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?NEW INTEGRAL VERSION OF GENERALIZED
OSTROWSKI-GRUSS TYPE INEQUALITY WITH
APPLICATIONS

SEVER S. DRAGOMIR!, ASIF R. KHAN?Z, MARIA KHANZ? FARAZ MEHMOOD?,
AND MUHAMMAD AWAIS SHAIKH?

ABS‘n\L."l'. Our aim is to improve and [urther generalize the result of inte-
gral Ostrowski—Griiss type inequalities involving differentiable functions and
then apply these obtained inequalities to probability theory, special means and
numerical integration.

1. Introduction

In [12], Ostrowski presented an inequality which is now known as “Ostrowski’s
inequality” stated below:

L ‘/qf)d'r
n—m/jy,

where ¢ : [m,n] — R is a differentiable function such that |¢'(z)| < M, for every
z € [m,n]. 26

In present era, a large mumber of papers has been written abont generalizations
of Ostrow@ inequality see for example [1, 3, 4, 6, 7, 8, 10, 13, 15]. Ostrowski’s
inequality has proven to be an important tool for improvement of various branches
of mathematical sciences. Very well said [14] “Inequalities involving integrals that
create hounds in the physical quantities are of great significance in the sense that
these kinds of inequalities are not only used in approximation theory, operator
theory, nonlinear analysis, nmmerical integration, stochastic analysis, information
theory, statistics and probability theory but we may also see their uses in the varions
fields of biological sciences, engineering and physics”.

In the history, an important inequality that “estimate for the difference between
the product of the integral of two ﬁlqbnals and the integral of their product”
is known as “Griiss inequality”. This celebrated integral inequality was proved by
Gri[."’;] in 1935, is stated below (see also [11, p. 296]),

[ _lm_[:q%(z) dz — (ﬁ[:qﬂ dz) (n _1 m[:n(z) dz)

< i(ﬂ-fl —my)(N; — ) (L.2)

<

_ mitny:
C(z) — [1 (z —=5=)°

7+ W} (m—m)M, =z¢€ [m,ﬂ] (1.1)
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2 DRAGOMIR, KHAN, KHAN, FARAZ, AND SHAIKH

provided that ¢ and n are integrable functions on [m,n] such that

m1 < ((z) < My, m <n(z) < Ny,
Yz € [m,n|, where my, My, n;, Ny are real constants.

By using Griiss inequality, Dragomir and Wang proved an inequality, in the year
1997, which we would refer as “Ostrowski— Griiss inequality” [4] which is stated as
follows:

Proposition 1.1. Suppose ¢ : I — R be a function differentiable in the interior I?
of I, where I CR, and let m,n € I° and n > m. Ifyv < ('(z) <T,z € [m,n]| for
cal constants v, 1, the
real cons fmle Y, / en
C(z)_ (T)dT_C(n)_C(m) (z_m—'—n)
n—m n—m

holds, ¥ z € [m,n].

(n=m)(' =) (1.3)

m

Above inequality gives a relationship between Ostrowski inequality (1.1) and
Griiss inequality (1.2).
If{and g b to La[m,n], then the CebySev functional T(¢, ) is defined as

1 = = [ et - (2= [ ewis) (= [ ateras).

From [9] pre-Griiss inequality is giyem below.

Proposition 1.2. Let ,n: [m,n] = R be integrable such that (y € L(m,n). If
y<nz) < for z€[m,n],
then )
IT(C )l < 5T =VT Q).
In the article [8] of year 2000, Mati¢, Pecarié¢ and Ujevi¢ improved inequality
(1.1), by using pre—Griiss ineqa.lity, which is as follows:

Proposition 1.3. Suppose ¢ : I — R be a function differentiable in the interior I
of I, where I C R, and let man € I° andn > m. If v < ('(z) < T,z € [m,n| for

real constants v, 1", then (27]
’ 27

() - = "c(r)dT_C(”i—C(m) (2_m+n)

n—m/,, —m 2

<L(n_

m)(I' =)

holds, ¥ z € [m,n).

