidah et al., 2019b; 2020a; Fatmawati et al., 2019; Khan &
Shahna, 2019; Shahna & Khan, 2019; and Islamiyati et al., 2022;), kernel (Yilmaz et al., 2021),
PWLS (Lestari et al., 2020; 2022), local linear (Chamidah et al., 2018; 2019¢; 2020b), local
polynomial (Chamidah et al., 2019a; Chamidah & Lestari, 2019). Next, both kernel and spline
estimators in multiresponse NR (MNR) models and in NR model were discussed by Lestari et
al. (2018; 2019) and Osmani et al. (2019), respectively. The estimators mentioned above except
for the spline, are very dependent on the neighbors of the target point (bandwidth). Hence, if
these estimators are applied to estimate fluctuated data model, we need small bandwidth and
this will give the estimation curve too rough. These estimators only examine goodness of fit and
not smoothness. Thus, these estimators are less reliable for estimating the fluctuated data
models in the sub intervals, because these estimators will provide estimation results with large
mean square errors (MSE). This is different from the spline estimator which considers fit and
smoothness factors. The ability of the spline estimators to estimate the MNR model for
prediction purposes has been discussed by Fatmawati et al. (2019) and Lestari et al. (2020).
Although there have been several previous studies discussing these estimators for estimating the
regression function, these estimators were applied to NR and MNR models only. This means
that previous researchers have not applied these estimators to estimate the uniresponse
semiparametric regression (USR) model.

Furthermore, several estimators in USR models have been discussed by researchers
namely splines (Gao & Shi, 1997; Wang & Ke, 2009; Diana et al., 2013; Mohaisen &
Abdulhussein, 2015; Ramadan et al., 2019; Aydin et al., 2019; Chen & Ren, 2020; Ferandes et

al., 2020; Chamidah et al., 2021), kernel (Yilmaz et al., 2021). While, Amini & Roozbeh




(2015), Roozbeh (2018), and Roozbeh et al. (2020) estimated the restricted SR models using
ridge, and selected optimal shrinkage parameter and kernel smoother bandwidth based on
developed generalized cross validation (GCV) criterion. But, these previous researchers
discussed estimators in USR models only. Although Wibowo et al. (2012) and Chamidah et al.
(2022) estimated the MSR model using penalized spline and truncated spline. respectively, but
these researchers have not yet applied smoothing spline to estimate MSR model regression
function.

In this study we develop a estimation method for the MSR model, and determine the CI
and asymptotic distribution of parameters estimator in the MSR model using smoothing spline.
The smoothing spline can handle data with too smooth or too coarse character, and changes at
certain sub-intervals. It considers both goodness of fit stated by WLS function and smoothness
of model estimation stated by penalty function where balance between them are controlled by
smoothing parameters. The smoothing spline becomes less practical when sample size n is large
because it uses n knots. To overcome this practical problem, in this article we therefore provide

asymptotic distribution determination of parameters estimator in MSR model.

2. Materials and Methods

Suppose a paired dataset (Vi; Xii1 Xkizs 0 Xkiggr biits Crizs o tkir ) K= 12,005 @ =
1,2,..,n: gy + 71 =n where relationship between (X1, Xiciz, - s Xkigqys Liits theiz - tiiry,)
and y;; meets the MSR model:

Yii = fie(Xkin Xkiz  Xkiq) + G (trin s triz worbiir,) + Eki (1)
where y,; is value of i observation for k" response, fk(xkil,xmz,...,x“qk) is unknown
function for k" response, gk(tkil-tkiz ...,t;“-rk) is unknown smooth function for k" response
contained in Sobolev space W3 [ay, by ], and &; is random error with mean zero and variance
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The MSR model regression function in (1) is composed of parametric function
component namely fk[xkn,xkiz, ...,xk{-qk), and nonparametric function components namely
gk(tkil-tkiz ...,tk{-rk). So, we use WLS method to estimate fk(xkil,xkiz,...,xk{-qk), and use
smoothing spline to estimate gk(t,ﬁ-l, iz - ,tk(-rk) by developing PWLS method proposed by
Wang et al. (2000). Next, we apply pivotal quantity, central limit theorem, and theorems of

Cramer-Wold and Slutsky to obtain CI and distribution asymptotically of the model parameters

estimator of MSR model.

