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Investigating the applicability of the Social Spider Optimization for the inversion of 
[1]

magnetic anomaly caused by dykes  

Abstract 

The geologic relevance of dipping dykes is enormous. They are very crucial structures for 

        hydrogeologic, geothermal, and hydrocarbon investigations. However, due to its 
[1]

          characteristic complexity, no specific technique has been generally accepted for the 

interpretation of dykes from magnetic data. This study designs and trial-tests a new method 

based on the social spider optimization (SSO) algorithm. The design process targeted at 

deciphering the physical properties defining amplitude, depth of burial, half-width, and 

inclination of the anomaly was presented in a detailed and straightforward manner. The 

test data consisted of synthetically generated anomalies corrupted with random noise at 

different levels, and field anomalies extracted from mining records from China and Turkey. 

The new technique's capability and effectiveness in resolving each of the inverse problems 

        were outstanding. Deductions from results imply the SSO as a robust tool, stable and 

efficient for deciphering the physical characteristics of deep and shallow-seated dykes from 

magnetic data. Therefore, it is recommended for the inversion of other geophysical data 
[0]

such as self-potential and gravity data. 

Keywords: Anomaly; Dyke; Inversion; Spider; Magnetics; Interpretation 

 1 Introduction 

Modeling in geology generally involves gathering and assembling geological information 

such as core cutting, sections, panels, and maps to generate models that, in tradition, should 

be replicas of the subsurface. While the final products of this technique have been very 
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accurate and reliable, the process of acquiring this information, particularly in areas of little 

or no exploration history, is usually laborious costly, and time-consuming. To this end, the 

          geophysical approach is widely preferred. Geophysical data used in imaging geologic 

structures buried at various depths below the Earth's surface are usually acquired using any 

of the conventional geophysical methods (Ben et al, 2022c). The geophysical exploration 

methods are many and each exploits variations in physical properties with respect to the 

conventional local or regional normal. 

Amongst all the conventional geophysical techniques, the magnetic method is the oldest, 

and reliable. Over the years, it has found success in the search for hidden ores and structures 

          associated with mineral deposits.  Field readings, representing spatial variations in 

magnetic field strengths are always corrected at first  and in the best possible ways, to free –

the raw data of contributions from extraneous sources. With the advent and application of 
[1]

high-speed computers, artificial intelligence, tools developed have greatly improved the 

quality of data collection and general confidence in existing processing techniques (Ben et 

             al., 2021c; Mbonu and Ben, 2021; Mbonu et al., 2021). However, the situation with 

interpretation is not similar, as the deciphering of geologically relevant information of 

   magnetic data still relies heavily on subjectivity and geologic history. Conventionally, 

 magnetic anomaly data are interpreted in terms of the depths of burial, geometry, and 

susceptibility of the causative structure. Inversion procedures are commonly adopted for 

the unraveling of these causative structures. 

Inverse modeling in geophysics aims at unravelling characteristic parameters of a structural 

features through procedural matching with existing and/or numerically constructed  models 

           (Essa and Elhussein, 2020). The structures of interest in mineral exploration usually 

http://www.plagscan.com/highlight?doc=147481952&source=1&cite=7&hl=textonly#7


include ores, faults, dykes and contacts; and all modelling procedures seek at determining 

the parameters that can unravel the in situ position, depth, and shape of these interests.  

The geologic relevance of dipping dykes is enormous. Triassic dykes have been known to 

impound fracture induced groundwater; dipping dykes are also practical heat contacts in 

most geothermal systems as well as effective traps for hydrocarbons. More too, dipping 

           have proven to influence local/regional direction of mineralization (Li et al., 2019; 

FitzGerald, 2018). However, no technique has been exclusively accepted for the inversion 

of this geologic structure.  

Over the years, several techniques have been adopted for the interpretation of dyke-related 

anomalies. Some of these procedures exploit computational formulations including the 

          gradient method (Radhakrishna-Murthy et al., 1980), iteration method,  fair function 

          minimization (Tlas and Asfahani, 2011 Abdelrahman et al., 2012). Others have ; 

experimented with procedures consistent with the Gauss method (Won,1980), least squares 

           (Abo-Ezz and Essa, 2016), wavelet transform (Gholghasi et al., 2009), and simplex 
[1]

          algorithm (Tlas and Asfahani, 2015). Nonetheless, results show that these numerical 
[0]

approaches are frequently characterized by a large number of invalid solutions, which have 

       been attributed to noise sensitivity, improper filtering, window size compatibility and, 

most importantly, an overreliance on geologic history that may not be reliable or available. 

