C-alpha-Normality الجديد.pdf ## Some Topological Properties on C-lpha-Normality and C-eta-Normality Samirah AlZahrani¹ Mathematics Department, Taif University, Saudi Arabia. A topological space (Y,τ) is called $C-\alpha$ -normal $(C-\beta$ -normal) if there exist a bijective function g from Y onto α -normal $(\beta$ -normal) space Z such that the restriction map $g_{|B|}$ from B onto g(B) is a homeomorphism for any compact subspace B of Y. We discuss some relationships between $C-\alpha$ -normal $(C-\beta$ -normal) and other properties. **Kay words:** Normal, α -normal, β -normal, C-normal, epinormal, mildly normal. #### Introduction In 2017 we discuss the topological property "C-normal" [2] . In this paper we introduce a new property called C- α -Normality and C- β -Normality. We show any α -normal (β -normal) space is C- α -normal (C- β -normal), but the converse is not true in general. And we show that any C-normal, lower compact, epinormal, epi- α -normal and epi- β -normal spaces is C- α -normal (C- β -normal), and the converse is true under some conditions . we prove any locally compact is C- α -normal (C- β -normal) but the converse is not true in general. Also observe that a witness function of C- α -normal (C- β -normal) not necessarily to be continuous in general, but it will be continuous under some conditions. ## 1 C- α -Normality and C- β -Normality Recall that a topological space (Y,τ) is called an α -normal space [11] if for every two disjoint closed subsets F and E of Y there are two open subsets G and W of Y such that $F \cap G$ is dense in $F, E \cap W$ is dense in E and $G \cap W = \emptyset$, and a topological space (Y,τ) is called a β -normal space [11] if for every two disjoint closed subsets F and E of Y there are two open subsets G and G of G such that G is dense in in G in G is dense in G in G in G in G in G in G in ¹ Samirah AlZahrani, Department of Mathematics and Statistics, College of Science, Taif University, , P.O.Box 11099, Taif 21944, Saudi Arabia, mam_1420@hotmail.com, Samar.alz@tu.edu.sa. [2] if there exist a bijective function g from Y onto a normal space Z such that the restriction map $g_{|_B}$ from B onto g(B) is a homeomorphism for any compact subspace B of Y. **Definition 1.1.** A topological space (Y, τ) is called C- α -normal (C- β -normal) if there exist a bijective function g from Y onto α -normal $(\beta$ -normal) space Z such that the restriction map $g_{|B|}$ from B onto g(B) is a homeomorphism for any compact subspace B of Y. In these definition, we call the space Z a witness of C- α -normal (C- β -normal) and the function g a witness function. A topological space (Y, τ) is called α -regular [13] if for any $x \in Y$ and a closed subset $A \subset Y$ such that $G \in A$ there are two disjoint open sets $G, H \subset Y$ such that $G \in A$ and $G \cap H = A$. And topological space $G \cap A$ is called almost $G \cap A$ there are two disjoint open $G \cap A$ and a regular closed subset $G \cap A$ such that $G \cap A$ there are two disjoint open sets $G \cap A$ such that suc **Lemma 1.2.** Any regular space is α -regular. *Proof.* Let (10) be a regular space. Pick $y \in Y$ and $F \subseteq Y$ be a closed set such that $y \notin F$, then there exist two disjoint open sets W_1 and W_2 subsets of Y where $y \in W_1$ and $F \subseteq W_2$, hence $\overline{F \cap W_2} = F$ (note that $\overline{F} = F$ since F is closed), and $W_1 \cap W_2 = \emptyset$, therefore (Y, τ) is α -regular space. \square **Lemma 1.3.