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Some Topological Properties on C-a-Normality and C-f3-
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Abstract

A topological space (Y, 1) is called C-a-normal (C-f3-normal) if there exist a bijective
function g from Y onto a¢-normal( f-normal) space Z such that the restriction map
g, from B onto g(B) is a homeomorphism for any compact subspace B of Y. We

discuss some relationships between C-a-normal ( C-f-normal) and other properties.
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Introduction 0

1
In 2017 we discuss the topological property "C-normal” [2] . In this paper we
introduce a new property called C-a-Normality and C-B-Normality. We show any a-
normal ( f-normal) space is C-a-normal ( C-#-normal), but the converse is not true
in general. And we show that any C-normal, lower compact, epinormal, epi-a-
normal and epi-#-normal spaces is C-a-normal ( C-f-normal), and the converse is
true under some conditions . we prove any locally compact is C-a-normal ( C-3-
normal) but the converse is not true in general. Also observe that a witness function
of C-a-normal ( C-f-normal) not necessarily to be continuous in general, but it will
be continuous under some conditions.

1 C-a-Normality and C-f#-Normality E

1
Recall that a topological space (¥, 1) is called an a-normal space [11] if for every two
disjoint closed subsets F and E of Y there are two open subsets G and W of ¥ such
that F N G is densein F, E N W is dense in ffand G N W = @, and a topological
space (Y, 1) is called a B-normal space [11] if for every two disjoint closed subsets F
and E of Y there are two open subsets ¢ and W of Y such that F N G is dense in F,

ENW isdensein E,and G n W = @. Atopological space (Y, 1) is called C-normal
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(3]
[2] if there exist a bijective function g from Y onto a normal space Z such that the
restriction map g, from B onto g(B) is a homeomorphism for any compact

bspace B of Y.

Definition 1.1. A topological space (Y, 1) is called C-a-normal ( C-$-normal) if there
exist a bijective function g from Y onto a-normal( f-normal) space Z such that the
restriction map g, from B onto g(B) is a homeomorphism for any compact

subspace B of Y.

In these definition, we call the space Z a witness of C-a-normal ( C-f-normal) and
e function g a witness function.

A topological space (Y, 1) is called a-regular [13] if for any x € ¥ and a closed subset
A c Y such that ae A there are two disjoint open sets G, H € ¥ such that x € ¢ and

AN H = A. And topological space (¥, 1) is called almost a-regular [1] if for any
x € Y and a regular closed subset A € Y such that x € A there are two disjoint open

sets G, H c Y suchthatx e Gand AN H = A.
Lemma 1.2. Any regular space is a-regular.

Proof. Let (Efi¥) be aregular space. Picky € Y and F € Y be a closed set such that
y & F, then there exist two disjoint open sets W, and W, subsets of Y wherey € W,

and F € W,,hence F N W, = F (note that F = F since F is closed),and W, n W, =
@, therefore (Y, 1) is a-regular space. [

Lemma 1.3. [1] Any a-regular space is almost a-regular.

From Lemma 1.2. and Lemma 1.3. we conclude the following corollary
Corollary 1.4. Apy regular space is almost a-regular.

Lemma 1.5. Any normal space is @-normal.

Proof. LetY be a normal space. Pick two disjoint closed sets F; and F, subsets of Y.
Since }E normal, then there exist two disjoint open sets W, and W, subsets of Y

whereF; € W,,F, € W, and W, n W, = @. HenceF nw, =F antﬁlF’2 nw, =F,.
Therefore Y is @-normal space. [

Lemma 1.6. [11] Any normal space is f-normal.

Proof. The proofis the same as the proof of the previous lemma. It remains to prove
W, nW, =0.Since ; NW, =F, and F; NnW,; = F,, then

(FLnW)NF, NW,) =FiNF,

(B NWHNF,nW,) € F n W, nF, n W= (F, N F,)N(W; n W) = @. Hence
WinW,=9. O

So we have the following theorem




Theorem 1.7. Any C-normal space is C-a-normal (C-#-normal)
The converse is true u r some conditions, first we mention some definition

A Hausdorff space Y is extremally disg{Zhnected [8] if the closure of any open set in Y
is open. A topological space is called mildly normal [14] if any two disjoint regular
closed subsets can be separated.

