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* The viscoelastic liquid jet’s tendency to disintegrate is slowed down by heat-
ing, which has a stabilizing effect.

* When heat transfer to the interface of the viscoelastic liquid jet is consid-
ered, a dripping-to-jetting transition occurs at lower values of the critical
Weber number.

* When heating is connected to the free surface of the viscoelastic jet, the
breakup lengths are longer than they would be otherwise.
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Abstract

The effect of heat transmission on the absolute instability (Al) and convective in-
stability (CI) of axisymmetrical disturbances in a viscoelastic liquid jet that falls
under gravity is investigated. In general, when heat is included to the interface of
a viscoelastic jet, it can be used to process droplet sizes and breakup lengths even
more. We describe the jet’s dynamics mathematically using the Upper-Convected
Maxwell (UCM) model. On the basis of the jet’s slenderness, an asymptotic ap-
proach is used to simplify the problem and obtain solutions of steady basic flow,
which are then linearly analyzed for absolute and convective instability. When
traveling wave modes are considered, a dispersion relation between the wavenum-
ber and the growth rate of viscoelastic jets is derived, which can then be solved
numerically using the Newton-Raphson method. The impact of varying some non-
dimensional parameters is shown on absolute and convective i[@ility. In this
work, absolute instability is explored by employing a mapping technique called
the cusp map method. For a variety of parameter regimes, the convective-to-
absolute instability boundary (CAIB) is determined. We have found that absolute-
to-convective transitions occur at lower critical Weber numbers when heating is
included to the interface of the viscoelastic jets.

Keywords: Viscoelastic Liquid Jets, Absolute Instability, Heat Transfer, Cusp
Map Method

1. Introduction

In liquid jets, the role of capillary thermodynamic effects on the (CI) and (AI)
are still an open area of research and not well understood completely. (Bauer,
1984) was the first to examine the instability of non-isothermal jets (with temperature-
dependent surface tension) by using linear stability theory. (Bauer, 1984) looked
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specifically at the case of the Stokes flow with adding temperature to the jet sur-
face. He found that the jet can be broken up because of oscillating temperature
gradients along the jet interface. (Xu and Davis, 1985) studied especially the
linear axial distribution of temperature along the jet surface. They found that the
capillary instability can be repressed, or obstructed by the instability of the surface
wave produced by surface tension gradients. Whereas the first work in controlling
the liquid jet disintegration was carried out by (Faidley and Panton, 1990) using
a quick-response nozzle heater to control surface tension. They found that the
Rayleigh mode was dominant and that the thermal effects were unimportant to
the growth of the disturbances. However, by using a CO; laser beam with suffi-
cient intensity, (Nahas and Panton, 1990) were able to demonstrate that it could be
eliminated the initial turbulence on the jet surface, which indicates that the heater
utilized by (Faidley and Panton, 1990) was not able to generate adequate nozzle
heating.

The instability and following disintegration of the liquid jet column is im-
portant in a variety of emerging applications (for example, needleless injection
(see Moradiafrapoli and Marston, 2017), nanofiber (see Gadkari, 2017), ink-jet
printing (see Du et al., 2018), coating, and even technology of diesel engine (see
Eggers and Villermaux, 2008). Although more than 200 years passed of scien-
tific scrutiny, liquid jet instability is still an interesting area of study for many
researchers in various scientific fields. A liquid jet may be defined as a stream that
can be injected into a medium of liquid or gas through an opening (a nozzle). Liq-
uid jets, in general, are naturally unstable and eventually disintegrated into drops.
The RayleiglPlateau instability is the main mechanism of this dissociation and
determined by the growth of perturbations that are either convective or absolute
instability. Convective instability can be growing in amplitude when it is swept
along by the liquid flow, while absolute instability can occur at particular snltial
positions (see Bassi, 2011). Moreover, the formation of the droplet occurs either
directly at the jet’s outlet or downstream, at the flow’s end. Jetting and dripping
are the terms used to describe these two instabilities respectively (see Sufiol and
Gonzilez-Cinca, 2015).

The first investigation of absolute instability related to liquid jets was done
by (Leib and Goldstein, 1986b). They revealed that the capillary absolute insta-
bility of an inviscid jet is generated at small Weber numbers because of surface
tension. They identified critical Weber numbers (We) that indicate the transition
mm (CI) to (Al). They showed that when the Weber number is less than 3.15,
the inviscid liquid jet is absolutely unstable; whereas it is convectively unstable
when We > 3.15. (Leib and Goldstein, 1986a) examined the viscosity effect on
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the transition from (CI) to (Al) and found a decrease in values of critical Weber
number when We is a function of Re (where Re is the Reynolds number). Us-
ing the Re — We plane, they plotted the relationship between Re and We numbers
and discovered a crucial curve that distinguishes the area between absolute and
convective inst@ility. A criterion for analyzing absolute instability developed by
(Briggs, 1964) was used by (Lin and Lian, 1989) to find the transition boundary
between (CI) and (Al) for a viscous liquid in the presence of a surrounding gas.
(Alhushaybari and Uddin, 2019) investigated the (CI) and (Al) of a viscoelastic
liquid jet falling vertically due to gravity. They showed the convective/absolute
instability boundaries (CAIB) in different parameter regimes and especially com-
pared the (CAIB) in the Re — We plane with other authors investigated the viscous
case such as (Lin and Lian, 1989, 1993), (Leib and Goldstein, 1986a) and (Ldpez-
Herrera et al., 2010).