3. Results
Following are results of this study including regression function estimation, determination of CI

parameter and asymptotic distribution for parameter estimator of MSR model.

3.1. Regression Function Estimation
We may present the MSR model (1) as follows:

i — fie(Xun Tz s Xiqy) = B (biins Ehaz -0 i) + 8t - @
We can rewrite model (2) as follows:

Yii — XiiBre = i (td) + €1 (3
where X[ Bi = fic(Xii1 Xueizs - Xkigy)-
Suppose By is the true WLS estimate of . Hence, we can express model (3) as follows:

Vii = k(i) + &g (C)]
where  yi; = Yii — XjiBi- (5
Next, let  y* = (¥1, V20 Vpi) s 8= (81,82, -, 8p) s €= (€11, 820, &p)"; and t=
(tyi tai, o tp)" where Y = (Vin Vieas -0 Vi)' s €ki = (Ekvs kzr s Ekny) s
tei = (tirs iz, s tieny ) sand k=12, ..., p.

Hence, we can present the MSR model (4) in the following matrix equation:




y'=gte (©)
where E(g£) = 0,Cov(g) = W™ (namely).
The smoothing spline estimator of function g in model (6) can be determined by solving

the PWLS:

Min {(N7'[(yi — 8) "W, (y; — 81) + (v; — 82)" Wa(y; —82) + -+

1, BpEWS"

by
T m z
(y; - gp) Wp(y; - gp)] +4 f (g(l )(tl)) dt, +
by (o ) RTINS,
Az jﬂz (gz (tz)) dty + -+ A jﬂp (gp (tp)) dt,} d)

where N = Ei:l ;s Wy, Wo, ..., W, are weight matrices that are inverse of covariance matrix,
g € Wy"[a,b],and 44,45, ..., 4, are smoothing parameters that set the balance between good fit
and smoothness of estimation.

Based on Eq.(6), it is easy to show that the covariance matrix of random errors in MSR

model (1) is:
W =diag(W; Wy, ., W) (8)
J,fl Ok Ole(1,ny)
2 R
where Wil =| k@D T2 ) k(?’"‘) sand k=1.2,..,p.
Ok Pxmezy szn,(

Solution to optimization PWLS in (7) is obtained by using RKHS method. We can read
details of RKHS in Aronszajn (1950), Eubank (1988), Wahba (1990), Gu (2002), and Wang
(2011). Firstly, we express the model (4) into general smoothing spline regression model
(Wang, 2011):

Vi = Le Gic + Ex 9
where i=12,..,n; k=12,..,p: gr €§G) is a function which unknown and smooth

contained in Hilbert space Gy; and L. ; € Gj is a linear function and bounded.




Suppose we may decompose the Hilbert space G, into direct sum of two subspaces F)
and M such that we have:

G =F D H, (10)
where F), is orthogonal to H . Hence, for every function g, € G,.. k =1,2,...,p can be
expressed as follows:

G =fethe: fu€Fy: hy €Hy.

Next, if{é‘kl. Oty ens Skmk} is basis of space F), and {fkl. $kar o 'fkn;(} is basis of space H.
then we can express every function g, € G,k = 1,2, ...,p as follows:

Gk = 272 CrOr + Loy diesies = 8jcr + §1eds O dies € R (1
where 8 = (81, Oz s Oemy )" €k = (Ckrs Cizs s Cemy) ™3 &k = (ews $iczs -0 §kemy, )7 s and
die = (dyy, dizs e, diem,)" -

Hereinafter, since £;,, € G, is bounded linear function and gy € Gy, k=12, ..,p
then we have:

Lo = Ly, (fie Y ) = Lo, (fi) + Ley ()
= filti) + b (i)
= G (tr)- (12)
Based on Eq. (12) and Riesz representation theorem (Wang, 2011), there is a representer w,; €
Gy of Ly, such that:
Le gk = (0ri Gicd = Gic(tici): Gic € Gie
where (-, -} notates a product of inner. By considering Eq.(11) and inner-product properties,
the following equation is obtained:
it = (0 8ex +§5dy ) = (@i, 8c) + (@, §iedy ) (13)
Next, by using Eq. (13) for k = 1 we get:
g1(ty;) = (wy;, 87¢y) +{wy; , E1dy ) (14)