Theorem 1.8. [11] Any a-normal extremally disconnected space is normal.

Proof. Let Y bfh a-normal extremally disconnected space . Pick two disjoint closed
sets F; and F, subsets of Y. e Y is a-normal, then there exist two disjoint open
sets W, and W, subsets of ¥ where F; N W, = F, and F, N W, = F,.Hence F;, € W,
and F, € W,. Since Y is extremally disconnected, Let W, = W, and W, = W,.
Therefore Y is normal space. [

From Theorem 1.8, we have the following.

Theorem 1.9. IfY is C-a-normal (C-B-normal) such that the witness of C-a-normal
(C-f-normal) is extremally disconnected , then Y is C-normal.

Eheorem 1.10. IfY is C-B-normal such that the witness of C-f-normal is mildly
normal, then Y is C-normal.

Proof. LetY be C-B-normal. Pien the codomain Z witness of C-f-normal is 8-
normal. Let F; and F, be any disjoint closed subsets of Z. Since Z is f-normal, there

exist open subsets W, and W, of Z where W, NW, = @, F, N W, = F, and

F, n W, = Fi8o W,, W, are disjoint regular closed subsets containing F; and F,
respectively. Since Z is mildly normal, there exist disjoint open subsets U, and U, of
Z where F;, €W, € U, and F, € W, € U,. Hence Z is normal. [

Lemma 1.11. Any a-normal space satisfying T; axiom is Hausdorff.

Proof. Let Y be anfiir-normal T;-space. Let y, z be any two distinct elements in Y.
Hence {y} and {z} are disjoint closed subsets of ¥, by a-normality, there exist two

disjoint open subsets G; and G, of Y where {y} N G, = {y} and {z} n G, = {z} which
implies y € G, and z € G,. Therefore Y is Hausdorff. [

Lemma 1.12. [11] Any f-normal space satisfying T; axiom is regular (hence
Hausdorff).

By Corollary 1.4. we have the following result.
Corollary 1.13. Any £-normal space satisfying T} axiom is almost a-regular.

Lemma 1.14. Any f-normal space satisfying T; axiom is a-regular.

Proof. Let (Y, ) be a f-norihl space satisfying T) axiom. Picky € Y and F C Y be a
closed set where vy € F, {y} is closed and disjoint from F [m’l by f-normality there

exist two open sets W, and W, subsets of ¥ such thaty € W, F n W, = F and




Wln Wg = @, thereforey e Wy, FN W, = Fand W; n W, = @.Hence (Y, 1) is a-
regular space. [J

Corollary 1.15. Any a-normal space satisfying T, axiom is a-regular.

By Lemma 1.3. we conclude the following corollary.

Corollary 1.16. Any a-normal space satisfying T; axiom is almost a-regular
Proposition 1.17.[12] Every first countable a-normal Hausdorff space is regular.
Theorem 1.18. Every submetrizable space is C-a-normal (C-£-normal).

Proof. Let (Y, 1) be a submetrizable space, the there exists a metrizable 7’ such that
7' € 7. Hence (Y, 1) is @-normal since it is normal, and the identity function idy
from (Y, 1) onto (Y, 7") is a one-to-one and continuous function. If we take B any
compact subspace of (¥, 7), then idy (B) is hausdorff, since it is subspace of (Y, 1),
and by [[8],3.1.13], idyIB is a homeomorphism. [

Example 1.19. The Rational Sequence Topology (R, RS) is submetrizable being
finer than (R ,U), so (R,RS) is C-a-normal (C-£-normal).

The converse of Theorem 1.18. is not true in general, for example w, + 1 is C-a-
normal (C-f-normal) which is not submetrizable.