** [1] Any α -regular space is almost α -regular. From **Lemma 1.2**. and **Lemma 1.3**. we conclude the following corollary **Corollary 1.4.** Any regular space is almost α -regular. **Lemma 1.5**. Any normal space is α -normal. *Proof.* Let Y be a normal space. Pick two disjoint closed sets F_1 and F_2 subsets of Y. Since Y's normal, then there exist two disjoint open sets W_1 and W_2 subsets of Y where $F_1 \subseteq W_1$, $F_2 \subseteq W_2$ and $W_1 \cap W_2 = \emptyset$. Hence $\overline{F_1 \cap W_1} = F_1$ and $\overline{F_2 \cap W_2} = F_2$. Therefore Y is α -normal space. \square **Lemma 1.6**. [11] Any normal space is β -normal. *Proof.* The proof is the same as the proof of the previous lemma. It remains to prove $\overline{W_1} \cap \overline{W_2} = \emptyset$. Since $\overline{F_1} \cap \overline{W_1} = F_1$ and $\overline{F_2} \cap \overline{W_2} = F_2$, then $$(\overline{F_1 \cap W_1}) \cap (\overline{F_2 \cap W_2}) = F_1 \cap F_2$$ $\frac{(\overline{F_1} \cap \overline{W_1}) \cap (\overline{F_2} \cap \overline{W_2})}{\overline{W_1} \cap \overline{W_2}} \subseteq \overline{F_1} \cap \overline{W_1} \cap \overline{F_2} \cap \overline{W_2} = (F_1 \cap F_2) \cap (\overline{W_1} \cap \overline{W_2}) = \emptyset. \text{ Hence } \overline{W_1} \cap \overline{W_2} = \emptyset. \square$ So we have the following theorem **Theorem 1.7.** Any C-normal space is $C-\alpha$ -normal ($C-\beta$ -normal) The converse is true under some conditions, first we mention some definition A Hausdorff space *Y* is *extremally dis* 16 *inected* [8] if the closure of any open set in *Y* is open. A topological space is called *mildly normal* [14] if any two disjoint regular closed subsets can be separated. **Theorem 1.8.** [11] Any α -normal extremally disconnected space is normal. *Proof.* Let Y by α -normal extremally disconnected space. Pick two disjoint closed sets F_1 and F_2 subsets of Y. Since Y is α -normal, then there exist two disjoint open sets W_1 and W_2 subsets of Y where $\overline{F_1} \cap W_1 = F_1$ and $\overline{F_2} \cap W_2 = F_2$. Hence $\overline{F_1} \subseteq \overline{W_1}$ and $\overline{F_2} \subseteq \overline{W_2}$. Since Y is extremally disconnected, Let $\overline{W_1} = W_1$ and $\overline{W_2} = W_2$. Therefore Y is normal space. \square From Theorem 1.8, we have the following. **Theorem 1.9.** If Y is C- α -normal (C- β -normal) such that the witness of C- α -normal (C- β -normal) is extremally disconnected , then Y is C-normal. **Example 2.10.** If Y is $C-\beta$ -normal such that the witness of $C-\beta$ -normal is mildly normal, then Y is C-normal. *Proof.* Let Y be $C-\beta$ -normal. \square en the codomain Z witness of $C-\beta$ -normal is β -normal. Let F_1 and F_2 be any disjoint closed subsets of Z. Since Z is β -normal, there exist open subsets W_1 and W_2 of Z where $\overline{W_1} \cap \overline{W_2} = \emptyset$, $\overline{F_1} \cap \overline{W_1} = F_1$ and $\overline{F_2} \cap \overline{W_2} = F_2$ o $\overline{W_1}$, $\overline{W_2}$ are disjoint regular closed subsets containing F_1 and F_2 respectively. Since Z is mildly normal, there exist disjoint open subsets U_1 and U_2 of Z where $F_1 \subseteq \overline{W_1} \subseteq U_1$ and $F_2 \subseteq \overline{W_2} \subseteq U_2$. Hence Z is normal. \square **Lemma 1.11**. Any α -normal space satisfying T_1 axiom is Hausdorff. *Proof.