Nowadays, the instability for a liquid jet having complex rheology is signifi-
cant in various emerging and growing applications (such as needle-free injections
and fiber spinning wlire the jet stability is a prerequisite for the formation of
fibers with desirable properties or successful injection (i.e. skin breakthrough)
(see Moradiafrapoli and Marston, 2017). The instability of viscoelastic liquid jets
also has some important applications in geodynamic fields related to underground
mechanical explosions and earthquakes (see (Sharma et al., 2020), (Pramanik and
Manna, 2022)and (Manna et al., 2018)). In these and other applications, the fluid
utilized predominatecontains additional quantities or biological agents that lead
to the appearance of viscoelastic properties, and where instability is not desirable
and the use of heating provides a technique for reducing the growth rates of un-
stable waves along the interface. In these applications, the use of heating provides
one mechanism by which the growth of instability can be delayed. In light of this,
this article investigates the absolute instability of a viscoelastic jet that is heated
fBat the nozzle and falls under gravity. We employ a mapping technique dubbed
the 'Cusp Map Method’ developed by (Kupfer et al., 1987) to locate the cusp point
corresponding to the pinch point, which indicates the transition of convective-to-
absolute instability.

2. Problem Formulation

Consider an axisymmetrical viscoelastic jet has radius a, surface tension o,
thermal conductivity k;, temperature H, density p, heat capacity C;, and mean
velocity U, which emerges from a nozzle, and falls under gravity into a surround-
ing of an inviscid gas, which has lower temperature H, and density p,. The jet




Figure 1: A diagram of a viscoelastic liquid jet emerging from a nozzle with computer-controlled
heating.

leaving the nozzle is heated by a heater, which is connected to a computer so that
the heating can be done in a controlled manner with a convenient frequency. To
consider the axial symmetry problem, we supp@ that the jet cross-section is re-
mains circular (% =0), and no swirl occurs (vg = 0), so the velocity vector is
v = (v, 0,v;). The boundary conditions, as well as tifioverning equations, will
be written in a cylindrical coordinate system where the z-axis runs parallel axis
to the direction of the flow, whereas the r-axis runs perpendicular to the z-axis as
depicted in Fig. 1.

In viscoelastic fluids, the relation between stress and strain can be expressed
by the Upper-Convected Maxwell model (see Bird et al., 1987), which is

8 T =i — A1, ()
5

where 11, denotes the viscosity of the polymer, 7 denotes the extra stress tensor
(which brings the elastic effects), 1} is the component of the strain-rate tensor that
&} ymmetric and defined by 1) = Vv + (Vv)T, A is the relaxation time, and 19 is
defined by

1_-():%_‘_(V_V)T_T.Vv—(Vv)T-‘E; )

which stands for the upper-convected time derivative of 7, where ¢ is the time.




Therefore, for an incompressible viscoelastic jet, the continuity equation is

V-v=0, (3)

while the equation of momentum takes the form

d 1
(E—f—v-V)v:E(—V‘p—FV-T)—Fg: “)

where

T =un—At°, 5

g = (0,0,g), p is the pressure, & w is the overall viscosity of solvent and poly-
mer components at zero-shear. The position of the viscoelastic free-surface
be described as r = {(z,1). Moreover, this position of the free surface must be
determined as part of the solution to the flow equations, which are distinct from
earlier flow states that established prior boundaries. The relationship between the
surface tension, o, and the jet temperature, H, may be expressed linearly by

O = GCI+GH(H_H¢1): (6)
where oy is a constant coefficient, given by (g—g)HZHr, and o, is the surface
tension at the ambient temperature H,,. Since the viscosity of a fluid is affected by

temperature change, most fluids can be described by the relation of the Arrhenius
type (see Chwalek et al., 2002) and (Atencia and Beebe, 2004) )

W= o+ g (H—H,), D

where 1y is a constant coefficient, given by (j—ﬂ)H_H , and [, is the liquid vis-
. . Lo, .
cosity at the ambient temperature. The energy equation is given by

oH JH OH k (J’H 10H J’H o
o T T T pe\aR Trar Tz ) ®

At the jet interface, the boundary conditions are assessed by comparing the
pressure across the free surface to the normal stresses, which are linked to the
mean curvature by the relationship

n- Q. n=0R at r=_, (9)




where n is the normal unit vector, {2 denotes the entire stress tensor given by

€2 =—pI+T, and R is the mean curvature of the viscoelastic liquid surface given
by
1 (E? 0% a2

The tangential stresses are balanced by thermocapillary force along the free sur-
face given by

tQn=t-Vo at r=¢ (10)
where t is the tangential unit vector. The normal flux of heat across the free surface
can be described by Newton’s law of cooling, which is

—k(n-VH)=S(H—H,) at r=2¢, (11)

where § is the coefficient of the thermal transfer that gives the rate of the heat
transter from the viscoelastic jet to its surrounding. The right side of (11) is zero if
the free surface is assumed to be thermally insulated. Also, the kinematic bound-
ary condition is required to keep viscoelastic liquid jet particles staying on the jet
interface, which is

(%—Hﬁ-V)(r—g):{] at r=_, (12)

3. Dimensionless Analysis

Non-dimensionless scales used to write the dimensionless versions of the gov-
erning and boundary equations are (see Anno, 1977)

* < * r H_U * P _a * 1 l
- T E: r _a: = L'r: P - ng: £ = L: {V,-;V;}—U{V,-:V;}:
g _E: {T :T }_Uua{sz}: H _H_a: o _G_a: u _E: (13)

where U and L are the exit speed of the viscoelastic jet and the axial length
scale respectively. The superscript (*) is dropped for convenience, thus the non-
dimension parameters, that allow analyzing the viscoelastic jet’s flow dynamics,

are

U LUpC, pU%a AU LS Upa
F=——,Pe=—""" We= ,De=="",Bi=—" Re= :
A ag k! Oy L k! lu‘.{i
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where Re, We, F, De, Bi, and Pe are the gynolds number, Weber number, Froude
number, Deborah number, Biot number, and Peclet number respectively. For typ-
ical values of viscoelastic fluids that are obtained from industrial applications
(see Bird et al., 1977) and (Verhoef et al., 1999 )) where De ~ 102 — 103, Pe ~
107" —10°, u~10"2—10%,Bi~ 10 —10,Re ~ 102 — 10 and A ~ 103 — 10,
and for a viscoelastic jet having an initial velocity U/ ~ 0.3 — 10 ms™~ ! and a diam-
eter a= 10"*m. [} this analysis, these ranges of parameter values are used. The
non-dimensional forms of the governing and boundary equations can be found in
Appendix A.