Apparently, any a-normal ( f-normal) space is C-a-normal ( C-f-normal), to prove
this, just by considering Z = Y and g is the identity function.
While in general the converse is not true . Example of this.

Example 1.20.

1. The Half-Disc topological space [15] is C-a-normal( C-f-normal) because it is
submetrizable by Theorem 1.18. butit is not a-normal nor S-normal because it
is first countable and Hausdorff but not regular, so by Proposition 1.17. the
Half-Disc topological space is not a-normal space, hence not f-normal. in
general C-a-normality ( C-f-normality) do not imply a-normality (8-normality)
even with Hausdorff or first countable property.

2. The Deleted Tychonoff Plank [15], it is C-a-normal( C-S-normal) since it is
locally compact by Theorem 2.7. but it is not ¢-normal nor f-normal see [11].

3. The Dieudonné Plank [2], in example 1.10 we proved that itis C-normal, hence
itis C-a-normal( C-f-normal) by Theorem 1.9. but it is not @-normal nor -
normal see [11], also not locally compact, hence this example also shows that
the converse of Theorem 2.7. is not true.

4. The Sorgenfrey line square § X § see [15] is not normal, but it is submetrizable
space being it is finer than the usual topology on R X R, so by Theorem 1.18. it
is C-a-normal (C-f-normal).




Theorem 1.21. IfY is a compact non-a-normal(non-f-normal) space, then ¥ can
not be C-a-normal (C-#-normal).

Proof. Assume Y is a compact non-a-normal(non-#-nd@nal) space. Suppose Y is C-
a-normal (C-f-normal), then there exists a-normal(f-normal) space Z and a
bijective function g:Y — Z where the restriction map g, from B onto g(B) isa
homeomorphism for any compact subspace K of Y. As Y is compact, then Y = Z, and
we have a contradiction as Z is a-normal(ff-normal) while ¥ is not. Hence Y can not
be C-a-normal (C-f-normal). U

Observe that a function g: ¥ — Z witnessing of C-¢-normal (C-f-normal) of ¥ not
necessarily to be continuous in general, and here is an example.

Example 1.22. Let R with the countable complement topology CC [15]. We know
(R, CC) is Ty and the only compact sets are finite, hence the compact subspaces are
discrete. If we let D be the discrete topology on R, then obviously the identity
function from (R, €C) onto (R, D) is a witnessing of the C-a-normality (C-S-
normality) which is not continuous.

But it will be continuous under some conditions as the following theorems

Theorem 1.23. If (Y, 1) is a C-a-normal (C-S-normal) and Fréchet space, then any
function witnessing of C-a-normality (C-£-normality) is continuous.

Proof. LetY be a Fréchet C-a-normal (C-f-normal) space and g:Y — Z be a witness
of the C-a-normality (C-f- nor@llty] of Y.Let A € Y and pickz € g(A) Thereisa
unique y € Y where g(y) = z,thusy € A. since Y is Fréchet, then there exists a

sequence (a,) € A where a, — Y. As the subspace K = {y} U {a,: n € N} offf}is
compact, the induced map g, : K — g(K) is a homeomorphism. Let U € Z be any

open neighborhood of z. Then U N g(K) is an open neighborhood of z in the

subspace g(K). Since g, is a homeomorphism, then g™ (U n g(K)) = g *(U) N K is
K

an open neighborhood of y in K, then there exists m € N where a, € g~ (U n g(K))

vn = m, hence g(a,) € (UN g(K)) Vvn=m,thenU N g(A) # @. Hence z € g(A)

and g(A) € g(A). Thus g is continuous. O

Since any first countable space is Fréchet, we conclude that, In C-a-normality (C-p-
normality) first countable space a function g: Y — Z is a witness of the C-a-normality
(C-B-normality) of Y is continuous. Also, by theorem [[8],3.3.21], we conclude the
following.

Corollary 1.24. IfY is a C-a-normal (C-f-normal) k-space and g is a witness
function of the C-a-normality (C-B-normality), then g is continuous.

