Let $J = [a, b] \subseteq \mathbb{R}$ be an interval and 0 < q < 1, q-derivative of a continuous function $f: J \to \mathbb{R}$ at a point $x \in J$ is given in the following definition.

Definition 1. (Sudsutad et al., 2015) Let $f : J \to \mathbb{R}$ be a continuous function and let $x \in J$. Then q-derivative of f at x is defined by the expression

(0.1)
$${}_{a}D_{q}f(x) = \frac{f(x) - f(qx + (1-q)a)}{(1-q)(x-a)}, x \neq a.$$

Since $f: J \to \mathbb{R}$ is a continuous function, thus we have ${}_{a}D_{q}f(a) = \lim_{x \to a} {}_{a}D_{q}f(x)$. The function f is said to be q-differentiable on J if ${}_{a}D_{q}f(x)$ exists for all $x \in J$. If a = 0 in (0.1), then ${}_{0}D_{q}f(x) = D_{q}f(x)$, where $D_{q}f(x)$ is the well-known qderivative of f defined by the expression

(0.2)
$$D_q f(x) = \frac{f(qx) - f(x)}{(1-q)x}, x \neq 0.$$

For more details on q-derivative given above by (0.2), we refer the reader to (Kac and Cheung, 2002).

Definition 2. (Sudsutad et al., 2015) Let $f: J \to \mathbb{R}$ be a continuous function. A second-order q-derivative on J denoted by ${}_{a}D_{q}^{2}f$, provided ${}_{a}D_{q}f$ is q-differentiable on J, is defined as ${}_{a}D_{q}^{2}f = {}_{a}D_{q}({}_{a}D_{q}f) : J \to \mathbb{R}$. Similarly higher order q-derivatives on J is defined by ${}_{a}D_{q}^{n}f = {}_{a}D_{q}({}_{a}D_{q}^{n-1}f) : J \to \mathbb{R}$.

The following result is very important to evaluate q-derivative of monomials.

Lemma 1. (Sudsutad et al., 2015) Let $\alpha \in \mathbb{R}$ and 0 < q < 1, we have

$${}_{a}D_{q}(x-a)^{\alpha} = \left(\frac{1-q^{\alpha}}{1-q}\right)(x-a)^{\alpha-1}.$$

One can find further properties of q-derivatives in (Tariboon and Ntouyas, 2013).

Definition 3. (Sudsutad et al., 2015) Suppose that $f : J \to \mathbb{R}$ is a continuous function. Then the definite q-integral on J is defined by

(0.3)
$$\int_{a}^{x} f(x)_{a} d_{q}x = (x-a)(1-q)\sum_{n=0}^{\infty} q^{n} f(q^{n}x + (1-q^{n})a)$$

for $x \in J$. If $c \in (a, x)$, then the definite q-integral on J is defined as

$$\int_{c}^{x} f(x)_{a} d_{q}x = \int_{a}^{x} f(x)_{a} d_{q}x - \int_{a}^{c} f(x)_{a} d_{q}x$$
$$= (x-a) (1-q) \sum_{n=0}^{\infty} q^{n} f(q^{n}x + (1-q^{n})a)$$
$$- (c-a) (1-q) \sum_{n=0}^{\infty} q^{n} f(q^{n}c + (1-q^{n})a).$$

If a = 0 in (0.3), then we get the classical q-definite integral defined by see (Ernst, 2012).

$$\int_{0}^{x} f(x) \ _{0}d_{q}x = (1-q) x \sum_{n=0}^{\infty} q^{n} f(q^{n}x), x \in [0,\infty).$$

The following results hold about definite q-integrals.

Theorem 1. (Tariboon and Ntouyas, 2013) Let $f: J \to \mathbb{R}$ be a continuous function. Then

(1) $_{a}D_{q}\int_{a}^{x}f(t)_{a}d_{q}t = f(x)$ (2) $\int_{c}^{x}{_{a}D_{q}f(t)_{a}d_{q}t} = f(x) - f(c), c \in (a,x).$

Theorem 2. (Tariboon and Ntouyas, 2013) Suppose that $f, g: J \to \mathbb{R}$ are continuous functions, $\alpha \in \mathbb{R}$. Then, for $x \in J$,