With increased improvements in machine learning and artificial intelligence (Ewees et al., 

           2019), practitioners have shown that these problems can be attenuated with the 

instrumentality of evolutionary techniques. -Garni (2015) used modular neural network Al

inversion to estimate parameters of dipping dikes. Balkaya and Kaftan (2021) employed a 

differential search technique to interpret magnetic anomalies induced by 2D dyke-shaped 
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structures. Essa and Elhussein (2020) presented a strategy based on the robust Particle 
[1]

Swarm Optimization and employed the same for the investigation for magnetic data by a 

2D dipping dyke. Di Maio et al (2020) modeled magnetic anomalies generated by common 

geological structures including dykes with the Genetic-Price inversion algorithm. Biswas 

and Acharya (2016) interpreted and modeled a vertically magnetized semi-infinite vertical 

   rod-type structure using the very fast simulated annealing (VFSA) global optimization 

approach. Ekinci (2016) developed a Matlab-based algorithm for the estimation of depth 
[1]

         isolated thin dykes by using higher-ordered horizontal derivatives calculated from 

magnetic anomalies. Ekinci et al. (2017) achieved analytic signal amplitude inversion of 
[3]

magnetic anomalies over thin dykes using  differential evolution. Balkaya et al. (2017) 

         conducted three dimensional magnetic inversion of intrusives using the differential 

evolution metaheuristic technique. Balkaya et al. (2015) inverted magnetic anomalies due 

to two dimensional dykes using the differential evolution algorithm. Ben et al. (2021b) 

designed an innovative system for the understanding of dyke systems using the Manta Ray 

Foraging Optimization procedure. Srivastava and Agarwal (2010) inverted the amplitude 
[3]

             of the 2-D analytic signal of magnetic anomaly over dykes using the particle swarm 

optimization technique. Vashisth et al. (2020) presented a Whale optimization approach 
[3]

            for the inversion of anomalies due to vertical and dipping dykes. These intelligent 

algorithms, which mainly imitate normal behaviors in nature, have proven superior and 

efficient in overcoming most challenges posed by the classical methods. The strength of 

these algorithms is drawn from the fact that, unlike other algorithms, the search for feasible 

solutions is independent of gradient. As is well known, gradients are usually more difficult 

to resolve with increase in complexity such as that characterize dipping structural features. 
[1]
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In this paper, we present a new stochastic technique for interpreting magnetic anomalies 

over dipping dyke geologic features. The new strategy is based on the recently proposed 

SSO algorithm. 

The SSO is a bio-inspired metaheuristic that imitates the mutual behaviors of social spiders 

(Tamilarasi et al., 2021; Cuevas, Zaldívar, et al., 2018). Unlike other heuristic algorithms 

             where optimization follows swarms of one agent type in a search domain, the SSO 

concurrently exploits the operational behavior of both male and female spiders (the agents) 

searching for space. A set of gender-dependent operations is used to guide the positions of 

the agents towards an optimal solution satisfying the objective. So because the algorithm 

promotes individually categorized traits over swarm traits, the collective behavioral results 

of this personalized characterization are healthy cutbacks in critical particle concentration 

defects, which are common in most metaheuristic procedures such as GA, DE, and PSO 

(Cai and Cui, 2010; Nguyen et al., 2020; Sun et al., 2019). The SSO has been successfully 

          employed in diverse fields including engineering (Fathy et al., 2020), agriculture 

    (Thilagavathi and Amudha, 2019), pharmacy (Sahlol et al., 2019), energy (Tabasi and 

         Asgharian, 2019) amongst many others. Reports from these applications, increasingly 

promise the SSO algorithm as a meaningful and appropriate inversion tool for geophysical 

            data inversion. However,   the time of preparing the initial draft of this article, at
[0]

no application of SSO in dyke inversion has been reported in literature. 

 2.  Methodology 

http://www.plagscan.com/highlight?doc=147481952&source=0&cite=28&hl=textonly#28


2.1 Forward modeling of a  2-D dipping dyke 
[20]

  (1) expresses the magnetic anomaly (y ucture at any point y  on the i,K,h,z,α) of the str i

          sampling profile, assuming a Cartesian coordinate system with the vertical axis 

representing the strike of the buried dipping dyke buried at depth z from the surface and 

the horizontal axis representing the sampling profile. 