* Let Y be an G_2 -normal T_1 -space. Let y, z be any two distinct elements in Y. Hence $\{y\}$ and $\{z\}$ are disjoint closed subsets of Y, by α -normality, there exist two disjoint open subsets G_1 and G_2 of Y where $\{y\} \cap G_1 = \{y\}$ and $\{z\} \cap G_2 = \{z\}$ which implies $y \in G_1$ and $z \in G_2$. Therefore Y is Hausdorff. \square **Lemma 1.12**. [11] Any β -normal space satisfying T_1 axiom is regular (hence Hausdorff). By Corollary 1.4. we have the following result. **Corollary 1.13.** Any β -normal space satisfying T_1 axiom is almost α -regular. **Lemma 1.14**. Any β -normal space satisfying T_1 axiom is α -regular. *Proof.* Let (Y, τ) be a β -normal space satisfying T_1 axiom. Pick $y \in Y$ and $F \subseteq Y$ be a closed set where $y \notin F$, $\{y\}$ is closed and disjoint from F that β normality there exist two open sets W_1 and W_2 subsets of Y such that $y \in W_1$, $\overline{F} \cap W_2 = F$ and $\overline{W_1} \cap \overline{W_2} = \emptyset$, therefore $y \in W_1$, $\overline{F \cap W_2} = F$ and $W_1 \cap W_2 = \emptyset$. Hence (Y, τ) is α -regular space. \square **Corollary 1.15.** Any α -normal space satisfying T_1 axiom is α -regular. By Lemma 1.3. we conclude the following corollary. **Corollary 1.16.** Any α -normal space satisfying T_1 axiom is almost α -regular **Proposition 1.17.** [12] Every first countable α -normal Hausdorff space is regular. **Theorem 1.18.** Every submetrizable space is $C-\alpha$ -normal ($C-\beta$ -normal). *Proof.* Let (Y,τ) be a submetrizable space, the there exists a metrizable τ' such that $\tau' \subseteq \tau$. Hence (Y,τ') is α -normal since it is normal, and the identity function id_Y from (Y,τ) onto (Y,τ') is a one-to-one and continuous function. If we take B any compact subspace of (Y,τ) , then $id_Y(B)$ is hausdorff, since it is subspace of (Y,τ') , and by [[8],3.1.13], $id_{Y|_B}$ is a homeomorphism. \square **Example 1.19.** The Rational Sequence Topology (\mathbb{R} , $\mathcal{R}S$) is submetrizable being finer than (\mathbb{R} , \mathcal{U}), so (\mathbb{R} , $\mathcal{R}S$) is C- α -normal (C- β -normal). The converse of Theorem 1.18. is not true in general, for example $\omega_1 + 1$ is C- α -normal (C- β -normal) which is not submetrizable. Apparently, any α -normal (β -normal) space is C- α -normal (C- β -normal), to prove this, just by considering Z=Y and g is the identity function. While in general the converse is not true. Example of this. #### Example 1.20. - 1. The Half-Disc topological space [15] is $C-\alpha$ -normal($C-\beta$ -normal) because it is submetrizable by Theorem 1.18. but it is not α -normal nor β -normal because it is first countable and Hausdorff but not regular, so by Proposition 1.17. the Half-Disc topological space is not α -normal space, hence not β -normal. in general $C-\alpha$ -normality ($C-\beta$ -normality) do not imply α -normality (β -normality) even with Hausdorff or first countable property. - 2. The Deleted Tychonoff Plank [15], it is $C-\alpha$ -normal ($C-\beta$ -normal) since it is locally compact by Theorem 2.7. but it is not α -normal nor β -normal see [11]. - 3. The Dieudonné Plank [2] , in example 1.10 we proved that it is C-normal, hence it is $C-\alpha$ -normal ($C-\beta$ -normal) by Theorem 1.9. but it is not α -normal nor β -normal see [11] , also not locally compact, hence this example also shows that the converse of Theorem 2.7. is not true. - 4. The Sorgenfrey line square $S \times S$ see [15] is not normal, but it is submetrizable space being it is finer than the usual topology on $\mathbb{R} \times \mathbb{R}$, so by Theorem 1.18. it is $C-\alpha$ -normal ($C-\beta$ -normal). **Theorem 1.21.