4. Asymptotic Analysis

Following (Eggers, 1997), we give the jet a small aspect ratio (€ = a/L < 1)
by assuming that it is slender. These dimensionless equations (in A;n:ndix A)
are investigated in further details, so v., v,, p and H are expanded in a Taylor
series in €r; and {, u, T}, and T,, are expanded in an asymptotic series in €. Also,
we assume that small disturbances have no effect on the viscoelastic jet column’s
centerline. Since {(z) EERnges slowly with respect to z (in the long wave limit),
thus the pressure (p), the axial velocity (v.), and the components of the stress
tensor (7, and T.;) are nearly uniform with respect to r whilst T, is roughly zero.
Asaresult, a Taylor expansion of r is the appropriate ansatz for analyzing slender
viscoelastic jets, which means that we have
{VZ: Vr, PH} = {V;_()(Z; 1), V;O(Z; 1), PO(Z; t):HO(z: t)}+
er{v1(z.1),vr1(z,0), pr(z,t) Hi(z,) } + O(€%r%). (15)

{I’.Z:TJT: g:G:Ju-} = {?}2(2?’):?}?(5?”: @(Z}IJ;GO(Z?I);HO(Z,IJ}—F
S{CI(Z}IJ:T:—,L(z}rLT:'E'(Z}IJ:GI(Z}FJ:)U'I(Z:FJ}—'—O(SEJ' (16)

To maintain viscoelastic and gravitational terms, we rescale the Reynolds and
Froude numbers as fdflows: Re = gRe =0(1) and eF> = F2 = O(1) ( see Uddin,
2007). We substitute the expressions, (15) and (16), into the dimensionless forms
(in Appendix A) and removing the tildes for simplicity, we can write the axial




momentum equation, to O(g), as

avn avn —-14 3[1+;,£H(Hn—l)] av—{)
0 90 T Weaz gn T ke 2\5%;
aH() 8\@ 20‘H aH() 1 0 0 1
] - !:{)WQ az + !;:)R a (‘:ﬂ (T’” T;:) +E: (I7)

where
op=1l+oy(Hy—1).

See more details of the derivation of the equation, (17), in Appendix B. Also, we
obtain the components of the extra stress tensor, (A.5) and (A.6), to leading order,
which are respectively

Tz ITY v Mo o

De( o TV, T 2T 7z ) 2[1 + up(Ho — 1)] 5, L= (8)
87—;{3 87—;{3 ﬂa 81}_0

De( 5 + vz 9z + T, oz ) = —[l + pu(Ho — 1) 3 . (19)

If F — oo, uy = oy = 0, the last set of equations, (17)-(19), are the same as those
obtained by (Clasen et al., 2006, Alhushaybari and Uddin, 2019). From the energy

equation (A.7), to O(1) and O(g), we have respectively
H, =0, (20)

and

JdH, BHn 1 0’H,
o TV Pe(4H2+ o2 | @

From the boundary conditions, the condition of the normal heat flux (A.10) to
leading order becomes

i L 0% 0Hy  Bi
2728 9z 9z 24

Assuming there is low heat transfer to the surrounding environment (as in most
liquids when there is a slight temperature difference with the ambient), we have

5 (Hy—1).




already re-scaled the Biot number in the previous equation, so that (Bi = eBi =
O(1)). Dropping the tildes for convenience and substituting of H> into (21) give

oH JH 1 oH, N
&r“ﬂm az“ - (;0( (gn ”) —2354;0(110—1)). (22)

The kinematic boundary condition, (A.lL1), can be written, to leading order, as

2(&’vo) G’
9z o
If uy =0 and oy = 0 (i.e, no changing in viscosity or in surface tension with
temperature) and F — oo, the last set of equations, (17), (22) and (23), are the
same as those obtained by (Furlani, 2005).

=0 (23)

5. Solutions of steady basic flow

In order to find steady basics flow solutions of (17)-(23), we first remove all
time derivatives and then solvefll nonlinear equations system, which has the four
variables T,?, Vs Tﬁ and Hp as functions of z. Also, we find from (23) that
v, (2 is constant, and using the boundary conditions at the nozzle (v(0) = 1 and
£o(0) = 1) lead to have that v;nt;;*’ = 1, and consequently the equations (17)-(19)