F(yi, K, h, z,α) = K [sin (tanα −1 (yi+hz ) − tan−1 (yi−hz )) − cosα2 ln ((yi+h)2+�2(y −h) +zi 2 2)]   (� = 1,2, … , �),     

(1) 

             where α is the index angle, h -  the half-width, z is the depth, while K 

represents amplitude of the anomalous structure. Table 1 shows the amplitude coefficients 

           and index angles for total, horizontal, and vertical fields, where j is the geomagnetic 

inclination  (represented by the angle between the profile direction and the geomagnetic 

field direction), λ is the profile azimuth with respect to magnetic north (Figure 1), m is the 

susceptibility contrast and δ is the dipping angle, and m is the susceptibility contrast. 

The process around deciphering the set of parameters that describe the buried structure 

from the magnetic data. The search for the inverse problem solution is as described by Ben 

et al., 2021b, and,  Ben et. al., 2022b. This initial model is normally constructed with 

           knowledge from historical information such as drilling logs, and data from other 

geophysical surveys. The model is progressively improved through series of optimization 
[1]
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processes based on the cost function (2) until the fitted version estimating data synonymous 

or very near-synonymous with the observed data is obtained 

��� !"#$  %&'!"#�' = ∑ ()(*)#+ − )(*)# ),-  #=. '  

where )(*)#+ and )(*)#   are respectively the magnetic anomaly from observed data and 

those estimated using the proposed methodology while n is the data number 

 

2.2 Social spider optimization 

             The SSO is a heuristic procedure introduced by Cuevas et al. (2013). The algorithm 

operates by mimicking the cooperative behaviour of social spiders where both the female 

and male spiders work together as search agents. The spiders move randomly within the 
[15]

search space in a high-dimensional communal spider web where each spider is promoted 

             as a candidate solution (Alrashidi et al., 2020). The algorithm, designed to use their 

behavioural pattern in solving the magnetic inversion problem, was implemented in seven 

stages as follows: 

 

Stage 1: First, the male and female population vectors of spiders (representing magnetic 

models or search agents) were randomly initiated in search space. Each member of this 

population was taken as a prospective solution to our geophysical problem. Considering 

that the density of female spiders  usually more than the density of male spiders (0.65-is

             0.90) of a conventional colony population, S), the number of female spiders, N  was f

generated using (7) (Yu and Li, 2015; Alrashidi et al., 2020) as; 

http://www.plagscan.com/highlight?doc=147481952&source=15&cite=0&hl=textonly#0


    N ]. Sf  =  Floor [0.9 − rand ×  0.25  ,     

  (7) 

where,  is a random number in the range [0,1]. Resultantly, the male population Nm rand

was calculated using (8); 

Nm   =   S −  Nf,         

  (8) 

 

We also assumed that S, a union of females f and m contains elements such that S = {sN 1 

= f , s = f1 2 2, …, sNf  Nf+1 = fNf.s = m2,…, sN = mNm}. 

 

Stage 2: At this stage, some weight, G was assigned to all the spiders. The weight was used  

to rate the quality/superiority of spiders in S. G was determined from (9) as i 

:� = ;(< −=� >)= −=? > ,         

   (9)  

where, Z is the fitness value of a spider evaluated using the objective function while Sw and 

S S Sb respectively correspond to the worst and best individuals in the search space. b and w 

were defined as expressed in (10) and (11) (Fathy et al., 2020; Ben et al., 2022a); 

     =? = @AB�C(1,2,3,4,… )(; =( �)),       

            (10)           

     => = @�-�C(1,2,3,4,… )(; =( �)),       

          (11)         



            Stage 3: Next, the agent's vibration process (VB) was simulated. Vibrations of social 

spiders are synonymous with their movement. This stage was numerically implemented 

using (12); 

 

FG�,H = ;H × exp (−L�,H       2 ),       

           (12)           

where, X  is the Euclidian distance between spiders  and j.  i,j i

 

Stage 4: After establishing their vibration structure, we initialized the position of the agents 

in the search space. As earlier explained, this represents the initial model for our dyke 

problem. As such, this initial position vector for each spider, f  or m , is constructed as a 4-i i

D vector populated by the parameters to be optimized (K, h, α, and z). The parameter values 

were generated within the space-dependent lower, LB  and upper, UB  bounds ((13) and j j

 (14)) (Fathy et al., 2020)  

 M�,H  N = GHON> + PA-Q(). (GHℎ�Sℎ − GHON>) � = 1,2, … , �M; H = 1,2,3,4 ,  

     (13)    

@U,HN = GHON> + PA-Q(). (UBH − LBj ) U = 1,2,3 … , �@; H = 1,2,3,..  
      (14)     

Stage 5: For each iterative session, the co-operative interaction between individual spiders 

in the colony was implemented according to the spider gender. 