** If *Y* is a compact non- α -normal(non- β -normal) space, then *Y* can not be C- α -normal (C- β -normal). *Proof.* Assume *Y* is a compact non-α-normal(non-β-normal) space. Suppose *Y* is C-α-normal (C-β-normal), then there exists α-normal(β-normal) space *Z* and a bijective function $g: Y \to Z$ where the restriction map $g_{|_B}$ from *B* onto g(B) is a homeomorphism for any compact subspace *K* of *Y*. As *Y* is compact, then $Y \cong Z$, and we have a contradiction as *Z* is α-normal(β-normal) while *Y* is not. Hence *Y* can not be C-α-normal (C-β-normal). \square Observe that a function $g: Y \to Z$ witnessing of $C-\alpha$ -normal ($C-\beta$ -normal) of Y not necessarily to be continuous in general, and here is an example. **Example 1.22.** Let \mathbb{R} with the countable complement topology \mathcal{CC} [15]. We know $(\mathbb{R},\mathcal{CC})$ is T_1 and the only compact sets are finite, hence the compact subspaces are discrete. If we let \mathcal{D} be the discrete topology on \mathbb{R} , then obviously the identity function from $(\mathbb{R},\mathcal{CC})$ onto (\mathbb{R},D) is a witnessing of the C- α -normality (C- β -normality) which is not continuous. But it will be continuous under some conditions as the following theorems **Theorem 1.23.** If (Y, τ) is a C- α -normal (C- β -normal) and Fréchet space, then any function witnessing of C- α -normality (C- β -normality) is continuous. *Proof.* Let Y be a Fréchet C- α -normal (C- β -normal) space and $g: Y \to Z$ be a witness of the C- α -normality (C- β -normality) of Y. Let $A \subseteq Y$ and pick $z \in g(\overline{A})$. There is a unique $y \in Y$ where g(y) = z, thus $y \in \overline{A}$. Since Y is Fréchet, then there exists a sequence $(a_n) \subseteq A$ where $a_n \to Y$. As the subspace $K = \{y\} \cup \{a_n : n \in \mathbb{N}\}$ of 12 is compact, the induced map $g_{|_K} : K \to g(K)$ is a homeomorphism. Let $U \subseteq Z$ be any open neighborhood of z. Then $U \cap g(K)$ is an open neighborhood of z in the subspace g(K). Since $g_{|_K}$ is a homeomorphism, then $g^{-1}(U \cap g(K)) = g^{-1}(U) \cap K$ is an open neighborhood of y in K, then there exists $m \in \mathbb{N}$ where $a_n \in g^{-1}(U \cap g(K))$ $\forall n \geq m$, hence $g(a_n) \in (U \cap g(K)) \quad \forall n \geq m$, then $U \cap g(A) \neq \emptyset$. Hence $z \in \overline{g(A)}$ and $g(\overline{A}) \subseteq \overline{g(A)}$. Thus g is continuous. \square Since any first countable space is Fréchet, we conclude that, In $C-\alpha$ -normality ($C-\beta$ -normality) first countable space a function $g: Y \to Z$ is a witness of the $C-\alpha$ -normality ($C-\beta$ -normality) of Y is continuous. Also, by theorem [[8],3.3.21], we conclude the following. **Corollary 1.24.** If *Y* is a C- α -normal (C- β -normal) *k*-space and *g* is a witness function of the C- α -normality (C- β -normality), then *g* is continuous. For simplicity, let us call a T_1 space which satisfies that the only compact subspaces are the finite subsets F-compact. Clearly F-compactness is a topological property. **Theorem 1.25.** If *Y* is *F-compact*, then *Y* is $C-\alpha$ -normal ($C-\beta$ -normal). *Proof.* Let Y be a F-compact . Let Z = Y and let Z with the discrete topology. Hence the identity function from Y onto Z does the job. \square **Example 1.26.