Hence, based on Eq. (14) for { = 1,2, ..., n; we have:




T
g.(ty) = (91&11)- -Ql(fln.l)) =Ac, +Bid,
T T
where ¢, = ('5'11-'5'12-----‘-"1m.1) i dy = (dll-dIZ- ----dln-l) ;
(011,811) - {w11-51m1) (011,811 <(011-'f1n1)

: 3 sand B(qy = - :
((Uln.l O10) (U)ml -61m1) (mln.l 1) (U-)m.l -fln.l;’

A =
Similarly, we get:
g2(t;) = Ajc; + Bod; ,g3(t;) = Azc; + Bads, .. agp(tp) = Apcy +Bpdy,.
Therefore, generally, the following expression of g(t) is obtained:
g() = (g1(ty), g2(ty), ....gp(tp))rz (Ascy,Azcs, ....Apcp)T + (Byd;,B,d,, ... .dep)T
= diag(A;, Ay -, A,)(c] ], .., c)' + diag(B,,B,, .., B,)(d], d}, ..., d5)"
=Ac+Bd (15)
where N = Zizlnk; M= Zizlmk; A is a matrix with dimension N X M; ¢ is a vector with
dimension M X 1; B is a matrix with dimension N X N; and d is a vector with dimension N x 1.
Generally, based on Eq.(15), the MSR model (6) can be written as follows:
y*=Ac+Bd+¢. (16)
Hereafter, to obtain regression function estimation of MSR model (16), we determine

the solution to PWLS (7) which can be presented as follows:

1
Min {H Wze
kegy,

4= yin (Wi -0}

Gkegy,

2
with constraint j;: (g,((m)(tk)) dty < ¥k »¥ir = 0. Solution to the PWLS optimization is same
as the solution to the following PWLS optimization:

Min (N7 (' — @ W' — ) + 50, 4 [ (0™ (6))% it} a7
TrewT [ayby] k

where 44,45, ..., 4, are smoothing parameters. These smoothing parameters set the balance

between N=1(y* — g)TW(y" — g), as goodness of fit, and ¥}_, A f;:(g,((m)(tk))Z dt;, as the




smoothness. To solve PWLS optimization (17), we decompose the penalty in (17) such that we

get:

b,
Tt [, (g™ ()% dty = dTBd

where ® = diag (/111"1./121"2. ....lplnp). Also, we get the goodness of fit:
N-(y' —g)"W(y* — g) = N"(y* — Ac— B)"W(y" — Ac - Bd)
Hence, by combining penalty and goodness of fit, we obtain PWLS optimization whose
solutions are:
¢=(ATD"'WA)'A'TD"'Wy* and d=D"'W[Il—A(ATD"'WA)"'ATD"W]y*
where D = WB + N®I. Therefore, the estimated regression function in nonparametric
component of MSR model (1) or (6) is:
g=A¢+Bd=Hy"’ (18)
where H; = A(ATD"'WA) 'ATD"'W + BD'W[I— A(ATD"'WA)"'A"D W] (19)
Based on Eq. (3), we can express Eq. (18) as:
g=Hy" = Hy(y— XB) (20)
Hence, the sum of squared errors (SSE) is given by:
Q=I[y—XB - (Hy(y —XB))]" [y — X — (H;(y — XB))] @D
Next, by minimizing the SSE, we obtain the estimation of parameter B namely B as follows:
B=[X"0-H) (1 -HYX]I'X"(1 - HY" (I - Hyy (22)
where B is a WLS estimator for parameters in parametric component of MSR model (1).
Furthermore, by substituting Eq. (22) into Eq. (18), we get estimator of g as follows:
g =H[1 - XX"(1 = H) (1 = HX) 7' X" (1 = HY" (1 - HY]y (23)
where g is smoothing spline estimator for regression function g in nonparametric component of

MSR model (1).




Finally, by considering MSR model (1) and based on estimation results given by
equations (22) and (23), we obtain MSR model estimation based on smoothing spline as

follows:
y= (Hpar + Hnonpar)y = Hy (24)
where H = Hpar + Hnonpar; Hpar = x[xT(I - HA)T(I - HA)X]-IXT(I - H;I)T (I-H,);
-1
and Hnonpar = H.l[l - X(XT(I - Hl)r(l - H.l}x) XTU - H,l)r(l - H.l)]'
Based smoothing spline in MSR model, estimator of g given in (23) is called weighted partial

smoothing spline estimator of regression function of MSR model (1).