That of the female spiders was done using (15) (Husodo et al., 2020). 

 



M�(U+1) =
 {M�(U) + [ .  FG�,\. (<\ − M�(U)) +  β . VBi,b. (<? − M�(U)) +  δ . (rand() − 12) F

M�(U) + [ .  FG�,\. (<\ − M�(U)) +  β . VBi,b. (<? − M�(U)) +  δ . (rand() − 1
[2]

2) ≥ V, (15) 

where, and are random numbers within the range of 0 and 1, k is the t maximum α, β, δ, δ 

iteration number, V the probability factor, and sc and s  are the nearest best to the ith spider, b

and the population S best spider, respectively. 

            The co-operative behaviour of male spiders was defined using (16). In conventional 

          colonies, male spiders are usually dominant and non-dominant. The dominant males 

boasting of better fitness values usually have greater chances of attracting female mates, 

while the non-dominant ones, rather gather in male population cent s to exploit resources re

lost or leftovers from the dominant ones. These behaviours were simulated numerically as; 

(Shayanfar et al., 2016) 

@�(U+1) =  
{ 
 @�(U) + [ .  FG�,M . (<M − @�(U)) +  δ . (rand − 1  2)   Wif Nf+i Wf+m

@�(U) + [ . (∑ @ℎ(U).c�M+ℎ�@ℎ=1∑ c�M+ℎ�@    ℎ=1 − @�( )U ) if WNf+i Wf+m      

(16) 

where, S  is the nearest female spider to male spider and the term  f i (∑ @ℎ( )U .c�M+ℎ�@ℎ=1∑ c�M+ℎ�@  ℎ=1 ) is 

an average value for the population's male spiders. 

   

Stage 6: In this stage, we carried out the selection of offspring for the next generation. As 

in most evolutionary algorithms, this is an important part of the model's evolution to the 

solution.  To produce the next generation of spiders, mating between dominant males and 

females was permitted within a specified radius (R) computed using (17) (Klein et al., 
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2016). The fitness values of the next generation of dominant spiders were then evaluated 

and compared to those of their parents. If new spiders outperformed their parents in terms 

of quality, the young spiders were adopted and their parents replaced. 

d = ∑ (UBH−LBj)
[1]

e  �=. f         (17) 

In this study, the ranges of UB and LB for each of the parameters were selected based on 

subjective deductions from prior petrophysical or geophysical deductions.  
[1]

At the end of every successive iteration, the quality of results obtained in that particular 

stage was evaluated by calculating the misfit between the measured and estimated data 

using (6). It should be added that (6) is basically the root mean square error (RMS). Once 

a suitable RMS was arrived at, the four physical parameters (K, h, α, and z) were returned.

         

         Figure 2 is a summarized flowchart highlighting the stages implemented for the SSO 

procedure. 

 

 2.3 Remanent magnetization 

It should be stated that the measured magnetic field measurements used for this study were 

construed as exclusive responses to induced magnetization. To this end,  signals resulting 

from remanent magnetization were considered to be so minimal that their impacts could be 

considered negligible, or their responses had been filtered out. Further, irregularities in the 
[5]

inversion results due to poor field data wrangling or erroneous excision of the regional field 

are likely to deteriorate inversion results and cannot be wholly used to judge the efficacy 

of the new technique. 
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 2.4 Anomaly origin 

     The precise location of the anomaly's origin is vital for interpreting dipping dykes. A 

common approach adopted by some authors is to select a forward model that approximates 

the dyke structure to thin sheet model (Cooper, 2015; Ekinci, 2016; Ekinci et. al, 2017) a 

and estimate the origin as one of the model parameters. While this technique gives good 

estimations, its efficiency decreases with an increase in thickness and the vertical extent of 

the intrusive (Hinze et al., 2010; Roy, 2008). Another approach is to exploit the fact that 

for a dykes magnetized due to induction, the profile curve is symmetric about the origin. 