** Consider $(\mathbb{R}, \mathcal{CC})$ where \mathcal{CC} is the countable complement topology [15]. We know $(\mathbb{R}, \mathcal{CC})$ is T_1 and the only compact sets are finite, Therefore, by Theorem 1.25. $(\mathbb{R}, \mathcal{CC})$ is C- α -normal (C- β -normal). This is a fourth example of C- α -normal (C- β -normal) but not α -normal (C- β -normal). Not that any topology finer than a T_1 topological space is T_1 . Also any compact subset of a topological space (Y, τ) is compact in any topology coarser than τ on Y. Hence any topology finer than F-compact topological space is also F-compact . As an example, (\mathbb{R}, τ) denotes the Fortissimo topological on \mathbb{R} , see [15, Example 25]. We know that (\mathbb{R}, τ) is finer than $(\mathbb{R}, \mathcal{CC})$ which is F-compact, hence (\mathbb{R}, τ) F-compact too. Thus, (\mathbb{R}, τ) is C- α -normal (C- β -normal). **Theorem 1.27.** C- α -normality (C- β -normality) is a topological property. *Proof.* Let Y be a C- α -normal (C- β -normal) space and let $Y \cong W$. Let Z be a α -normal (β -normal) space and let $g: Y \to Z$ be a bijective function where the restriction map $g_{|B}$ from B onto g(B) is a homeomorphism for any compact subspace $B \subseteq Y$. Let $k: W \to Y$ be a homeomorphism. Hence Z and $g \circ k: W \to Z$ satisfy the requirements. \square ### 2 C- α -Normality (C- β -Normality) and Some Other Properties **Definition 2.1.** A topological space (Y, τ) is called C- α -regular if there exist a bijective function g from Y onto α -regular space Z such that the restriction map $g_{|B}$ from B onto g(B) is a homeomorphism for any compact subspace B of Y. **Corollary 2.2.** If *Y* is C- α -normal (C- β -normal) space and the witness of the C- α -normal (C- β -normal) of *Y* is T_1 , then *Y* is C- α -regular. We prove this corollary by lemma 1.11, Lemma 1.12 **Corollary 2.3.** If *Y* is C- β -normal space and the codomain witness of the C- β -normal of *Y* is T_1 , then *Y* is C-regular. We prove this corollary by lemma 1.12. **Corollary 2.4.** If Y is a C- α -normal (C- β -normal) Fréchet space and the witness of the C- α -normality (C- β -normality) is T_1 , then Y is T_2 . *Proof.* Let Y is a C-α-normal (C-β-normal) Fréchet space, then there exist α-normal (β-normal) space Z (witness of the C-α-normality (C-β-normality)) and a bijective function $g: Y \to Z$ such that the restriction map $g_{|_B}$ from B onto g(B) is a homeomorphism for any com 18ct subspace B of Y, then by Theorem 1.23. g is continuous. Let any $a, b \in Y$ such that $a \neq b$, then $g(a) \neq g(b)$, g(a), $g(b) \in Z$. Since Z is α-normal (β-normal) and T_1 , then by Lemma 1.11 (Lemma 1.12) the space Z is T_2 , then there exist W_1 and W_2 are open sets in Z where $g(a) \in W_1$, $g(b) \in W_2$ and $W_1 \cap W_2 = \emptyset$. Since W_1, W_2 are open sets in Z and Z is Z. **Theorem 2.5.** Any C-regular Fréchet Lindelof space is $C-\alpha$ -normal ($C-\beta$ -normal). *Proof.* Let Y be any C-regular Fréchet Lindelof space. Let Z be a regular space and $g: Y \to Z$ be a continuous bijective function see Theorem 1.23. By [[8], 3.8.7] Z is Lindelof. Since any regular Lindelof space is normal [[8], 3.8.2]. Hence Y is C- α -normal (C- β -normal). \square C- α -normality (C- β -normality) does not imply C- α -regularity nor C-regular, for example. **Example 2.6.