and (22) become respectively

8% —1/1 —O'H(Hn — l 8%
075, We( 2y 9z VY Tou 52 9z )
3(1 + un(Hy — l)) 821);_0 dv dHy dvyg
Re dz2 v.n. az ””a—:,&—;
+E(a—z(7};—ﬂ;-)—a PR (T2 -1 T We o2 +E’ (24)
ar2 09V-0 20
De(uZ pr A )_ oo 25)
De(vo S+ TR0 ) = —[1+ g (Ho — D] 5=+ 7. (26)
and d 92 dHy d
Hn H{] l Hn V- .
—_— — —2Bi,/ Hy—1)]. 27
0 dz ( dz2 vy dz 9z ivva(Ho )) 27)
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The nonlinear system of ordinary differential equations, (24)-(27), are solved
using the Runge-Kutta method (found in MATLAB (ode45)). Fig. 2 shows the
gravity effect (through Froude’s different numbers F) on steady basic flow so-
lutions (T,? T? o, v.o and Hp) against the axial length of the jet (z) with and
without heating. Solid lines show the solutions of the steady basic flow without
heating; while dotted lines are the corresponding solutions with heating. We can
see, from this figure, that a reduction in F accelerates the jet’s thinning and ax-
1 velocity increases. The inclusion of heating leads to an increase in the steady
velocity along the viscoelastic jet leading to a faster decay in the radius of the jet
along the z-direction of the jet. This is a consequence of the fact that the initial
heating value Hp decreases along the jet (see Fig.3) and, as a result, the surface
tension increases with distance from the nozzle (the surface tension does, in fact,
increase monotonically along the viscoelastic jet). We can see from Fig. 2 that
this variation in surface tension causes a Marangoni flow to be induced along the
jet axis. Because this flow operates in the direction of rising surface tension, the
jet will accelerate toward the direction of gravity as a result. We conclude, from
this result, that the heat energy transfer along the jet causes a Marangoni-type
flow, that helps t§lnake the jet thinner, leading to shorter lengths of breakup. We
also can be seen that the steady axial tensor (?}2) of the viscoelastic liquid jet de-
creases with heating along the flow direction, whilst the steady radial tensor (T,?_)
increases. Moreover, we can also notice that increasing F leads to a decrease in
(T2) and an increase in (7)) along the flow direction.

6. Analysis of Linear Instability

Over an axial length scale of z = O(1), the viscoelastic jet develops. But,
waves (having wavelengths of O(a)) are much smaller along the viscoelastic jet,
that are analogous to € in a scenario where z = O( is present. This multiscale
technique was utilized by (Uddin, 2007). We use exp(ikZ + @f) as a model for
the traveling wave mode, where r = ef, z=€Z, k=k(z) = O(1) and @ = @(z) =
O(1). We use the following substitutions to apply a small perturbation about the
solutionsmthe steady basic flow, which are

(V2008 T T p. 0, H b = {0(2),0,60(2). T(2), T(2). po(2), 00 (2), Ho(2) }

+ S{G;(r): 5.(r), &, T (P), T (7), B (F), a(r)ﬁ(r)} x exp (ik(z)Z+ ©(2)F), (28)

These expressions are substituted into our non-dimensional forms (in Appendix
A) with keeping only O(8) terms, and after removing the tilde signs for simplicity,
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27
Figure 2: vy, &, T,? and T,{} are plotted Ei function of 7 for various values of F, where the solid
lines show the sleady basic solutions without heating (published by (Alhushaybari and Uddin,
2019)) with uy = Hy = oy = 0), and the dotted lines show the steady basic solutions with heating
(current work with iy = 0.2, Hy =2 and oy = 0.1). Where De = 10, Re = 800, Pe = 10, Bi=10.2
and We = 2.
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Figure 3: Hj is plotted as a function of z with various values of . Where Re = 800, De = 10,

Pe=10,Bi=02,We=2, ygy =02 and oy =0.1.

we arrive at an ODE system of equations (see Appendix

C). Therefore, solving

this system and utilizing the boundary conditions give the forms of the pressure
profile, and the radial and axial velocity profiles, which are respectively

Iy(hr)

[1+ps (Ho— D](1+0)A +e(T7 — T2)

P 1.%)( (chT—12)
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1
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1) (k&o/ /)
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rr

19— T19)

I (kGo/V/e)
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-| CE

12

} Iy (hr)
Ii(h&)
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o s{ Ve[l 4 g (Hy — V)] (R + k) A4 /ck* (T — TO) Io(kr/+/€)

(ch® —12) 1 (ko) v/0)
1 pn(Ho — 1)](1 + e)khA + ckh(T) — T2) Iy(hr) ;. o
(ch® = &%) h(h&%)
where
e={iuematto—vinwn ity /a0 (1 e 22
14y = DIADo 1) + 5 (g + L) L
2=k A 28 (0 0 2= 2um(Ho—1)
h* =k +ﬂl+HH(Hn—l)]{Re+ A2 (T};—I—T,.,.—I- De )}

where I; and K are the 1*' and 2 kind of the 1* order modified Bessel function
respectively, and A = @ + ikv,p. Substituting these solutions (29)-(31) into the
boundary condition, (C.7) give the dispersion relation

) 2 1+HH(H0—1)] 221} (kCo/ V)

A‘- -
+ Re

T2+ 1+ um (Ho — 1)]A

De Rem
(14w (Ho — 1)) (1 4+ ¢)A + ¢ (T —?;2)] y

Ve (2 +iA+r(T) - 10))
1 (k& /%) {(T%Huﬂmn— D) (fn(m:m ~ i(hCnJ) A1+ (o)

+ (T,?.Jr

14ty (Hy—1) 2hk3
D )]+ Re

I(kG/ /) [\ De Li(ho)  1i(h&y)
I’I(htjnJ] _ (Ak[l+#H(Hn—1J](t‘h2—k2)(l —kQ‘;{%))fl(kf:n/\/E)_ (32)
Ii(h&y) \/E(A(h2 +k2)+k2(ﬂ?—7§3))we§$ fn(k‘:()/\/E)

7. Convective Instability Analysis

The convective instability analysis includes two different instability analyses:
temporal ins@bility analysis, where it requires real wavenumber and complex fre-
quency, and spatial instability analysis, where it requires the wavenumber to be
complex and the frequency to be purely imaginary.
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Figure 4: @, against k for two different Peclet numbers. Where F = 4, Re = 800, Bi = 0.2,
De =10, yy =02 and oy = 0.1 at z = 0.

7.1. Temporal instability analysis

In the dispersion relation, (32), we consider k as a real wavenumber and ® as
a complex frequency, where @; is 27 times frequency of the perturbation and @,
is the perturbation growth rate. Then the Newton-Raphson method is utilized to
solve this relation. Solving this dispersion relation yields the wavenumber corre-
sponding to the greatest value of Re(®), which is the highest unstable wavenum-
ber. The values of the steady basic flow vary with z, so the related wavenumber
will also vary (see section 5), therefore the corresponding growth rate will also
change downstream (see Uddin, 2007).