For simplicity, let us call a T, space which satisfies that the only compact subspaces
are the finite subsets F-compact. Clearly F-compactness is a topological property.




Theorem 1.25. IfY is F-compgct , then Y is C-a-normal (C-f-normal).

Proof. LetY be a F-compact . Let Z =Y and let Z with the discrete topology. Hence
the identity function from Y onto Z does the job. [

Example 1.26. Consider (R,CClwhere CC is the countable complement topology
[15]. We know (IR, CC) is T, and the only compact sets are finite, Therefore, by
Theorem 1.25. (R,CC) is C-a-normal (C-S-normal). This is a fourth example of C-

a-normal (C-pB-normal) but not a¢-normal ( nor f-normal).

Not that any topology finer than a T; topological space is T;. Also any compact
subset of a topological space (Y, 1) is compact in any topology coarser thant onY.

Hence any topology finer than F-compact topological space is also F-compact. As an
example, (R, T) denotes the Fortissimo topological on R, see [15, Example 25]. We
know that (R, t) is finer than (R, CC) whichis F-compact, hence (R, 1) F-compact
too. Thus, (R, 1) is C-a-normal (C-f-normal).

Theorem 1.27. C-a-normality (C-f-normality) is a topological property.
Proof. LetY be a C-a-normal (C-f-normal) space and let ¥ = W. Let Z be a ¢-normal

(8-normal) space and let g: Y — Z be a bijective function where the restriction map
9|z from B onto g(B) is a homeomorphism for any compact subspace B € Y. Let

k:W — Y be ahomeomorphism. Hence Z and g o k: W — Z satisfy the requirements.
|

2 C-a-NorniaIity ( C-B-Normality) and Some Other Properties
5

Definition 2.1. A topological space (Y, 1) is called C-a-regular if there exist a
bijective function g from ¥ onto a-regular space Z such that the restriction map g,

from B onto g(B) is a homeomorphism for any compact subspace B of Y.

Corollary 2.2. IfY is C-a-normal (C-f-normal) space and the witness of the C-a-
normal (C-f#-normal) of Y is T}, thenY is C-a-regular.

We prove this corollary by lemma 1.11, Lemma 1.12

Corollary 2.3. IfY is C-B-normal space and the codomain witness of the C-£-
normal of ¥ is T}, then Y is C-regular.

We prove this corollary by lemma 1.12.




Corollary 2.4. If Yisa C-a-normal (C-B-normal) Fréchet space and the witness of
the C-a-normality (C-f-normality) is Ty, then Y isT,.

Proof. LetY isaC-a-normal (C-B-normal) Fréchet space, then there exist a-normal
( B-normal) space Z (witness of the C-a-normality (C-B-normality) ) and a bijective
function g:Y — Z such that the restriction map g, from B onto g(B)isa
homeomorphism for any confjldct subspace B of Y, then by Theorem 1.23. g is
continuous. Let any a,b € Y suchthat a # b, then g(a) # g(b), g(a),g(b) € Z.
Since Z is a-normal ( f-normal) and T}, then by Lemma 1.11 (Lemma 1.12 ) the
space Z is T, , then there exist W, and W, are open sets in Z where g(a) € W, ,
gb) e W, and W, n W, = @. Since W,,W, are opmsets inZ and g is continuous,
then g™ (a) and g~ (b) are opensetsin Y, a € g~'(W,,, b € g~ (W) and
grwHng*W,) =g 'W,nW,)= @.HenceYis T,.

Theorem 2.5. Any C-regular Fréchet Lindelofspace js C-a-normal (C-£-normal).

Proof. LetY be any C-regular Fréchet Lindelof space. Let Z be a regular space and
g:Y — Z be a continuous bijective function see Theorem 1.23. By [[8],3.8.7] Z is
Lindelof. Since any regular Lindelof space is normal [[8], 3.8.2]. Hence Y is C-a-
normal (C-fB-normal). U

C-a-normality (C-f-normality) does not imply C-a-regularity nor C-regular, for
example.