In the article [2], Barnett et al., by using Cebysev functional, improved the
Matié-Pecarié-Ujevié result (1.3) in terms of “Euclidean norm” as under:

Proposition 1.4. Let flction ¢ : [m,n] — R be an absolutely continuous and
derivative (' € Lo[m,n]. Ify < ('(7) < T almost everywhere for T € [m,n], then ¥

(&) —

z € [m,n]
1 ‘/“:‘C(T)dr_qni:ij%(z_m;-n)

vl

“‘mﬁé—m%—(@ﬂi£%Y]

23 —m

(n—m)(l'—~) (1.4)

1
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NEW GENERALIZATION OF INTEGRAL OSTROWSKI-GRUSS TYPE INEQUALITY 3

holds.

This article is divided into six sections: the 1lst section totally based on intro-
etction and preliminaries. In the 2nd section, we would give our main result about
generalization of integral Ostrowski—Griiss type inequalities and would discuss its
different special cases. In the 3rd, 4th and 5th sections, using the obtained result
we would give some applications to probability theory, special means and mmerical
integration respectively and the 6th concludes the article.

2. _New Generalization of Integral Ostrowski—Griiss Inequality

Our main theorem of this seciges is given in the following:

Theorem 2.1. Let @ [m,n] — R be a differentiable function whose 1st derivative
belongs to Lo(m,n). Ify < ¢'(r) < T almost everywhere for 7 € [m,n], thenV z €

[m—/\%,%wd xe (0.
(1 B +n—2) o) +cBB 11 g
2 2 n—m/,,

|i(1r1—m)2 9 m+n\?
< [P gy —3/\—1)—(2— . (1-))

12

—_

N
baj
I

1 ) (n—m)? _ ., m+4n
SE(I—;)|i 12 (3A —3/\—1)—(2— 2 )(1—
(n—m)(1—A)? m+mnl\|2
5 (z— 5 )} (2.1)

holds.

Proof. We begin the proot of this theorem by defining the piece—wise continuons
function K : [m,n]? — R for A € [0,1] as:

(n—m) 16

T—m—A 5 if 7€ [m,z],
44
K(z,7: M) = T_m;—n if !E(z,m+n—z],
(n—m) .
T—n+ A 2 if re(m+n—z,n,
by Korkine's identity
1 n n
1(¢.9) = 5oy [ [ (€(1) = <) a(r) sl (2.2
(n—m)
m m
we obtain
4 nK'/\ "(1)d ! nK s A)dt n’d
n—m‘/m (Z,T_. )C(T)T_m_/,;a (err ) ﬂaC(T)T

1 n n
= m[ / (K(z, 7 A) = K(2,8A)(¢"(7) — ('(s))drds.  (2.3)
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Since @
1 ‘/“I\,(Z.T./\)CF(T)O{T — (1 _/\)C(Z +C(m—n—z) L/\C(m)_c(n)
n—mJ, 2 2

! /“C(Tjdr
n—mJ,

/ K(z,7:N)dt = 0,
then by (@) we get the following identity

C(Z)—C(m—n—z’) ¢(m) + ¢
(1-X) +A 5 —n_mfc

= o m / / K(z,7;\) — K(z,s; /\))(C( )= (s))drds, (2.4)

Vze [m—/\%,%] A e 0,1].
By applying Canchy—Schwartz inequality for double integrals, we can write

(2,73 0) — K (2,8 0))(C' (1) — ¢'(s))drds

m

(n—m
< ( f / (z, 73 A) K(z_..s';/\))anf'raf.s')i
(n—
( ] f 5)) drde)_. (2.5)
n_ m Jm
H.OW’F

n—m f/ (2,7 N) — K (2,5 0)) drds

(2 1 B |\
_ -2 =
_7(n.—m)/m K= (z, 7 \)dt (n—m mh( A)dr)

- _1 — {% ((z o /\n;m):” ) (z B m;n):”) N /\:’*(n1; m)i’»] (26)