The relation between Re( @) and k is plotted, for two different Peclet numbers,
as depictedffh Fig. 4. From this figure, we see that when the Peclet number is
decreased (which corresponds to a stronger influence of thermal diffusion over
inertia), the growth rate drops and jets becnne longer. Also we can see that the
highest unstable wavenumber is increased by increasing the Peclet number. The
highest fstable wavenumber can be thought of as an inverse standard (by wave-
lengths) of the expected droplet sizes. In this consideration, Fig. 4 indicates that
increasing the PgEJet number will result in shorter jets as well as reduced droplet
sizes. In Fig. 5 the temporal growth rate for various values of the Biot number
is plotted. We note, from this figure, that the growth rate decreases as the Biot
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Figure 5: @, against k for different Biot numbers. Where F = 4, Re = 800, Pe = 10, We = 2,
pr=02and oy =0.1at z=0.

number increases. Also, we plot the relation between Re(®) and k, for four dif-
ferent values of piy, as depicted in Fig. 6. As illustrated in this figffre, the growth
rate decreases as the value of uy increases. Additionally, we plot the r@Ationship
between Re(@) and k for various values of oy in Fig. 7. We find that increasing
the value of oy results in a decrease in the growth rate, as illustrated in this figure.
Thus we might expect that viscoelastic jets will be longer with heating (because of
the reduced growth rate of the perturbation) with larger drops (because of greater
wavelengths corresponding to the faster-growing mo¢s). Furthermore, from Fig.
5, we note that an increase in the Biot number redaes the range of instability (that
is, the range of k values that causes growth in the waves). These results are in line
with observations by (Uddin, 2007) for viscous liquid jets with heating.

7.2. Spatial instability analysis

A spatial instability analysis proposed by (Keller et al., 1973) is a more physi-
cally realistic analysis of the investigation of a liquid jet instability spatially, where
disturbances grow in space rather than with time. This analysis assumed to set k as
a complex wavenumber and @ as an imaginary frequency. Therefore, the spatial
instability may be better in describing the physical process of the jet disintegration
(see Buskeretal., 1989). Spatial instability is also used in simulating satellites that
form before or after the formation of the main droplets based on the amplitude of
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Figure 7: @, against & for different values of oy. Where F = 4, Re = 800, Pe = 10, We = 2,
Bi=02and uyy =02 atz=0.
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the disturbance. Comparison of theoretical foretelling and experimental findings
carried out by (Si et al., 2009) points out that spatial instability results are in line
with experiments better than temporal instability analysis, especially for medium
to large Weber numbers (see Xie et al., 2017).

Following (Keller et al., 1973), in the dispersion relation (32), we consider k
as a complex wavenumber and @ as a real frequency, where Im(k) is the spatial
perturbation growth rate. For unstable perturbations, we need Im(k) < 0 since
the most negative value of Im(k) gives the largest spatial growth rate. W@lise
the numerical method of Newton-Raphson to solve this dispersion relation for k
together with given values of . We plot the relation between Re(k) and Im (k)
for different values of Ef and Bi as depicted in Fig. 8 and Fig. 9 respectively. We
notice from Fig. 8 that the spatial growth rate is decreased when the Peclet number
is decreased. While we notice from Fig. 9 that the spatial growth rate is decreased
by increasing the values of the Biot number, which means that connecting heating
to the free surface of the viscoelastic jet results in longer breakup lengths (i.e.
heating has a stabilizing effect on the disif#gration of the viscoelastic jet). Also,
we observe from Fig. 8 and Fig. 9 that the range of instability (i.e., values of
k, at which the viscoelastic jet is unstable) is affected, where the inclusion of
heating leads to a reduction in this range of instability. Also, we plot the relation
between Re(w) and Im (@), for three different values of 6y, as depicted in Fig.
10. As illustrated in this figure, the spatial growth rate decreases as the value of
oy decreases. Additionally, we plot the rf:latioﬂlip between Re(®) and Im(®)
for various values of g in Fig. 11. We find that increasing the value of (g results
in a decrease in the spatial growth rate, as illustrated in this figure.

8. Absolute Instability Analysis

Depending on the wave packets’ movement that growing along the viscoelastic
jet, there are two different kinds of instability. We say that the flow is absolute in-
stability when entire wave packets move up or down and there are time-dependent
perturbations that grow at every fixed spatial point. If not, the flow could be con-
vective instability, which grows and spreads far from its point of origin. This
gives rise to the viscoelastic jet rupturing elsewhere away from the origin and
leaving the jet to be unaffected at this origin (see Drazin and Reidi981). In turn,
absolute instability spreads far from its origin point; however, it destabilizes the
viscoelastic jet everywhere, including at the point of origin of the disturbance.
For absolute instability, following (Briggs, 1964) criterion, we take a wave mode
exp(t + ikz), where @ and k are both complex. Therefore, absolute instability
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Figure 10: Graph of the spatial growth rate versus the wavenumber for various values of opy.
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takes e if the solution of (32) is found in the complex k-plane. This solution is
called a saddle point corresponding to a cusp point (a pinch point) in the complex
@-plane.