Example 2.6. Consider the real numbers set R with its right ray topology R, where
R ={0, R} U {(b,): b € R}. As any two non-empty closed sets must be intersect in
(R, R), then it is normal, and by Lemma in above, it is a¢-normal (f-normal), hence
C-a-normal (C-B-normal). Now, suppose that (R, R) is C-a-regular. Take a-regular
space Z and a bijective function g from R onto Z where the restriction map g, from
B onto g(B) is a homeomorphism for any compact subspace B of R. We know thata
subspace B of (R, R) is compact if and only if B has a minimal element. Hence [1, c0)
is compact, then Il1e0y’ [1,00) = g([1,00)) c Zis a homeomorphism, it means [1, o)
as a subspace of (R, R) is a-regular which is a contradiction, since [1,4] is closed in
subspace [1,c0) and 4.5 € [1,4], but any non-empty open sets on [1, ®) must
intersect. Then (R, R) cannot be C-a-regular (C-regular).

Recall that a topological space (Y, 1@5 called Locally Compact [2] if (Y, 1) is
Hausdorff and for every y € Y and every open neighborhood V of y there exists an

open neighborhood U of ysuch thaty e U © UcVandUis compact.

Theorem 2.7. Every locally compact space is C-a-normal (C-#-normal).




Proof. LetY be locally compact space. By [[8], 3.3.D], there exists T, compact space
Z and hence a-normal (£-normal), and a continuous bijective function g: ¥ — Z. We
have g, from K onto g(K) is a homeomorphism for any compact subspace K of Y,
because continuity,1-1 and onto are inherited by g, also g, is closed since K is

compact and g(K) is T,. U

Example 2.8. Consider w,, the first uncountable ordinar, we consider w, as an
open subspace of its successor (w; + 1), which is compact and hence is locally
compact [ 15, Example 43]. Thus, w, is locally compact as an open subspace of a
locally compact space, see [[8],3.3.8]. Then by Theorem 2.7. w, is C-a-normal (C-£-
normal).

The converse of Theorem 2.7. is not true in general. We introduce the following
example of C-a-normal (C-f-normal) which is not locally compact.

Example 2.9. Let the quotient space R/N. Let Z = (R\N) U {i}, wherei = v—1
Define g: R — Z as follows:

a for a€R\N
g(a)={i for a€N

Now consider R with the usual topology U. Define the topologyr ={V € Z:

g '(V) eU}onZ. Then g:(R,U) — (Z,7) is a closed quotient mapping. We explain
the open neighborhoods of any element in Z as follows: The open neighborhoods of
each a € R\N are (a — ¢,a + €)\N where ¢ is a natural number. The open
neighborhoods of i € Z are (G\N) U {i}, where G isan open setin (R, U) such that
N C (. Itis clear that (Z, 1) is T3, but it is not locally compact. (Z, ) is a continuous
image of R with its usual topology, so it is Lindelof and T;, then (Z, 1) is T,. Hence it
'ﬁC—rx—normal (C-B-normal).

A topological space (Y, 1) is called Epi—a—nrmal [3]if there is a coarse topology 7’
on Y such that (V,7") is a-normal and T;. A topological space (Y, 7) is called Epi-S-
normal [3] ifthere is a coarse topology ' on Y such that (Y, ') is f-normal and T;.
By the same argument of Theorem 1.18. we can prove the following corollary.

Corollary 2.10. Every epinormal space is C-¢-normal (C-S-normal).

Corollary 2.11. Every epi-a-normal (epi-f-normal )space is C-a-normal(C-3-
rmal).

Any indiscrete space which has more than one point is an example of a C-a¢-normal
(C-f-normal) space which is not epi-a-normal (epi-f-normal).

The converse of Corollary 2.9 is true with Fréchet property.

Theorem 2.12. Any C-a-normal (C-f-normal) Fréchet space is epi-a-normal (epi-
[B-normal).