Consider above terms in the following and simplifying:

3 3
n—m m+n
(z—m A 5 ) —(z— 5 )

_(n—m)"’ , 3 m+n\’
==X —5(2— 5 ) (n—m)(1—A)
(n—m)*(1 =) (z—m;”) (2.7)
and
2
/ / o)) 2drds = (M) (28)
(n— (n n—m
Using (2 4), ), (2.7) a.nd (2.8), we get the 1st mequa.hty of (2.1). Since v <

J(r)<Tr '11m05t ewerywhere for v € [m,n], by applying Griiss inequality (1.2) we
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get 9]
1 n 1 n 2 1
o< ——[Wora- (= [¢@ar) <je-02 @9
n—mJf, n—mJf,, 4

which completes the proof of last inequality of (2.1). |

Following remark (Remark 1 of [2]) is_also valid for our main result.

Remark: 2.2. Since Loc[m,n| C La[m,n] (and the inclusion is strict), then we remark
that the inequality (2.1) can be applied also for the mappings ( whose derivatives
are unbounded on (m,n), but ¢’ € Ly[m,n).

Remark 2.3. Since 3A =3\ +1 <1, ¥ A € [0,1] and this is minimum when A = %
Therefore, (2.1) captures various special cases of main result which is obtained by
authors of article [2] as can be seen in remark given below.

Remark 2.4. We can get different special cases of (2.1) by using several values of
A by fixing z = 242 Under the assumptions of Theorem 2.1 following results
(special cases) are valid:

Special Case I: For A =1 (2.1) gives trapezoid inequality

¢(m) +¢(n) Lo
2 - m‘/m C(r)dr

bl

< o= [ = mICIE = (<) = )]
< 1
=03
which is Remark 3.2 (i) of [14].
Special Case II: For A =0 (2.1) gives micmoint ineqality

m+n 1 "
("2") - a2 oo

[ = m)lIC'1 = () = < m))?]

(]_q — ‘f)(ﬂ. — m)_,

bl

<

1
2v/3
1

— (' —v)(n —m).
which is Corollary 1 of [2] and Remark 3.2 (ii) of [14].
Special Case III: For A = } (2.1) gives averaged mid—point and trapezoid

inequality

C(m) +2¢ (?) +Cm)
k! - m‘/m C(r)dr
1 . 2]2
< 175 [ = mICIE = () = ¢m)’]
! 0 - —
= 8—\/5(1 — f)(ﬂ. m).
which is Remark 3.2 (izi) of [14].
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Special Case IV: For A = 5,} (2.1) gives a variant of Simpson’s inequality for
differentiable function ¢

S (m_n) +((n) 1 n
B f Clr)dr
0 n—1m/my
1 . 3
< = [ =mlI¢'I3 — (¢m) - ¢em))?]
1
<z C=Nm—m)
which is Remark 3.2 (iv) of [14].

3. Application to Probability Theory

Suppose r: m variable ‘Z" be continuous with PDF ¢ : [m,n| — Ry and CDF
@ : [m,n| — |0,1] is defined as

n—m m—nil

@(z):‘/mq'r)d'r, ze[m—)\ 7 3

and
B2 = [ B,
is expectation of random variable ‘Z’ on [m, n). ﬂen we have following result:

Theorem 3.1. Let the suppositions of Theorem 2.1 be valid and if PDF ( €
Ly[m,n], then

a.
U_Mmﬂ—Qm—n—ﬂ_i_n—waa
n—m

where h < ®'(7) < H, ¥ 7 € [m,n].

Proof. Put { = @ in (2.1) we obtain (3.1), by applying the identity

/“@(T)d'r =n—FE(Z) where ®(m)=0, &(n)=1.

m
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gorollary 3.2. Under the assumptions as stated in Theorem 3.1, if we put z =

%}'“, then
’(1_/\)@(1?}12—?1) A n-E(Z)

2 n—m

1 . L .
< — (32 =32+ D)E [(n—m)||®]2 -1
_2\/5( It @13 — 1]

(n—m)

43

1
z

(3M\2 =3\ +1)2(H — h)

I/

hold for h < ®'(r) < H Y7 € [m,n].
Remark: 3.3. The Corollary 3.2 is in fact Corollary 3.1 of [14].