When two k(®) curves in the complex-frequency plane intersect, it forms a
“cusp point”. Absolute instability necessitates a Rff§) > 0 dispersion relation so-
lution. Confirmation of absolute instability occurs when the group velocity (given
by a dw/dk) is 0 at the k, saddle point (which is a necessary condition, but not
a sufficient one). This is due to the fact thatae group velocity is not just zero in
saddle points, but also at the convergence of two k branches regardless of whether
or not the branches came from the same plane representing the half-k. To ad-
dress this, a mapping procedure is created [} (Kupfer et al., 1987), where pinch
points are discovered by mapping selected contour lines from the (k, — k;)-plane
into the (@, — @y )-plane. When these lines are deforfd, a branch point termed a
cusp point appears in the w-plane. Simultaneously, a pinch point emerges in the
(k, — k;)-plane. Additional distortions of contour lines after the establishment of
the pinch point violate causality, and these deformatf@ins are halted. The following
procedure can be used to determine whether or not the cusp point was formed by
the k-branches created from two various halves of the (k. — k;)-plane. As stated
by (Kupfaet al., 1987), one can determine whether or not a pinch point exists
at a cusp point by drawing a straight beam (parallel to the Re(®, )-axis) starting
from the cusp point and finishing with the first contour image (for k; = 0) and
counting the intersections at which the beam intersects this imageg‘ the number
of the intersections is odd, then we are sure that the cusp point was formed by two
various k-branches originating from two separate half of the (k. — k;)-plane, and
it is known as a pinch point.

8.1. Discovering the cusp point

(Kupfer et al., 1987) are shown that a D(@,k) = 0 dispersion relation may
identify absolute instability from mapping the complex-frequency plane to the
wavenumber plane. However, for a large number of physical techniques, the dis-
persion relation is used as a polynomial in @ rather than a transceln:ntal in k.
Solving for @ given a k is easier than solving for k given a @. Because it is simpler
to map from the (k, — k;)-plane to the frequency plane than it is to solve transcen-
dental equations (i.e. we can determine stability characteristics without having to
solve them). The image of the region in the (k, — k;)-plane is bounded on one side
by the first contour created by mapping the complex wavenumber plane’s real
line. N fherous contour lines exist throughout the range of unstable wavenum-
bers. If the contour lines are mapped into the (@, — ®;)-plane, each contour line
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terminates in this specific area and leaves its image. A cusp point may be formed
by cfflistant parallel beams /m(k) < 0 mapped on the (), — @;)-plane. Assuming
that a cusp point can be identified, it will correspond to the complex frequency
plane value @y in the (@, — @y)-plane. This point is generated in the complex
wavenumber plane by an associated value of k = kg. We have dD(ay, ko) /dk =0
and D(wy,kg) = 0 by definition. Pinch point is identified when @y, and k; are
such that 9D (g, ko)/dk* # 0. Thus, @ = @y [fnotes the cusp point’s position
in the (@, — @;)-plane, whereas k(ay) denotes the saddle point’s position in the
k—plan corresponding to the cusp point @y. One can conclude that the relation-
ship, (k—kg)? ~ @ — @, is a basic characteristic of forming the branching point
(the cusp point) in the complex @-plane, depending on whether the pinch point
in the (k, — k;)-plane is a saddle point or not. To search the cusp point, seaffgh
the plane of k through k,-contour lines with different k; < 0 values and plot the
contour lines images in the complex @-plane. When the contour lines are close
to the singularity, these images of the cmnur lines form a cusp. A contour line
with the exact cusp point (wp) will appear on one of these contour lines. Once the
cusp point is determined, the sign of @y can be used to idEilify the type of insta-
bility (convective or absolute). The flow of the liquid jet is absolutely unstable if
@y, > 0, and convectively unstable if @y, < 0; otherwise, the flow is stable (see Li
etal, 2019).

Cusp map method does not depend on any mathematical formulae to deter-
mine where a cusp should be placed. Rather than that, we consider mappings of
our k contours onto the frequency plane (varying real part, fixed imaginary part).
This results in a curve that frequently loops back on itself. Thereforeffollowing
the idea of the cusp map method by looking at line mappings with Im(k) = k;
(constant) in the (k. — k;)-plane on the (@, — @;)-plane is referred to as the cusp
curve, which is a set of points. Applying this method, it k; = 0 and keep chang-
ing k.-values yields the image of Ist contour of the dispersion relation, which
corresponds to the largest growth rate of the temporal instability, as E®picted in
Fig. 4 when Pe = 10 (the blue one). When k; values are reduced to negative
values, we obtain the corresponding images of the dispersion relation, (32), in the
(@, — @ )-plane as depicted in Fig. 12. If k; = —0.2, we observe that the cusp point
appears at ay = 0.068 — 0.814, wa:h corresponds to the kg (the saddle point) in
the (k, — k;)-plane. This is called a pinch point because when we draw a straight
beam parallel to the Re( ®)-axis from it to the image of the 1st k-contour line (for
ki = 0) in the (@, — @;)-plane, there is only a point of intersection (odd number)
(see (Patne and Shankar, 2017, Camporeale et al., 2017). In Fig. 12, the flow is
absolutely unstable due to the fact that @y, > 0.
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Figure 12: Graph illustrating the k,-contour for various k; values in the (@, — e;) plane. The black
line represents the cusp curve ( when &; = —0.2), contains the cusp point, whereas the red thick
line represents the 1st k-contour ( when k; = 0). Where & =4, De = 10, uy = 0.2, Pe = 10,
Bi=0.2, 04 =0.1, Re =800 and We =2 at z = (.