The Powell approach which adopts this theory is employed for this study. According to 

Powell (1967), if point pairs on a profile are located at opposite sides of its x-origin, then 

the product of their x-coordinates will always  equal to a constant. This means that if be

the profile has two a and b points such that 

@SA = @S? = @S@AB − amplitude2        

  (18) 

and another pair, c and d on the origin's antipodal side such that 

@S\ = @SQ = @S@AB + Amplitude2        

  (19) 

then, at an assumed origin at distance τ from the true one,  

     ( ) ( )A + τ  . \ − τ ) = (? + τ  .  (Q − τ)       

  (20) 



Rearranging; 

 τ = ? .  Q – A .  \(? − Q)−(A − \)         

  (21) 

Correspondingly, at origin = 0, 

A. \ = ?. Q          

  (22) 

     

 2.5. Algorithm design/complexity 

The program employed for the SSO process was designed in python3. The VSCode IDE 

used for compiling the program was installed on a simple Windows 10 desktop running 

with a Core i5 processor.  
[1]

For complexity, the program's duration varied based on the complexity of the structure 

modeled. Howbeit in all cases, the optimization process rounded up in less than 20 seconds. 
[1]

 2.6 Uncertainty analysis 
[0]

Because of the non-linearity, non-uniqueness, and ill-posedness of geophysical inverse 

problems, it is a well-known fact that several models built from heterogeneous parameter 

sets can fit well into similar observed measurements at the same time. This occurrence 

        frequently causes significant uncertainty in parameters estimated for these inverse 

problems. As a result, uncertainty assessment analyses have come to be recognized as 

critical in inversion investigations (Connolly and Khan, 2016). 
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The Bayesian method has been used to estimate model parameters that describe stochastic 

changes. The approach is founded on the idea of conditional probabilities. Prior probability 

distributions of the needed parameters could be derived by combining priori information 

with the likelihood of experimental data (Pallero et al., 2017; Ekinci et al., 2020; Pangilinan 

et al., 2008). For global optimization algorithms like SA, PSO, and, GA, correct sampling 
[0]

          has been achieved with the Markov-Chain Monte Carlo algorithm (Mosegaard & 

          Tarantola, 2002; Yusof et al., 2018). For this investigation, the Metropolis-Hasting 

algorithm (Metropolis et al., 1953; Hastings, 1970), was employed for parameter sampling. 

          The Metropolis-Hasting (MH) method suggests various models based on some prior 

distribution. The likelihood of each proposed model is computed by solving the forward 
[0]

problem and calculating the misfit in the data. If there is an increase in likelihood, the 
[0]

revised model is accepted. Furthermore, even if the likelihood decreases, the proposed 

model can still be accepted. However, this will be with a probability determined by the 

likelihood ratio between the suggested and original models. The method which is based on 
[0]

simulated annealing without cooling schedule allowed for the assessment of uncertainty by 

providing parameter confidence intervals (Connolly and Khan, 2016). In this study, 500 

iterations were allowed for the MH algorithm. 

 2.7 Parameter tuning studies 

    Most nature-inspired global optimization algorithms have their control parameters that 

heavily influence the algorithm's convergence point during inversion. These parameters 

  are critical for any algorithm's overall efficiency (Villa-Acuna and Sun, 2020; Granat, 

           2003). Their selection, however, is largely determined in essence by the considered 
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problem (Ekinci et al., 2020). Considering this, model parameters tunings were carried out 

before inversion to choose the best control parameters for the algorithm.  
[0]

           To properly guide the tuning studies, a synthetic magnetic anomaly dataset was 

theoretically generated using (1) with K = 60 nT. Further, h=15 m, z =12 m, α = 55o, with 

a profile length of 300 m (Figure 3). For the experiment, broad search spaces (Table 3) 

were adopted for the model parameters. The parameter tuning analyses were primarily 
[0]

             concerned with determining the best values for the probability factor  and the – V –

population of spiders in the search space  S and their impact on the final solution. Thirty –
[0]

independent runs consisting of 500 iterations were allowed for the optimization process. S 

was set to 120. This value for S was obtained by multiplying the number of unknown 

parameters (4) by the number of independent runs (30)(Balkaya and Kaftan, 2021; Turgut, 

2021). The magnetic anomaly problem was then statistically analyzed using the standard 

deviation, mean, and minimum of RMS values obtained. After 30 runs, the results obtained 

by utilizing various V are shown in Table 2. From the table, a V of 0.7 seems to produce the 

best statistical results (boldfaced). This suggests that using 0.7 as the probability factor for 

the magnetic data will make the optimization process more stable and efficient. As a result, 

0.7 was chosen as V for the optimization problem. Another observation is the significant 

error gap between the value of V that provided the best results and the value that generated 

the poorest outcomes. This massive disparity could undoubtedly have a substantial impact 
[0]

on the solution's accuracy in terms of optimal model parameter resolution. This highlights 

the vital need for parameter tuning studies in global optimization applications.  

3 Theoretical examples 
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To validate the performance of the suggested methodology, the algorithm was exposed to 

several preliminary controlled tests with synthetic anomaly data. The  noise-free version 

of the test data was evaluated first, and then this was purposefully corrupted with varying 

levels of noise and re-evaluated. 