** Consider the real numbers set $\mathbb R$ with its right ray topology $\mathcal R$, where $\mathcal R = \{\emptyset, \mathbb R\} \cup \{(b, \infty) \colon b \in \mathbb R\}$. As any two non-empty closed sets must be intersect in $(\mathbb R, \mathcal R)$, then it is normal, and by Lemma in above, it is α -normal (β -normal), hence C- α -normal (C- β -normal). Now, suppose that $(\mathbb R, \mathcal R)$ is C- α -regular. Take α -regular space Z and a bijective function g from $\mathbb R$ onto Z where the restriction map $g_{|B}$ from B onto g(B) is a homeomorphism for any compact subspace B of $\mathbb R$. We know that a subspace B of $(\mathbb R, \mathcal R)$ is compact if and only if B has a minimal element. Hence $[1, \infty)$ is compact, then $g_{|[1,\infty)} \colon [1,\infty) \to g([1,\infty)) \subset Z$ is a homeomorphism, it means $[1,\infty)$ as a subspace of $(\mathbb R, \mathcal R)$ is α -regular which is a contradiction, since [1,4] is closed in subspace $[1,\infty)$ and $[1,\infty)$ and $[1,\infty)$ cannot be C- α -regular (C-regular). Recall that a topological space (Y, τ_{13}) s called *Locally Compact* [2] if (Y, τ) is Hausdorff and for every $y \in Y$ and every open neighborhood V of Y there exists an open neighborhood U of Y such that $Y \in U \subseteq \overline{U} \subseteq V$ and \overline{U} is compact. **Theorem 2.7.** Every locally compact space is $C-\alpha$ -normal ($C-\beta$ -normal). *Proof.* Let Y be locally compact space. By [[8], 3.3.D], there exists T_2 compact space Z and hence α -normal (β -normal), and a continuous bijective function $g: Y \to Z$. We have $g_{|_K}$ from K onto g(K) is a homeomorphism for any compact subspace K of Y, because continuity ,1-1 and onto are inherited by g, also $g_{|_K}$ is closed since K is compact and g(K) is T_2 . \square **Example 2.8.** Consider ω_1 , the first uncountable ordinar, we consider ω_1 as an open subspace of its successor (ω_1+1) , which is compact and hence is locally compact [15, Example 43]. Thus, ω_1 is locally compact as an open subspace of a locally compact space, see [[8],3.3.8]. Then by Theorem 2.7. ω_1 is C- α -normal (C- β -normal). The converse of Theorem 2.7. is not true in general. We introduce the following example of $C-\alpha$ -normal ($C-\beta$ -normal) which is not locally compact. **Example 2.9.** Let the quotient space \mathbb{R}/\mathbb{N} . Let $Z = (\mathbb{R}\backslash\mathbb{N}) \cup \{i\}$, where $i = \sqrt{-1}$. Define $g: \mathbb{R} \to Z$ as follows: $$g(a) = \begin{cases} a & for & a \in \mathbb{R} \backslash \mathbb{N} \\ i & for & a \in \mathbb{N} \end{cases}$$ Now consider $\mathbb R$ with the usual topology $\mathcal U$. Define the topology $\tau = \{V \subseteq Z : g^{-1}(V) \in \mathcal U\}$ on Z. Then $g:(\mathbb R,\mathcal U) \to (Z,\tau)$ is a closed quotient mapping. We explain the open neighborhoods of any element in Z as follows: The open neighborhoods of each $a \in \mathbb R \setminus \mathbb N$ are $(a - \varepsilon, a + \varepsilon) \setminus \mathbb N$ where ε is a natural number. The open neighborhoods of $i \in Z$ are $(G \setminus \mathbb N) \cup \{i\}$, where G is an open set in $(\mathbb R,\mathcal U)$ such that $\mathbb N \subseteq G$. It is clear that (Z,τ) is T_3 , but it is not locally compact. (Z,τ) is a continuous image of $\mathbb R$ with its usual topology, so it is Lindelof and T_3 , then (Z,τ) is T_4 . Hence it is C- α -normal (C- β -normal). A topological space (Y, τ) is called Epi- α -i1rmal [3] if there is a coarse topology τ' on Y such that (Y, τ') is α -normal and T_1 . A topological space (Y, τ) is called Epi- β -normal [3] if there is a coarse topology τ' on Y such that (Y, τ') is β -normal and T_1 . By the same argument of Theorem 1.18. we can prove the following corollary. **Corollary 2.10.** Every epinormal space is $C-\alpha$ -normal ($C-\beta$ -normal). **Corollary 2.11.