8.2. Discovering the saddle point

We utilize the saddle point method, as described in (Bassi, 2011) and (Balestra
et al., 2015), to find the dispersion relation solutions, i.e. D(ay,ko) = 0, where
BFD (@0, ko) /0k* # 0 and D(@, ko) = ID(x,ko)/dk = 0. To investigate how
changing dimensionless parameters behave, we chose a referencefjtate where
We=2F=4, Pe=10,Bi=0.2, uy = 0.2, 6y = 0.1, Re = 800, and De = 10
at z = 0. Also, the dispersion relation, (32), is solved spatially to find the saddle
point using the nufrical Newton-Raphson method in the (k. — ki)-plane. In gen-
eral, two separate branches of spatial curves exist for D( @, k) = 0, each branch is
composed of a pair of points on either side of the saddlffpoint. Examining @; con-
tour lines by reducing @, values gradually to zero, and using the Newton-Raphson
method to resolve the dispersion relation for k reveals these points. A saddle point
is created when the two m;-contour lines come close to meeting each other at the
point where k = kg and when @, values are reduced from positive little values to
zZero. 1

It is crucial to keep in mind that the cusp point in the (@, — @;)-plane corre-
sponds to the pinch point in the (k, — &;)-plane, which must be taken into consid-
eration when determining the saddle point. This is the case due to the fact that the
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Figure 13: Graph illustrating the saddle point, which is located in the complex k-plane at ky =
1.062 — 0.288i, between 2 spatial branches of /m(®) contour (when Re(®) = 0.07 and @, = 0.08
respectively). Where De = 10, Pe = 10, Bi=0.2, F =4, uy = 0.2, oy = 0.1, Re = 800 and
We=2atz=0.

group speed is equal to 0 not only at the pinch p@t but also at the confluence of
the two k-branches. This is the case irrespective of whether the branches formed
from different halves of the same k-plane or from the same half of the same k-
plane. To guarantee that the first-order saddle point is correctly located, we must
utilize m;-contour for numerous positive little values of ®, on the complex k-plane
near the real part of the cusp point (ax),). After this, we numerically solve the dis-
persion relation for k by applying ne Newton-Raphson method. A reader of the
method above can found at the saddle point is found at kg = 1.069 —0.281,
between 2 spatial curves (@, = 0.07 and @, = 0.08), as depicted in Fig. 13. We
have verified that @y and kg satisfy the requirements of the pinch point conditions
(i.e. 3°D(wy,ko)/dk> # 0, dD(mn, ko) /dk =0 and D(an, k) = 0. (See Briggs,
1964, Vesipa et al., 2014)

8.3. Discovering the CAIB

In order to locate the C}nS (convective-absolute instability boundary), we
must monitor the cusp point as the Weber number is increased and all other di-
mensionless parameters are held fixed. We then find @ values at the cusp point
using the Newton-Raphson method. This procedure is repeated until the Weber
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Figure 14: Graph of cusp point movement in the complex @ plane. When We = 1.5, the thick
red dashed line is the first contour line (for k; = 0); while the blue line is the cusp curve (for
k; = —0.11), which indicates the transition from (AI) to (CI), when We = We,. = 3.8. Where
De=10,F =4, uy =0.2, 65 =0.1, Pe = 10, Bi = 0.2, Re = 800 and We = 2 at z = 0.

number reach€f a critical value (thatis, when the sign of @, changes from negative
to positive ), the critical value of We = We, at \nich the transition occurs from
absolutely unstable to convectively unstable, i.e. @o, = 0),§ depicted in Fig. 14.
In this case, the critical value of We (i.e., We,) will be used to identify the convec-
tive/absolute instability boundary (CAIB), which will be the boundary between
the convective and absolute regions (see Mohamed et 31@015, Lietal., 2011).
The same procedure is followed for various values of Re in the (Re — We)-plane,
as depicted in Fig. 15, and in the (We — De)-plane, as depicted in Fig. 16, where
We, denotes the location of the CAIB. Finally, in Fig. 17, the CAIB is identified
by We, values, with different values of Bi, in the (We — Bi)-plane using the same
process above.
Also, in Fig. 15, we observe that when the viscosity reduces (by increasing
Re values), the CAIB increases (i.e. an increase in We, values), where the CAIB
increases abruptly in the range (500 > Re > 0), and then rises progressively when
Re > 500, indicating a delay in the transition from absolute to convective instabil-
ity. According to its qualitative behavior, the CAIB is similar to that observed in
(Lépez-Herrera et al., 2010, Lin and Lian, 1989, 1993). Additionally, we observe
that the inclusion of heating decreases We, values for various values of Re. In

24




4 T T T T T T
Convective instability region
MTILLLLL
3.8F _.l----nl""'"""- 4
.
.“‘...
’.‘
1 L -
9 a'. _.—.-—-F"——-
o -
» -
. -
| - - - mgith heati t z=0
P ’ wit eating at z=
o "
= R4 samnyithout heating at z=
- without heating at z=0
3.2r of 1
Fl
|
3= 1
solute instability region
’ Ab 2 : b 14 :'r? g
M
S | J
-
1
=
. . . .
2000 3000 4000 5000 6000 7000

[N]

Re

Figure 15: On the Re-We plane, a graph depicting gc convective/absolute instability boundary

(CAIB) emerges at @, =0. Where De =10, F =4, Pe =10, Bi = 0.2, ug = 0.2, oy = 0.1 at

=

L
+
/

hl
1

[ ]
3.2
!

—.-—-———-—-—---—-—-—-—'
-

Convective instability region

mm=with heating at z=0

mmEwithout heating at z=0

Absolute instability region_

o

Figure 16: On the De-We plane, a graph depicting the convective/absolute instability boundary

(CAIB) emerges at @, = 0. Where Re =800, F =4, Pe =10, Bi = 0.2, uy = 0.2, oy = 0.1 at

z=10.

25




23 T T T T T T

ool Convective instability region ]
k -
~-
21F .. — = CAIB without heating at z-0|
. = CAIB with heating at z=0
"h‘\

We
1

Absolute instability region

1.7 . . . . . .
041 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Bi

Figure 17: On the Bi-We plane, a graph depicting Ec convective/absolute instability boundary
(CAIB) emerges at @ = 0. Where Re =800, Pe =10, De =10, F =4, yy = 0.2, oy = 0.1 at

=

gt Convective instability region (w <0)

261

Absolute instability region (>0}
22

1.8
0 500 1000 1500 2000 2500 3000 3500 4000
Pe
Figure 18: On the Pe-We plane, a graph depicting the convective/absolute instability boundary
(CAIB) emerges at @, = 0. Where Re =800, Bi = 0.2, De =10, F =4, ug =0.2, oy = 0.1 at
z=0.