 

3.1 Noiseless anomaly 

The SSO algorithm was applied to model noise-free theoretical anomalies for a dike-like 

structure constructed with model parameters of K = 60 nT, α = 55o, h = 15 m, and z = 12 

m. The magnetic field anomaly was designed using (1). 

The search space was populated with 120 initial models based on the parameter space. For 
[0]

the bounds, K values were set to be between 0 and 500 nT; h and z from 0 to 50 m; and α 

between -90  and 90 . 500 repetitive iterations were allowed for each run (Figures 4-6). o o

SSO was found to have strong optimization abilities. The corresponding model parameters 
[1]

obtained at the end of the process were respectively are shown in Table 3. 

Comparing these estimations with the actual parameters used in designing the model, it is 

evident that the new method's estimation abilities are considerably excellent. Further, the 

MH technique was applied for the assessment of uncertainty in these parameters obtained. 

To carry out the uncertainty appraisal, steps consistent with those outlined in Section 2.7 

          were adopted. Careful examination of the histogram reconstructed after the appraisal 

procedure (Figure 6) reveals that our solutions fall within reasonable confidence intervals. 

 3.2 Noisy anomaly 
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To model real-world scenarios, the synthetic data, which had been previously modeled in 

Section 3.1, was contaminated with 5, 10, and 20% random noise. The random numbers 

used in noise were zero-mean and, of course, normally distributed (as with all Gaussian 

         distributions). The standard deviation (SD) of the synthetically added noise content is 

shown in Table 4. These varied amounts of noise were added with the goal of evaluating 
[0]

the suggested methodology's efficacy under non-ideal settings such as the presence of noise 

           caused by the host materials or adjoining geologic intercalations. The random noise 

was created automatically using the MATH library and added individually to the synthetic 

data. The percentage of corruption was computed using (23). 

Noise percentage = ‖mgn−mg�‖      ‖mgn‖       

  23 

where mg  and mg are the noiseless and noisy anomalies, respectively. i n 

  

The SSO-based methodology was used once more to estimate the model parameters. To 
[1]

facilitate this task, (2) was used as the cost function, and the model ranges employed with 

         the noiseless example were readopted. After each repetition, the convergence and 

misfit were examined. 

The SSO algorithm-estimated model parameters and their actual values were found to be 

remarkably consistent (Table 5, Figures 7-9). Another notable observation is that the K 

           parameter (the anomaly's coefficient of amplitude) appeared to be more sensitive to 

          increasing noise than other parameters. This sensitivity, which is likely to alter 
[0]

interpretation when dealing with exceedingly sophisticated and deep-seated dyke systems, 
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               may be explained by the fact that K plays a  multiplier factor role in (1) and can be 

easily corrected by narrowing the range of the space-bound. Furthermore, the results show 
[0]

          that the after-convergence misfit and RMS error increase somewhat with noise. 

Nonetheless, this does not affect the general inversion process because parameter results 

            continuously appeal even at a noise level of 20%. (Table 5). Furthermore, the RMS 

obtained (Figures 8-10) w  found to be well-matched to the standard deviation of the as

corruptions (Table 4). Uncertainty histograms were constructed based on sampling done 

by MH and over model parameters for scenarios of the executed noisy models (Figure 

10)(For the sake of brevity and paper space, only plots for 10% noise are shown). The 

histograms reveal that the SSO sampling process is quite effective, as the actual parameter 

values estimated by the algorithm all fell within high probability regions. These show the 

         SSO technique as being intrinsically stable and as admirably performing even when 

dealing with noisy datasets. 

 4  Field examples 

          The SSO algorithm was experimentally evaluated using two field examples extracted 

from distinct mining areas in Turkey and Asia. The parameters representing the physical 
[0]

characteristics of the subsurface magnetic anomalies were then analyzed and compared to 

results from previous investigations published in the literature. 

 4.1 The Magnetite Iron Deposit, China 

In the early 1960s, a regional aeromagnetic study in the Western Province of Gansu, China, 

           identified an alluvial covered area afterwards designated M163. M163 has long been 

investigated and regarded to be a metasomatic contact of iron deposits (Zhang et al., 2019). 
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Following a rigorous ground magnetic survey, the regional anomaly was sectioned into 

eleven distinct containing smaller individual anomalies (Scott, 2006; Ben et al., 2021). The 

M163-1 magnetic anomaly was investigated in this investigation. A 200-m long magnetic 

anomaly profile (MN) spanning the M163-1 area was collected from a magnetic intensity 

contour map at 2-m intervals for this purpose (Figure 11). 

