Let $J = [a, b] \subseteq \mathbb{R}$ be an interval and $0 < q < 1$, q-derivative of a continuous function $f: J \to \mathbb{R}$ at a point $x \in J$ is given in the following definition.

Definition 1. (Sudsutad et al., 2015) Let $f: J \to \mathbb{R}$ be a continuous function and let $x \in J$. Then q-derivative of f at x is defined by the expression

(0.1)
$$
{}_{a}D_{q}f(x) = \frac{f(x) - f(qx + (1 - q) a)}{(1 - q)(x - a)}, x \neq a.
$$

Since $f: J \to \mathbb{R}$ is a continuous function, thus we have ${_aD_q}f(a) = \lim_{x \to a} {_aD_q}f(x)$. The function f is said to be q-differentiable on J if ${_aD_q}f(x)$ exists for all $x \in J$. If $a = 0$ in (0.1), then $_0D_qf(x) = D_qf(x)$, where $D_qf(x)$ is the well-known qderivative of f defined by the expression

(0.2)
$$
D_q f(x) = \frac{f(qx) - f(x)}{(1-q)x}, x \neq 0.
$$

For more details on q-derivative given above by (0.2) , we refer the reader to (Kac and Cheung, 2002).

Definition 2. (Sudsutad et al., 2015) Let $f: J \to \mathbb{R}$ be a continuous function. A second-order q-derivative on J denoted by ${_a}D_q^2f$, provided ${_a}D_qf$ is q-differentiable on J, is defined as ${_aD_q^2}f = {_aD_q}({_aD_q}f) : \tilde{J} \to \mathbb{R}$. Similarly higher order qderivatives on J is defined by ${_aD_q^n}f = {_aD_q}({_aD_q^{n-1}}f) : J \to \mathbb{R}$.

The following result is very important to evaluate q -derivative of monomials.

Lemma 1. (Sudsutad et al., 2015) Let $\alpha \in \mathbb{R}$ and $0 < q < 1$, we have

$$
{}_{a}D_{q}(x-a)^{\alpha} = \left(\frac{1-q^{\alpha}}{1-q}\right)(x-a)^{\alpha-1}.
$$

One can find further properties of q-derivatives in (Tariboon and Ntouyas, 2013).

Definition 3. (Sudsutad et al., 2015) Suppose that $f : J \to \mathbb{R}$ is a continuous function. Then the definite q-integral on J is defined by

(0.3)
$$
\int_{a}^{x} f(x)_{a} d_{q} x = (x - a) (1 - q) \sum_{n=0}^{\infty} q^{n} f(q^{n} x + (1 - q^{n}) a)
$$

for $x \in J$. If $c \in (a, x)$, then the definite q-integral on J is defined as

$$
\int_{c}^{x} f(x)_{a} d_{q}x = \int_{a}^{x} f(x)_{a} d_{q}x - \int_{a}^{c} f(x)_{a} d_{q}x
$$

= $(x - a) (1 - q) \sum_{n=0}^{\infty} q^{n} f(q^{n} x + (1 - q^{n}) a)$
 $- (c - a) (1 - q) \sum_{n=0}^{\infty} q^{n} f(q^{n} c + (1 - q^{n}) a).$

If $a = 0$ in (0.3), then we get the classical q-definite integral defined by see (Ernst, 2012).

$$
\int_0^x f(x) \, d\mu dx = (1-q) x \sum_{n=0}^\infty q^n f(q^n x), x \in [0, \infty).
$$

The following results hold about definite q-integrals.

Theorem 1. (Tariboon and Ntouyas, 2013) Let $f : J \to \mathbb{R}$ be a continuous function. Then

(1) $_{a}D_{q}\int_{a}^{x}f(t)_{a}d_{q}t=f(x)$ (2) $\int_{c}^{x} \int_{a}^{a} D_q f(t) \, d_q t = f(x) - f(c), \, c \in (a, x)$.