- $\begin{array}{l} (1) \quad \int_{a}^{x} \left[f\left(t\right) + g\left(t\right)\right]_{a} d_{q}t = \int_{a}^{x} f\left(t\right)_{a} d_{q}t + \int_{a}^{x} g\left(t\right)_{a} d_{q}t; \\ (2) \quad \int_{a}^{x} \alpha f\left(t\right)_{a} d_{q}t = \alpha \int_{a}^{x} f\left(t\right)_{a} d_{q}t; \\ (3) \quad \int_{c}^{x} f\left(t\right)_{a} D_{q}g\left(t\right)_{a} d_{q}t = f\left(t\right) g\left(t\right)|_{c}^{x} \int_{c}^{x} g\left(qt + (1-q)a\right)_{a} D_{q}f\left(t\right)_{a} d_{q}t, c \in \mathcal{C} \right) \\ \end{array}$ (a, x).

The following is a valuable result to evaluate definite q-integrals of monomials.

Lemma 2. (Sudsutad et al., 2015) For $\alpha \in \mathbb{R} \setminus \{-1\}$ and 0 < q < 1, the following formula holds:

$$\int_{a}^{x} (x-a)^{\alpha} {}_{a} d_{q} x = \left(\frac{1-q}{1-q^{\alpha+1}}\right) (x-a)^{\alpha+1}$$

We recall the following definitions before proving our main results.

Definition 4. (Dragomir, 2001) A mapping $f : [a,b] \times [c,d] \to \mathbb{R}$ is said to be convex on $[a, b] \times [c, d]$ if the inequality

 $f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \lambda f(x, y) + (1 - \lambda)f(z, w)$ holds for all $(x, y), (z, w) \in [a, b] \times [c, d]$ and $\lambda \in [0, 1]$.

Definition 5. (Dragomir, 2001) A function $f : [a, b] \times [c, d] \to \mathbb{R}$ is said to be convex on co-ordinates on $[a, b] \times [c, d]$ if the partial mappings $f_y : [a, b] \to \mathbb{R}, f_y(u) = f(u, y)$ and $f_x: [c,d] \to \mathbb{R}, f_x(v) = f(x,v)$ are convex where defined for all $x \in [a,b], y \in [a,b]$ [c,d].

A different approach of stating convexity of f on co-ordinates on $[a, b] \times [c, d]$ is given in the definition below.

Definition 6. (Latif and Alomari, 2009) A function $f : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is said to be convex on co-ordinates on $[a, b] \times [c, d]$ if the inequality

f(tx + (1-t)y, sz + (1-s)w)< tsf(x,z) + t(1-s)f(x,w) + s(1-t)f(y,z) + (1-t)(1-s)f(y,w)

holds for all $(t,s) \in [0,1] \times [0,1]$ and $(x,z), (y,w) \in [a,b] \times [c,d]$.

Definition 7. (*Özdemir et al.*, 2012) A function $f : [a, b] \times [c, d] \subset \mathbb{R}^2 \to \mathbb{R}$ is said to be quasi-convex on $[a, b] \times [c, d]$ if the inequality

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \max \{f(x, y), f(z, w)\}\$$

holds for all $(x, y), (z, w) \in [a, b] \times [c, d]$ and $\lambda \in [0, 1]$.

Definition 8. (Ozdemir et al., 2012) A function $f : [a,b] \times [c,d] \to \mathbb{R}$ is said to be quasi-convex on the co-ordinates on $[a,b] \times [c,d]$ if the partial mappings f_y : $[a,b] \to \mathbb{R}, f_y(u) = f(u,y)$ and $f_x : [c,d] \to \mathbb{R}, f_x(v) = f(x,v)$ are quasi-convex where defined for all $x \in [a, b], y \in [c, d]$.

 $\mathbf{2}$

Another way of expressing the concept of co-ordinated quasi-convex functions is stated in the definition below.

Definition 9. (Özdemir et al., 2012) A function $f : [a, b] \times [c, d] \subset \mathbb{R}^2 \to \mathbb{R}$ is said to be quasi-convex on co-ordinates on $[a, b] \times [c, d]$ if

$$\begin{split} f(tx + (1-t)z, sy + (1-s)w) &\leq \max \left\{ f\left(x, y \right), f\left(x, w \right), f\left(z, y \right), f\left(z, w \right) \right\} \\ holds \ for \ all \ (x, y), (z, w) \in [a, b] \times [c, d] \ and \ (s, t) \in [0, 1] \times [0, 1]. \end{split}$$