             As the dipping dyke was suspected as a two-dimensional structure based on a priori 

geologic information, the SSO algorithm was used to estimate its distinctive parameters 

using the forward model outlined in (1). However, before beginning the iteration process, 

the upper bounds for K, h, and z were set to 0 nT, -90 , 0 m, and 0 m, respectively, and the o

lower bounds to 20000 nT, 90 , 50 m, and 50 m, respectively (Table 6). The algorithm was o

            set up to run using 30 individuals. The inversion process took around 65 seconds to 

          complete. There were 500 iterations permitted. The model parameters obtained after 

algorithm execution are displayed in Table 6. The similarity between the estimated and 

observed anomalies is discernible (Figure 12). 

Table 7 compares model parameters produced by earlier researchers using various methods 

to those obtained by the SSO algorithm in this work. Petrophysical records (Guo et al., 

1998) report the thickness of the alluvial overburden to be between 20 and 25 m. Using 

PSO, Essa and El-Hussein (2017) calculated that the dyke, which he reported as being 

inclined at 57.99 , is buried at a depth of 22.55 m. In contrast, Ben et al. (2021) used manta o

           ray foraging optimization to identify the physical properties of the Gansu dike. They 

calculated the anomaly's h to be 20.10 m and α as 60.98o. It can be observed that our results 

are very consistent with those from these reports. 



 4.2 The Bayburt-  Sarıhan dyke

In this example, we employed the SSO for the interpretation of a shallow dyke in the 

Bayburt-Sarıhan skarn zone of Northeastern Turkey. The Bayburt Sarıhan skarn zone is an -

    extensive geologic zone dominated by granodiorite, limestone, volcanic sediments and 

 tuffs. The granodiorite unit responsible for the steep topography of the mining area is 

believed to have been deposited earlier. The unit is bounded to the east and in a north-south 

direction by a Cretaceous limestone unit which is heavily fractured. To the southwest of 

the skarn zone - and sandwiched limestone and the granodiorite unit, an intrusion mainly 

composed of magnetite has been reported. We would be analyzing this intrusion. 

            Figure 13 shows a profile extract of vertical component magnetic anomaly map a 

constructed for the region (Keskin et al., 1989) showing a 1200 m profile taken over the 

region. The profile was sampled at an interval of 200 m. Due to the paucity of geologic 

  information for this structure, the bounds were kept open-ended; however, a bisection 

algorithm was inserted into the SSO structure to prevent indiscriminate movement of the 

agents. While this increased the cost (time) of the optimization process, it did not affect the 

quality of results. The results  after convergence, are shown in Table 8 and Figure 13. The –

RMS of 3.452nT was also impressive. 

Aydın and Gelişli (1996) performed some anisotropic magnetic investigations in the region 

and showed the structure as an eastward dipping dyke with a slope of about 110°, depth of 

            about z=100 m, and a half-width of about h=75m. Dondurur and Pamukcu (2003) 

employed the damped least-squares inversion method on the same anomaly. They reported 

the depth to the dyke as 97m, the inclination as 111°, h as 76 m, and z as 97 m. It can be 



discerned from these results, that the SSO produces estimations similar to those obtained 

by earlier workers (Table 9). 

5. Discussion 
[1]

            The new method based on the SSO algorithm was designed for geophysical inverse 

problems and subjected to series of tests to gauge its adaptability and suitability for the a 

interpretation of magnetic anomalies due to dipping dyke models. The new tool was tested 

with data synthetically generated from an already established forward model and examples 

           extracted from real mining fields. The cases allowed evaluation of the new method's 

viability, strengths, and reputability. 

In terms of performance, the convergence signatures (Figure 5) for all the cases indicate 
[2]

that the SSO possess strong and extensive search abilities. As can be observed, the agents 

(parameter vectors) are not caved up in the search space. This is not unrelated to the design 

structure (Section 2). Popular metaheuristics such as PSO, GA, and SA employ individuals 
[2]

            with the same properties and performing nearly the same behaviours. In these cases, 

algorithms squander the opportunity to add new and selective operators resulting from 

     considering individuals with different characteristics. As the algorithm advances, such 

characteristics cause the whole population to cluster around the best particle or to diverge 

       indiscriminately, resulting in traditional concerns such as exploration-exploitation 

          imbalance and premature convergence. The SSO, on the other hand, models each 

individual based on gender. In this case, the entire population is divided into several search-

agent groups, and specialized operators are applied to each one selectively and explicitly. 
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With this framework, extensive exploitation is achieved (16) in such a way that efficient 

exploration is still maintained (15) – tackling the aforementioned popular problems at a go. 