Proof. Let (Y, 1) be any C-a-normal (C-f-normal) Fréchet space. Let (Z,7") be a-
normal (B-normal) and g: (Y, 1) = (Z,7") be a bijective function. Since Y is Fréchet,
g is continuous (see Theorem 1.23). Define * = {g~*(V):V € t'}. Obviously, t* is a
topology on Y coarser than 7 such that g: (Y,7*) — (Z,7") is continuous. Also g is
open, since if we take U € t* ,then U = g~ (V) where V € 7". Thus g(U) =
g(g~*(V)) = V which gives that g is open. Therefore g is homeomorphism. Thus
,T") is a-normal (f-normal). Hence (Y, T) is epi-a-normal (epi-fB-normal). O

A topological space (Y, 1) is called lower compact [9] if there exists a coarser
topology t’ on Y such that (¥, ") is T,-compact.

Theorem 2.13. Any lower compact space is C-a-normal (C-£-normal).

Proof. Let (Y, 1) is lower compact, then (¥, t") is Ty-compact, hence normal and the
identity function idy: (Y,7) = (Y, 1") is a continuous and bijective. If we take B any
compact subspace of (¥, t), then idylg is a homeomorphism by [[8],3.1.13].

In general, the converse of Theorem 2.13. is not true, for example consider a
countable complement topology on an uncountable set, it is C-a-normal (C- -
normal) since it is F-compact , but it is not lower compact because it is not T,.

Theorem 2.14. If (¥, 1) is C-a-normal compact Fréchet space and the witness of
the C—calormah'ty is T,, then (Y,7) islower compact.

Proof. Pick a-normal sp&fl§ (Z t*) and a bijective function g: (Y, 7) - (Z,7") such
that g,: B — g(B)is a homeomorphism for any compact subspace B < Y. Since Y
is Fréchet, then g is continuous. Hence (Z,t*) is compact.Since (Z,t%)is T; a-
normal space, then by Lemma 1.11. it is Hausdorff. Hence (Z,t*) is T, compact.
Define a topology t' on Y asfollows v = {g™*(V) : V € t* }. Then 1’ is coarser
than Tand g:(Y,7') = (Z,1") is a bijection continuous function. Letany U € 7',
then U is of the form g~*(V) for some V € t*.Hence g(U) = g(g *(V))=V.
Thus g is open. Hence g is a homeomorphism. So (Y, t") is T, compact. Therefore
(Y,1) islower compact.

Theorem 2.15. If (Y, 1) is C-f-normal compact Fréchet space and the witness of
the C-f-normality is 6 ,then (Y, 1) islower compact.

Acknowledgments: This research received funding from Taif University
Researchers Supporting Project number (TURSP-2020/207), Taif University, Taif,
Saudi Arabia.

Conflict of interest: The author declare that she has no conflicts of interest to
report regarding the present study.




References

(1]

(2]

(4]

(5]

(6]

Alzahrani S., 2022. Almost a-regular spaces, Journal of King Saud
University-Science. 34(1) .

AlZahrani S., Kalanatan L., 2017. C-Normal Topological Property, Filomat.
31(2),407-411.

Gheith N., AlZahrani S, 2021. Epi-a-Normality and Epi-$-Normality, Journal
of Mathematics. 3, 1-7.

AlZahrani S. Kalanatan L., 2016. Epinormality, ]. Nonlinear Sci. Appl. 9,
5398-5402.

AlZahrani S., 2018. C-Regular Topological Spaces, |. Mathemat. Ana. 9(3),
141-149.

Arhangel’skii A. D, 1996. Relative Topological Properties and Relative
Topological Spaces, Topology and its Applications. 70, 87-99.

Berri M. P, 1963. Minimal topological spaces, Trans. Amer. Math. Soc. 108,
97-105.

Engelking R., 1977. General Topology, PWN, Warszawa.