3.2. Determining Confidence Interval of B

To determine a CI, we use pivotal quantity (Sahoo, 2013). We assume that &; in (1) follows
Normal distribution that independent and identic with mean zero and variance g or we write
&i~iialN (0 ,07%) where o is unknown. Next, the 100(1 — a)% CI for By; , k = 1,2, ..., p;

i =1,2,..,mn, is designed such that we have a pivotal quantity of parameter f,;:

B i=Bui) Bri=Bri)
Tt (Vi Xiins - » Xuigue Leias - Erir) = ( — = ( = 25
Jvar@i  Jmsean@Tayz:
—_ Ty 10T Tiv— Tayv—1aT
where @ = (1—H,;)T(1 — H)X, MSE(A) = &-2@ D72 ¥ (2@ DAY g s he itk

(Bhoy )=y (L +qietrie)
element for k™ response of parameters vector B, and (2TQ);;! is diagonal element of
(QTQ)~1. We can use GCV or CV instead of MSE to overcome over fitting (Amini & Roozbeh,
2015; Roozbeh, 2018; and Roozbeh et al., 2020).

Hereinafter, if Z = Q(Q7Q)"1Q", then MSE(}) in (25) is given by:

Ta-2)y y'Py
MSE()) = 4 = 26
) (Ehy M- M(L4qtry)  (Bhy ni) Tk (L4 Qg7 (26)
where P = (I — Z). Hence, the pivotal quantity (25) can be expressed as follows:
Bri— B
Tiei (Viei» Xkin, o1 Xkiqer Lhitr -0 tk(’r;() = i Ca (27)
y Py T—1
‘j P y (ﬂ n)u
(B g M) g (T4 qpe+ry)




The pivotal quantity (27) follows a t-student distribution with [Zizlnk) — (1 + gy +1%)
degree of freedom.
Furthermore, to determine the 100(1 — a)% CI for Bi;. k =12, ..,p; i = 1,2, ...,ny.
we must take the solution to probability equation:
P[Lyi < Tii Vkir Xrcit, - Xigigq teits o tiir,) S Uil = 1 —a (28)
where L,; is lower limit of CI and U); is upper limit of CI, and (1 — a) is level of confidence.

Next, we substitute Eq.(27) into Eq.(28) so that we get:

PlL. < (Bu—Pia) <Uyl=1-a (29)
YT—PY(ﬂTﬂ):'l
Q:E:l g ) =N (1 qE+T) u
We can write Eq.(29) as:
P(hi—U<Pu<Pu—-L)=1-a (30)

) ¢ U= (e )
here L = Ly Y V). U=Uy V):
whete kr\}(@i=1nk)—nk(l+‘1k+fk) ’ kG )=kt ae+re) )

V=(0TQ);! and P=1-0(0T0) '@T=1-1Z.

If interval length of CI is shortest then the CI is good. Therefore, we find values of
Ly; € R and U); € R that results length of CI in (30) is the shortest. If length(Ly; Uy;) is
length of CI in (30), then we have:

length(Ly;, Uy =

- Tp 5 P
-—L‘( y'Py V) - __U,(¢V)
(ﬁk¢ kl‘] O o -n (1,470 B ki G m)—n (g +ri)

_ _ y'Py
= Wi JLH)\/(O]E=1 Ny ) =nge (1+qp+1y) V) ’

Hence, the shortest length of CI for f8; is determined by taking the solution to optimization:

T
min_{length(Ly;, Ux)} = | min {(U,“- - "‘"‘)J((EE= y Py v)} (31)

Liei Upi€ kiU KiER 1 M) Mg (L4 g +1)

that meets the condition:




f”“T(s)ds =1—a or K(Ug)—K(L))—(1—a)=0 (32)

where T'(-) represents distribution of probability of typ

P mi)-n(1+ qtri) and K(-) represents

distribution of cumulative probability of tesp Next, by applying Lagrange

fem1 ) Mg ( L+ G ATy}

method, it results equation as follows:

Tp
R(Lyuy Upiv) = (Ui — L"")J(O:p 7 V) +

b1 T =T (1 4 +Tge)
Y(K(Ui) = K (L) — (1 — @) (33)

where ¥ is constant of Lagrange. Hereafter, the following equations are obtained:

aR(LkpUkL:V) yTPy ) ,
o - =
TR J (EL,MJ-M(HQHMJV VK (L) =0 34
OR(Lgi Ui y) pr ) ,
Q. —0 e v K'(U.) =0 35
U 'J Chey ) -1+ qi+ri) +yK' (U) (35)
aR(L;.;VUm N_0 o KUy -Klg)-1A-a)=0 (36)

From equations (34) and (35), we obtain the following relationship:

K'(Ly) = K'(Uyy) (37)
The Eq.(37) implies Lj; = Uy; or Lj; = —Uy;. Since, L; = Uy; is not satisfied, then the shortest
CI can be determined from the Ly; and Ujy; values which fulfill:

T (s) ds = Jy T(s)ds =% (38)

By using (1 — a) level of confidence, the Lj; and Uy; values which fulfill condition (38) can

be obtained from the t(EL.lﬂk)-ﬂk(qurk) distribution table.

Consequently, the shortest smoothing spline CI for parameters of MSR model fulfills the

following probability:

T
P (Bri — Ui ( 7 Yy V)Sﬁm‘
Q=) — (L + g + 1)

y'Py .
=Bt U“J((Eizl ) — (14 qp +Tk)v) —ioe




where value of Uy; can be determined from Eq.(38) which is f:: T(s)ds = % . Hence, we have:
(3

y'Py
PP = t(g;w—nk(quk))‘l(w — (1 + g +rk)v) < Pu

T
y Py
< . = —
= Bk{ + t(%;w-nk(1+qk+rk))J(N _ nk(l + qx +Tk) V) 1 x

where N = ):zzlnk.
Finally, by using distribution of t-student, the 100(1 — @)% Cls parameters B, k =

1,.2,..,p; i=12, ..,n, of MSR model (1) are:

yPy
(Bj“' * t(%;N-ﬂk(l"'!?k"'rk)) (N—nk(1+qk+rk) V)) (39)
where N =XP_, ny; V= (QTQ);"; P=1-9@T®) 10", Q@ =(1-H)"(I-H)X; and
H; is given in (19). The asymptotic distribution of f8;; is Normal as presented by Theorem 2 in

section 3.3.

3.3. Determining Asymptotic Distribution

For investigating asymptotic distribution of B, we consider the following lemmas and theorem.
Lemma 1. Suppose H; is matrix presented in (19) and g = (gl(t), ,gp(t))T then
-1 T 2 brom) ey P
NI - H)wel|” <2, [g" ®] at
where N = ZLlnk .
Proof of Lemma 1. Suppose g in (23) is a estimator of smoothing spline function g which
makes the PWLS (7) is minimum, then for 0 < w; < co and g € WJ"[a, b] we have:
-1 T 2 -1 T 2 braim) 2
N1 -HD)we|” < N7H|(1-H)wg|" + 2, [g™ )] dt
- b 2
= N7LY (wg(t) — B(t))? + 2 [ [8™)]” at

< N-1|(1 - H))wg||” + 2 [ [g™]" at




< NLE (wiglty) — wig(t))? + 2 [ [g™]” dt
=2f"[g™) at. o

Lemma 2. If Hj is matrix as givenin (19) and 2 = 0 or g™ (t) = 0 then

3
Lim =¥, [[(1—u])wg] | =

N=oo

where N =¥)_ ny .
Proof of Lemma 2. With a little algebraic explanation, we obtain:
2
3|10 - D we] | = &3] (- uD)we] | |[( - n])we] |

<—max|[(l H})Wg] |Zj|[ I—HI)Wg] |

Consequently, we have relationship:

A5 |la-mDwe] [ < & 5 [0- m]wef? 5, ][ - we] |

= & (g"W( - H (1 - H])wg) ™%,

ForA— 0 or g™ (t) = 0, Lemma | gives:

ﬁzj“(l—HI)Wg]jl =o(1) or le\f_szj“(l—HDWg]jr =0. o

N—oo
Theorem 1. If H; is matrix presented in (19) and 2 = 0 or g™(£) = 0 then

XT[(1-n} ]Wg+wS]

N - D*~N(0,02E89) as N — oo,

where N = ZLlnk .