Theorem 2. (Tariboon and Ntouyas, 2013) Suppose that $f, g: J \to \mathbb{R}$ are continuous functions, $\alpha \in \mathbb{R}$. Then, for $x \in J$,

- (1) $\int_{a}^{x} [f(t) + g(t)]_{a} d_{q}t = \int_{a}^{x} f(t)_{a} d_{q}t + \int_{a}^{x} g(t)_{a} d_{q}t;$
- (2) $\int_{a}^{x} \alpha f(t)_{a} d_{q}t = \alpha \int_{a}^{x} f(t)_{a} d_{q}t;$
- (3) $\int_{c}^{x} f(t)_{a} D_{q} g(t)_{a} d_{q} t = f(t) g(t) \Big|_{c}^{x} \int_{c}^{x} g(qt + (1-q)a)_{a} D_{q} f(t)_{a} d_{q} t, c \in$ (a, x) .

The following is a valuable result to evaluate definite q -integrals of monomials.

Lemma 2. (Sudsutad et al., 2015) For $\alpha \in \mathbb{R} \setminus \{-1\}$ and $0 < q < 1$, the following formula holds:

$$
\int_{a}^{x} (x-a)^{\alpha} a d_q x = \left(\frac{1-q}{1-q^{\alpha+1}}\right) (x-a)^{\alpha+1}.
$$

We recall the following definitions before proving our main results.

Definition 4. (Dragomir, 2001) A mapping $f : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is said to be convex on $[a, b] \times [c, d]$ if the inequality

 $f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \leq \lambda f(x, y) + (1 - \lambda)f(z, w)$ holds for all $(x, y), (z, w) \in [a, b] \times [c, d]$ and $\lambda \in [0, 1]$.

Definition 5. (Dragomir, 2001) A function $f : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is said to be convex on co-ordinates on $[a, b] \times [c, d]$ if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}, f_x(v) = f(x, v)$ are convex where defined for all $x \in [a, b], y \in$ $[c, d]$.

A different approach of stating convexity of f on co-ordinates on $[a, b] \times [c, d]$ is given in the definition below.

Definition 6. (Latif and Alomari, 2009) A function $f : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is said to be convex on co-ordinates on $[a, b] \times [c, d]$ if the inequality

 $f(tx+(1-t)y, sz+(1-s)w)$ $\leq ts f(x, z) + t(1-s) f(x, w) + s(1-t) f(y, z) + (1-t)(1-s) f(y, w)$

holds for all $(t, s) \in [0, 1] \times [0, 1]$ and $(x, z), (y, w) \in [a, b] \times [c, d]$.

Definition 7. ($\ddot{O}zdemir$ et al., 2012) A function $f : [a, b] \times [c, d] \subset \mathbb{R}^2 \to \mathbb{R}$ is said to be quasi-convex on $[a, b] \times [c, d]$ if the inequality

$$
f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \max\{f(x, y), f(z, w)\}\
$$

holds for all $(x, y), (z, w) \in [a, b] \times [c, d]$ and $\lambda \in [0, 1]$.

Definition 8. (Ozdemir et al., 2012) A function $f : [a, b] \times [c, d] \rightarrow \mathbb{R}$ is said to be quasi-convex on the co-ordinates on $[a, b] \times [c, d]$ if the partial mappings f_y : $[a, b] \rightarrow \mathbb{R}, f_y(u) = f(u, y)$ and $f_x : [c, d] \rightarrow \mathbb{R}, f_x(v) = f(x, v)$ are quasi-convex where defined for all $x \in [a, b], y \in [c, d]$.

2

Another way of expressing the concept of co-ordinated quasi-convex functions is stated in the definition below.

Definition 9. (Özdemir et al., 2012) A function $f : [a, b] \times [c, d] \subset \mathbb{R}^2 \to \mathbb{R}$ is said to be quasi-convex on co-ordinates on $[a, b] \times [c, d]$ if

 $f(tx+(1-t)z,sy+(1-s)w) \leq \max\left\{f\left(x,y\right),f\left(x,w\right),f\left(z,y\right),f\left(z,w\right)\right\}$ holds for all $(x, y), (z, w) \in [a, b] \times [c, d]$ and $(s, t) \in [0, 1] \times [0, 1]$.