** Every epi- α -normal (epi- β -normal)space is C- α -normal(C- β -normal). Any indiscrete space which has more than one point is an example of a $C-\alpha$ -normal $(C-\beta$ -normal) space which is not epi- α -normal (epi- β -normal). The converse of Corollary 2.9 is true with Fréchet property. **Theorem 2.12.** Any C- α -normal (C- β -normal) Fréchet space is epi- α -normal (epi- β -normal). *Proof.* Let (Y, τ) be any C-α-normal (C-β-normal) Fréchet space. Let (Z, τ') be α-normal (β-normal) and $g: (Y, \tau) \to (Z, \tau')$ be a bijective function. Since Y is Fréchet, g is continuous (see Theorem 1.23). Define $\tau^* = \{g^{-1}(V): V \in \tau'\}$. Obviously, τ^* is a topology on Y coarser than τ such that $g: (Y, \tau^*) \to (Z, \tau')$ is continuous. Also g is open, since if we take $U \in \tau^*$, then $U = g^{-1}(V)$ where $V \in \tau'$. Thus $g(U) = g(g^{-1}(V)) = V$ which gives that g is open. Therefore g is homeomorphism. Thus (Y, τ^*) is α-normal (β-normal). Hence (Y, τ) is epi-α-normal (epi-β-normal). \square A topological space (Y, τ) is called *lower compact* [9] if there exists a coarser **Theorem 2.13.** Any lower compact space is $C-\alpha$ -normal ($C-\beta$ -normal). topology τ' on Y such that (Y, τ') is T_2 -compact. *Proof.* Let (Y,τ) is lower compact, then (Y,τ') is T_2 -compact, hence normal and the identity function $id_Y\colon (Y,\tau)\to (Y,\tau')$ is a continuous and bijective. If we take B any compact subspace of (Y,τ) , then $id_{Y|_B}$ is a homeomorphism by [[8],3.1.13]. \square In general, the converse of Theorem 2.13. is not true, for example consider a countable complement topology on an uncountable set, it is $C-\alpha$ -normal ($C-\beta$ -normal) since it is F-compact, but it is not lower compact because it is not T_2 . **Theorem 2.14.** If (Y,τ) is C- α -normal compact Fréchet *space and the witness of the C-\alpha-normality is T_1, then (Y,\tau) is lower compact.* *Proof.* Pick α -normal space (Z, τ^*) and a bijective function $g: (Y, \tau) \to (Z, \tau^*)$ such that $g_{|_B} : B \to g(B)$ is a homeomorphism for any compact subspace $B \subseteq Y$. Since Y is Fréchet, then g is continuous. Hence (Z, τ^*) is compact. Since (Z, τ^*) is $T_1 \alpha$ -normal space, then by Lemma 1.11. It is Hausdorff. Hence (Z, τ^*) is T_2 compact. Define a topology τ' on Y as follows $\tau' = \{g^{-1}(V) : V \in \tau^*\}$. Then τ' is coarser than τ and $g: (Y, \tau') \to (Z, \tau^*)$ is a bijection continuous function. Let any $U \in \tau'$, then U is of the form $g^{-1}(V)$ for some $V \in \tau^*$. Hence $g(U) = g(g^{-1}(V)) = V$. Thus g is open. Hence g is a homeomorphism. So (Y, τ') is T_2 compact. Therefore (Y, τ) is lower compact. **Theorem 2.15.** If (Y,τ) is C- β -normal compact Fréchet *space and the witness of the C-\beta-normality is* T, *then* (Y,τ) *is lower compact.* **Acknowledgments:** This research received funding from Taif University Researchers Supporting Project number (TURSP-2020/207), Taif University, Taif, Saudi Arabia. **Conflict of interest:** The author declare that she has no conflicts of interest to report regarding the present study. ### References - [1] Alzahrani S., 2022. Almost α -regular spaces, Journal of King Saud University–Science. 34(1). - [2] AlZahrani S., Kalanatan L., 2017. *C*-Normal Topological Property, Filomat. 31(2), 407-411. - [3] Gheith N., AlZahrani S., 2021. Epi- α -Normality and Epi- β -Normality, Journal of Mathematics. 