4. Application to Special Means

Before we proceed further we need here some definitions of special means.
Special Means: These means can be found in [14].
(a) Arithmetic Mean

m,n = (.

(b) Geometric Mean
G =G(m,n) =+vmn; m,n>0.

(¢) Harmonic Mean

(d) Logarithmic Mean
m, if —n
L:L(m,n):{ n—m . E—n‘ m,n > 0.

(e) [dernlr.' Mean

m it m=n
1
i=i{men) = In 7(F) , if m#n; s > 0.
e
(f) p—Logarithmic Mean
m, if m=n
Ly =Ly(m,n) = 41 SIS .
—_— ] if m#n,
(p+1)(n —m)

where p € R\{—1,0},m,n > 0. It is known that “L, is monotonically increasing
over pe B”, “Ly =1" and “L_, = L".
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Erample 4.1. Consider ((z) = 2P, p € R\{—1,0},then for n > m

f(('r)d'r = Lﬁ(m,n),
m 5

n—im
Cln) — ¢(m) -1
T s pLy, "1 (m.n),
¢lm) +((n) = A(mP,nP)
2 B
m —n _
— =
1 T,
and ——||Cl} = JRSGRE
n —im n —1m m
2. 2{p—1
= szug:—li]-‘

where z € [m + AZ5%, ”‘zﬁ]

Therefore, (2.1) becomes

P 41— 2 )P
(1— )\)w + M(mP P — Lh] <
1
. n—m)(l—\)? z
|p|[ (3N = 3A+ 1) + (- 4)(1 - )+ LI (7—A)}
2(p—1 2(p—-1)]2
X [%—15 - L5 (4.1)

Choose z = A in (4.1), get

[(1 = X)AP + AA(mP, n?) — LE|

< || =—= \/§

which is minimum for A = % Moreover for A =1

|x‘1(m“,n” L”} < [ L= p2ip—1) 2

2(p—1) (p=1)

Erample 4.2. Consider ¢(z) = l, z # 0, then
2

n

2 3 [120-1)
(3N = 3x+ 1)} [0 -

1
2(p-1)] 2

(p—1)

n—1m ,;;C(T)dr = L_l(m_,n),
Cogy—<¢lm) 1
n—m - 72
((m)+¢(n) A
" = &
1 Mg, . m+mn+n®
" —[erpa - T
Yz () =CmN?  (n=m)? _ (n—m)?
and —— [C ()| dE (7]&_”1 ) = 354 =38

m

where z € [m + A2, IR © (0, 00).
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Therefore, (2.1) becomes

D .

[(1=N) /1 1
2 z (mim—2) G2 L)
Yy
< [(”1727“)(3)\2 —3A+ 1)+ (2 — A)2(1— )
(n—m)(1— A)2 T (n—m)
+ z—A
9 ( ) V363
If we choose z = A in (4.2), we get
| 1 A 1 (n—m)? ., 1
(=X 7+ A5 — 7| € T (32 —3A + 1),
For A=1
| A 1] (n—m)?
| - =€
G2 L~ 6G3
Ezample 4.3. Consider ((z) =Inz = éﬁ, then
C(r)dr = lIn(f(m,n))
n—m/jy,
) —¢m) _ T
n—m - W
C(m) +¢(n) — G,
9 2
n|C*('r)|2df - L and
a n—m/jy, B G* ‘
1 ("W, ¢n) —¢m) \? L - G*
n—m[m IG5t — ( n—m T LAGe
where z € [m + A2, IR © (0, 00).
Therefore, (2.1) becomes
| [Gntn—2)"= )|
| 1 |
, — m)? . .  —m) (1 — \)2
: [%(3/\2—3/\—1J—(2—AH1—/\J—(” MU=V, )
(L* - G*)%
TG
For 2 = A
| A{l_’\’](;’\)- (n—m) . . gy 1
1 | < 3 —3A+ (L -GH)E.
,n( )| = 53 I )
For A=1
| ;r' | (n—m) 2 w2y L
'1 — 1 L T 2.
-n(f)-—zﬁLG( )

i
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5. Application to Numerical Integration