Kalantan L. Saeed M. M. Alzumi H. , 2019. (C-Paracompactness and
C:Paracompactness, Turk. ]. Math.43(1), 9-20.

[10] Ludwig L. Burke D.,Hereditarily, 2000. a-Normal Spaces and Infinte

Products, Topology Proceeding. 25, 291-299.

[11] Arhangel’skii, A., Ludwig L. D., 2001. On a-Normal and f-Normal Spaces,

Comment. Math. Univ. Carolinae. 42(3),507-519.

[12] Murtinov'a, E.,, 2002. A f-Normal Tychonoff Space Which is Not Normal,

Comment. Math. Univ. Carolinae. 43(1),159-164.

[13] Murtinov’a, E., 2001. On a-Regularity, Topology Proceeding.

[14]S"c’epin E.V., 1972. Real functions and spaces that are nearly normal,

siberian Math. ]. 13, 820-829.

[15] Steen L.,Seebach |. A,, 1995. Countrexample in Topology. Dover Publications,

INC, New York.




C-alpha-Normality ssa=Jl.pdf

ORIGINALITY REPORT

1 6%

SIMILARITY INDEX

PRIMARY SOURCES

WwWw. hindawi.com

Internet

KALANTAN, Lutfi and ALHOMIEYED Manal
ALHOMIEYED. "CC -normal topological spaces"”,
TUBITAK, 2017.

Publications

Samirah Alzahrani. "Almost a-regular spaces”,
Journal of King Saud University - Science, 2022

Crossref

Chodounsky, D.. "Internal normality and internal
compactness", Topology and its Applications,
20080101

Crossref

Samirah Alzahrani. " Almost -regular spaces ",
Journal of King Saud University - Science, 2021

Crossref

Sadeq Ali Thabit, Ibtesam Alshammari, Wafa

122 words — 3%

108 words — 3%

106 words — 2%

56 words — 1 %

38 words — 1 %

35 words — 1 %

Alqurashi. "Epi-quasi normality", Open Mathematics,

2021

Crossref

hdl.handle.net

Internet

30 words — 1 %



—_— —_
—_— O

—_ —_ —_
RN w N

— —
(@) U

. 0
www.tandfonline.com 28 words — 1 /0

Internet

N 0
diposit.ub.edu 25 words — 1 /O

Internet

. CONE A 0
Lutfi Ka.IaTtan, Ibtesam Alshgmmarl. Epi-mild 21 words — < 1 /0
normality"”, Open Mathematics, 2018

Crossref

H n 0
Khulod Almontashery, Lutfl. Kalantan. "Result.s 13 words — < 1 /0
about the Alexandroff duplicate space", Applied
General Topology, 2016

Crossref

. : 0
Ic_rcjscs;tetfjre Notes in Mathematics, 1982. 13 words — < '] /0
. : 0
Ic_rfscsrtetfjre Notes in Mathematics, 1993. 13 words — < '] /0
. r n 1 0
Sipacheva, Ol'ga. "Free Boolean Topological 13 words — < ’] /0

Groups", Axioms, 2015.

Crossref

' 0
I\r/w\g/r\{w\é\t/.dad|sp.com 13words — < )0
H ] 1 _ 0
Blair, R.L.. "Spaces with an Oz Stone-ech 12 words — < ] )0
compactification", Topology and its Applications,
199007

Crossref

Abbas Azhdari, Makoto Obata, Sia Nemat-Nasser. < 1 %
n : : 10 words —
Alternative solution methods for crack problems

in plane anisotropic elasticity, with examples", International

Journal of Solids and Structures, 2000



Crossref

'|'_I, Genglei, Yurwa Zhang, ‘and HU|dor1g Wu. 10 words — < 1 /0
Some Properties of Relative Regularity and

Compactness", Journal of Mathematics Research, 2009.

Crossref

n H H H " 0
\2/\80,2. Coppel. "Elliptic Functions", Number Theory,10 words — < ’] /0

Crossref

ON <10 WORDS
ON