3, 1-7. - [4] AlZahrani S., Kalanatan L., 2016. Epinormality, J. Nonlinear Sci. Appl. 9, 5398-5402. - [5] AlZahrani S., 2018. C-Regular Topological Spaces, J. Mathemat. Ana. 9(3), 141-149. - [6] Arhangel'skii A. D., 1996. Relative Topological Properties and Relative Topological Spaces, Topology and its Applications. 70, 87-99. - [7] Berri M. P., 1963. Minimal topological spaces, Trans. Amer. Math. Soc. 108, 97-105. - [8] Engelking R., 1977. General Topology, PWN, Warszawa. - [9] Kalantan L., Saeed M. M., Alzumi H. , 2019. *C*-Paracompactness and C_2 Paracompactness, Turk. J. Math. 43(1), 9-20. - [10] Ludwig L., Burke D., Hereditarily, 2000. α -Normal Spaces and Infinte Products, Topology Proceeding. 25, 291-299. - [11] Arhangel'skii, A., Ludwig L. D., 2001. On α -Normal and β -Normal Spaces, Comment. Math. Univ. Carolinae. 42(3),507-519. - [12] Murtinov'a, E., 2002. A β -Normal Tychonoff Space Which is Not Normal, Comment. Math. Univ. Carolinae. 43(1),159-164. - [13] Murtinov'a, E., 2001. On α -Regularity, Topology Proceeding. - [14] *S*^{*}*c*^{*}epin E.V., 1972. Real functions and spaces that are nearly normal, siberian Math. J. 13, 820-829. - [15] Steen L., Seebach J. A., 1995. Countrexample in Topology. Dover Publications, INC, New York. ## C-alpha-Normality الجديد.pdf **ORIGINALITY REPORT** 16% | SIMILARITY INDEX | | | | |------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|--| | PRIMA | PRIMARY SOURCES | | | | 1 | www.hindawi.com Internet | 122 words -3% | | | 2 | KALANTAN, Lutfi and ALHOMIEYED Manal
ALHOMIEYED. "CC -normal topological spaces",
TÜBİTAK, 2017. | 108 words — 3 % | | | 3 | Samirah Alzahrani. "Almost α-regular spaces",
Journal of King Saud University - Science, 2022 | 106 words — 2% | | | 4 | Chodounsky, D "Internal normality and internal compactness", Topology and its Applications, 20080101 Crossref | 56 words — 1 % | | | 5 | Samirah Alzahrani. " Almost -regular spaces ",
Journal of King Saud University - Science, 2021
Crossref | 38 words — 1 % | | | 6 | Sadeq Ali Thabit, Ibtesam Alshammari, Wafa
Alqurashi. "Epi-quasi normality", Open Mathematics,
2021
Crossref | 35 words — 1 % | | | 7 | hdl.handle.net | 30 words — 1 % | | | 8 | www.tandfonline.com Internet | 28 words — | 1% | |----|--|------------------------|----| | 9 | diposit.ub.edu
Internet | 25 words — | 1% | | 10 | Lutfi Kalantan, Ibtesam Alshammari. "Epi-mild
normality", Open Mathematics, 2018
Crossref | 21 words — < | 1% | | 11 | Khulod Almontashery, Lutfi Kalantan. "Results
about the Alexandroff duplicate space", Applied
General Topology, 2016
Crossref | 13 words — < | 1% | | 12 | Lecture Notes in Mathematics, 1982. Crossref | 13 words — < | 1% | | 13 | Lecture Notes in Mathematics, 1993. Crossref | 13 words — < | 1% | | 14 | Sipacheva, Ol'ga. "Free Boolean Topological Groups", Axioms, 2015. Crossref | 13 words — < | 1% | | 15 | www.dadisp.com Internet | 13 words — < | 1% | | 16 | Blair, R.L "Spaces with an Oz Stone-ech compactification", Topology and its Applications, 199007 Crossref | 12 words — < | 1% | | 17 | Abbas Azhdari, Makoto Obata, Sia Nemat-Nasser | ·10 words — < | 1% | Abbas Azhdari, Makoto Obata, Sia Nemat-Nasser. 10 words — <1% "Alternative solution methods for crack problems in plane anisotropic elasticity, with examples", International Journal of Solids and Structures, 2000 - Li, Genglei, Yunxia Zhang, and Huidong Wu. "Some Properties of Relative Regularity and Compactness", Journal of Mathematics Research, 2009. Crossref - W. A. Coppel. "Elliptic Functions", Number Theory, 10 words < 1% EXCLUDE QUOTES ON EXCLUDE BIBLIOGRAPHY ON EXCLUDE MATCHES < 10 WORDS