To get the r'ompomto quadrature rules, we have to let I; : m = 2y < 7 <
< zj_1 < z; = n be the partision of the interval [m,n], h = Zjt1 — %, AE
[O_. 1], z; + )\—l << —Jﬂlﬂ j€10,...,i — 1}, then the follorwing results hold:

Theorem 5.1. If'ﬂé ¢'(r) < T almost everywhere for T € [z; + )\}.‘7"',2_3,-4.1] (j €
{0,...,i=1}), then Under the assumptions of Theorem 2.1 the following quadrature
formula holds

f Crir = Qs Liym A) + R(GC Ly, ), (5.1)

where
‘LA
Q(CC 7 A)
_Zh [ (1—A T?;)—C(Zj;‘ Zj+1 — 1j) _)\C(zj)_QC(zj+l):| (5.2)

4=0
and remainder R satisfies the estimate

i—1

2 2
LISHAPIEDY {%{3/\2 —3A 1)+ (m - %) (1=

=0

!.}1_)\2 .j_.j % e '_é
LA (m - 2B [0 - (GCarn) — 6]

1 h zZi+ 2z 2
<5 an {—; ?/\2—3/\—1)—@—% (1-X)
4=0
1
hi(l—MA)? zi+ 2 z _
3+ J( 5 (m I 5 Jt1 ):I ) (e‘1.3)

Proof. By using inequalities (2.4), (2.5) and (2.9) on z; + )\%" <n < zﬁ'% and
summing over j from 0 to ¢ — 1, then we get required result. O

By putting several values of A and by fixing 1; = fJijJﬂ under the assumptions
of Theorem 5.1 following results (special cases) are valid.
Special Case I: Put A = 1 in (5.2) and (5.3), we have

2+ 2 1
Q(c,ct:j,%,l) = 32 hiC() + C(z4)

and

R (Crc;r-{jr Zj _22j+l ] 1)

-1
Z [1al1618 = (€ar0) = <)) < o )

4=0

b

S
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Special Case II: Put A =0 in (5.2) and (5.3), we have

i—1
Q(cc I, f“) > hic(2 f“

=0

and

vy AT A
R (CsC r‘{jr#) '

Zh W — (CCeyn) — €] < o) T2
W3

J’U =0

Special Case III: Put A =

% n (5.2) and (5.3), we have

1 1

I, 7&1._ _ =

Q(C ¢ 1y, 2 2) .

i—1

h, (C( )+ 20T —mm)
(1]

and

vi+ 1
R (C:C’st Zj 27.f+]. , 5)

Zh (18 = (CCea) — )] < I—rZh-

,l[} 4=0

Special Case IV: Put A = 1 in (5.2) and (5.3), we have

itz 1) 1%
Q(C:C’Jw%sg) = EZ"IJ (C( 4C(7f+l) —C(Zj+1))

and

R (cc*g%’m%)

a i—1
<< Zh (31613 = (¢(z540) C(zm”]zs%u*—ﬂzhf-

3 0 =0

6. Conclusion

Using three step kernel, we have obtained new generalized Ostrowski—Griiss
type inequalities (2.1) which is a variant of (1.4) which was obtained in article [2].
By fixing z = Lj“ and by choosing different values of parameter A we captured
many results stated in [2] and [14]. Furthermore, we also got different important
results as our main results’ special cases including trapezoidal inequality, mid-point
inequality, averaged mid—point and trapezoidal inequality and Simpson’s inequal-
ity. Moreover, applications are deduced for probability theory, special means and

nu?lml integration
onflict of Interest: Authors declared: No conflict of interest.
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