26




Figure 19: On the py-We plane, a graph depicting Ec convective/absolute instability boundary
(CAIB) emerges at @, = 0. Where Re = 800, Bi = 0.2, Pe = 10, De =10, F =4, oy = 0.1 at

=1L

Figure 20: On the oy-We plane, a graph depicting the convective/absolute instability boundary
(CAIB) emerges at @, = 0. Where Re = 800, Bi=0.2, Pe = 10, De = 10, F =4, ug = 0.2 at

z=0.
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addition, we can see from this figure that the inclusion of heating has resulted in a
smaller regiofidot absolute instability being observed. In a similar way to gravita-
tional forces, the Marangoni-induced flow, which works in the direction of gravity,
acts in the opposite direction of wave propagation, preventing it from propagating
upstream. Fig. 16 shows a sharp rise in CAIB (1 > De > 0) and then asymptotes,
which shows that the highest value of We,. is 3.6 without heating, while the largest
value of We, is 3.22 with heating. In Fig. 17, the CAIB (i.e. the critical Weber
number) decreases as the Biot number rises, implying that the flow is absolutely
unstable when both the Weber and Biot numbers are simultaneously decreased.
Additionally, we observe that the maximum value of We,. decreases with heating.
Moreover, we plot the CAIB on the Pe — We plane as depicted in Fig. 18. We
note, from this figure, that the critical Weber number (We,.) increases as the Peclet
number increases. While the critical Weber number is decreased by increasing the
value of uy as depicted in Fig. 19. Also, increasing the value of oy leads to a
decrease in We, as illustrated in Fig. 20.

9. conclusion

This paper has looked into the (CI) and (Al) of a viscoelastic liquid jet that has
fallen under the influence of gravity. We have used the UCM model and obtained
steady basic flow solutions using an asymptotic approach. Perturbations to these
basic flow solutions result in the formation of a dispersion relation, which has nu-
merically solved. A mapping approadfjcreated by (Kupfer et al., 1987) has been
used to find the cusp and pinch points for absolute instability. Also, the CAIB has
been identified for different parametric regimes. In particular, we have examined
the influence of heat transfer on the (CI) and (Al) of viscoelastic liquid jets. We
have found that dripping-to-jetting transitions occur at lower values of the critical
Weber number when the heat transfer to the interface of the viscoelastic liquid jet
is taken into account. Furthermore, for lower values of the Weber number, the jet
is absolutely unstable for fixed Reynolds, Deborah, and Biot numbers. In appli-
cations in which absolute instability is desired (as in spray formation), the Weber
number must be decreased. In conclusion, the presence of the thermocapillary
effect always causes breakup to be delayed, resulting in longer jets (that is, ther-
mocapillary has a stdflizing influence on jet disintegration). The thermocapillary
effect also decreases the critical Weber numbers (We,) related with the parameters
Re, De and Bi.

The work’s results will be used in industrial processes that use viscoelastic
liquid jets. These comprise recent advancements in needle-free injections, where
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new research demonstrates the critical role of jet coherence in needle-free injec-
tion succ@} (see Moradiafrapoli and Marston, 2017). Additionally, this paper is
pertinent to recent advancements in nanofiber production, where the use of vis-
coelastic polymer solutions is crucial for fjuid jet stability (see Gadkari, 2017).
Finally, for jets with very tiny diameters (in nanofiber manufacturing, liquid jets
have average diameters of roughl{l0 um) and at a high velocity, the surrounding
medium will significantly impact jet dynamics and instability. These impacts will
be investigated in a future article.
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Appendix A.

The continuity equation (3) changes when dimensionless scalings (13) are
used, and becomes

1 /v, v dv;
E(ﬁ 7)—'—(}—2:0- (A1)
Also, using the dimensionless scalings (13), the Navier-Stokes equation (4) is
written in two components (the radial and axial components), which are respec-

tively
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Also, using the dimensionless scalings (13), the extra stress tensor, (1), can be
written in three components are
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The energy equation, (8), using the dimensionless scalings (13), becomes
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The normal boundary condition, (9), using the dimensionless scalings (13), be-
comes
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The tangential boundary condition, (10), using the dimensionless scalings
(13), becomes

261+ u(H—1) (IC\ (Av, v\ 1 FISY
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e 883§+883) atr=_{. (A9)

The normal flux condition of heat, (11), using the dimensionless scalings (13),
can be written as

JH d{ JdH .
>, —¢? af, > — —eBi(H—1)E¢ at r={,. (A.10)
The kinematic boundary condition, (12), using the dimensionless scalings
(13), becomes
! ap—i—v atr = (A.11)
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Appendix B.

To illustrate how the equation, (17), is derived, we replace the expressions,
(15) and (16), into our non-dimensional equations, (A.1)-(A.11). After removing
the tildes for simplicity, the continuity equation (A.1), to Q(1) and O(g), becomes

respectively
1/0
vo=0, and v,.:—i(%). (B.1)

The axial momentum equation (A.3), to O(1) and O(€), becomes respectively
vy =0, (B.2)
and
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The tangential boundary condition, (A.9), to O(g), becomes
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We dz

3 (9% \dvg | 1970 1
O(e) -sz——(a—z) 9z 7 72 +2[l+#H(Hn—l)]‘:0

26
_ (8820) (;,:_?_ _1;2)] . (B.4)

The normal boundary condition, (A.8), to O(1), becomes

N 1 0 av;n oq
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Re
By substituting equations (B.4 and B.5) into equation (B.3) give equation (17).

Appendix C.

Substituting (28) into our non-dimensional equations (in Appendix A), we
obtain a system of ordinary differential equations that is
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