Proof of Theorem 1. Here, we apply the Cramer-Wold theorem (Cramer & Wold, 1936; Sen &
Singer, 1993). Firstly, a vector a is given such that:

aTXT[(1-0])wg+we]
e -y,

_ (Xa)[(we) +((1-H] ) Wg);] .
VN

where Z; = is zero mean independent random variable, namely Z; has

mean 0 and variance };Var(Z;) = aTo?x (%Z?:kl wi)a+ (aTEa)%Zj([(I - HI)Wg]j)z.




Next, the following assumptions (A1, A2, A3) are given:
AD. ;=22 =12 o k=12,..,p.
ny

(A2).X4,X,, ..., Xy, follow a distribution that independent and identic with mean zero
and covariance E, and the third absolute moment is finite.

(A3). lim 3 w, =9 <oo.
nj—rca
Taking into account the assumptions (Al, A2, A3) and Lemma 1, then for A — 0 or g™ (t) =
0, ¥; Var(Z;) converges to a” 6*Z9a. Hence, we have:

%) Elzl’ Zﬁzﬂﬂ("ﬂ)ﬂa |owe); + [(1- HDWE]]-F)

. 3
~ A= ElXa), P X, £ (|we), + [(1- H])we] | ).

Hence, we have relationship::

3 3(1 3 1 T 3

3 E|z|° < El(Xa),| (J—ﬁm}ax (Elws);[*) + 7=2; [ - H])wg] | )
3

Since Lemma 2 and the third absolute moment of (We); is finite, the }; Ele| leads to zero.
Hence, };; Z; converges to N(O, a'o?zda ) namely Normally distributed. o

Based on these lemmas and theorem, estimator B is asymptotically normally distributed. More

details for this are given in the following theorem.

Theorem 2. If B is parameters estimator of smoothing spline in parametric component the

MSR model (1), and A = 0 or gt™(t) = 0 then
-~ d
VN(B—B)=D~N(0,0%271971) as N >

where N =3YF_ n, .

Proof of Theorem 2. We can express \/N(ﬁ — B) as:

- - (20 e e

Hence, we obtain:




XTH we P

XT(-uDwx\ ! P
(i) i =0, as N — o0,

S —27197" for N = oo; and

From Theorem 1, we have:

T[(—-HT d
wﬁg*q\l(o_gzzﬂ) as N —» oo,

Next, by applying Slutsky theorem (Sen & Singer, 1993), we obtain:

\/W(B“—B)iuw(o.azz-la-l) as Noo. O

4. Discussion

The estimated regression function of MSR model is a combination between the estimated
parametric component namely [, and the estimated nonparametric functions namely . In this
case, B is a WLS estimator for parameter B contained in component of parametric and g is
smoothing spline regression function estimator of g contained in component of nonparametric
of the MSR model. Hence, the smoothing spline MSR model estimation is to be linear to
observations y where its hessian matrix H given by Eq.(24) is also a combination between
hessian matrix of parametric component, Hpg-, and hessian matrix of nonparametric
component, Hyonpar-

In interval estimation concept, a good CI is the one with the shortest interval length.
Therefore, we determine lower limit value of CI (Ly;) and upper limit value of CI (Uj;) such
that length of CI is the shortest. The shortest CIs for parameters of MSR model are given in Eq.
(39) that depend on t-student distribution because variance of population is unknown. Hereafter,
for more statistical inference purposes, the asymptotic distribution of MSR model parameters
estimator was also undertaken, and finally we obtained that estimator B in (22) is asymptotically

normally distributed, namely N(O ,622‘119‘1) as given in proof of Theorem 2.

5. Conclusion




The estimated MSR model is a composed estimations between component of parametric and
component of nonparametric, and its functional relationship is linear to observation. Also, the
100(1 — @)% ClIs for parameters fy; (k = 1,2,..,p; i = 1,2,...,ny) follow distribution of t-

student namely ta and the estimator B is asymptotically normally distributed.
2

IN=Ty(14quetTy)) °
Future time, this study results can be used as theoretical bases to design standard growth charts

of the toddlers for assessing the nutritional status of the toddlers.
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