More also, Figure 4 reveals the fast convergence rate of the new method. In most cases, 

the algorithm converges in less than 150 iterations; and under 200 iterations for all cases. 

This speed notably, does not affect the quality of the result in any way as the RMS were 
[3]

consistently impressive even for complex noisy and field examples. 

The algorithm was tested for sensitivity and stability by corrupting the synthetic data with 

random noise (Section 3.2). As expected, the results of the noisy data were found to be 

marginally worse than those of the noise-free counterpart. Nonetheless, as illustrated in 

figure 9, the inversion procedure remained undisturbed, producing reliable parameters up 

to the highest level of noise tested (20%). As a result, it may be inferred that the new 
[0]

technique is intrinsically adept when dealing with noisy data. 

We further tested the new technique with real field data taken from Chinese and Turkish 

 mining fields. As is generally known, it is not always assured that a novel algorithm's 

  virtuosic performance with numerically generated data (which is normally constructed 

         under ideal conditions) would always replicate with real-world data (subjected to 

         heterogeneous factors). Besides confirming the algorithm's capabilities, the outputs of 

           inversion of these anomalies were also similar  those acquired previously using to

alternative methods and petrophysical investigation. 

The previously developed Monte-Carlo approach was used to check for ambiguity in each 

of the estimations (Section 2.6). The MH sample algorithm uncertainty analysis positioned 

the geophysical parameters predicted by the design technique within exceptionally high 
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        probability regions, increasing dependability and ensuring reproducibility. A closer 

         examination of the frequency distribution plots reveals that the histograms show very 

reasonable ranges of solutions for K, h, d, and α. This implies that the estimations for these 

parameters are within the range of their actual values. The frequency distributions of the 

            model parameters for noisy and field examples revealed that the exact points were 

         somewhat moved from the global minimum, depicting some ambiguity in the 

        estimated parameters. These ambiguities though were trivial and still well within 

permissible limits. 

It must be added that in four of the synthetic examples and the Gansu anomaly example, 

we restricted the search space using historical information. However, one of the objectives 

of this study was to limit or if possible, eradicate such dependencies. So, for the Bayburt-

             Sarıhan dyke case, the bounds were left open and the performance of the algorithm 

            assessed. From the results, it could be observed that the algorithm still performed 
[2]

excellently even when LB and UB were not explicitly defined presenting a method that can 

be employed where reconnaissance information is scarce or unavailable. 

            These features unanimously imply the new methodology is a robust tool, stable and 

efficient for deciphering the physical characteristics of deep and shallow-seated dykes from 

magnetic data. 

 5. Conclusion 

The use of metaheuristic algorithms to solve complex ill-posed geophysical problems has 

been around for a while. In fact, these strategies have been found to be more effective than 

their numerical counterparts in exploring/exploiting potential solution-leading positions. 
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     Nonetheless, despite significant-resolution advancements, several of these 

         strategies employing metaheuristic procedures are still plagued by problems such as 

premature convergence, local optima, and so on. These discrepancies have necessitated a 

quest for better-performing inversion methods. The Social Spider Optimization algorithm's 

            capability and effectiveness in modelling the physical parameters (K, α, d, and h) 

        describing magnetic anomalies from dipping dykes were examined. In contrast to 

previously studied heuristic algorithms in which a general population concentrating around 

    a single particle vector (best particle) is used to modify individual positions, the SSO 

algorithm models each individual based on their gender. This strategy encourages the de-

individualization of the best-positioned agents, allowing the introduction of computational 

       procedures to mitigate the major problems disturbing traditional techniques. The 

         experiments on both synthetic and real-world anomalies with varying levels of 

corruption were quite successful. To measure success, model stability was evaluated, and 

general performance was assessed. 

         The SSO technique demonstrated both better convergence and solution correctness. 

Furthermore, uncertainty analysis utilizing the MH sampling algorithm revealed that the 

       geophysical parameters calculated were within high probability ranges. These 

characteristics point to a competitive processing tool, one that could easily outperform 

present algorithms. It must be added that while the decoupling of search agents based on 

           gender allowed for more extensive exploration and improved quality resolution, it is 

observed that this is at the expense of speed. This is but a limitation of the algorithm which 
[1]

(as a recommendation) can be improved through modifications and hybridization. 
[0]
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As a result, the SSO approach is recommended for inverting geophysical data with higher 

complexities, such as self-potential and gravity data. It can also be restructured for three-

dimensional geophysical problems.  

 


