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In this paper we have used the homotopy analysis method (HAM) to obtain solution of
multi-order fractional differential equation. The fractional derivative is described in the Caputo
sense. Some illustrative examples have been presented.
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1. Introduction

Fractional differential equations have been found to be effec-
tive to describe some physical phenomena such as damping
laws, rheology, diffusion processes, and so on. Several meth-
ods have been used to solve Fractional differential equations,
such as Laplace transform method (Podlubny, 1999), Fourier
transform method (Kemple and Beyer, 1997), Adomians
decomposition method (ADM) (Daftardar-Gejji and Jafari,
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2005; Daftardar-Gejji and Jafari, 2007; Jafari and Daftardar-
Gejji, 2006), Homotopy analysis method (Liao, 2003; Momani
and Odibat, 2008) and so on. For nonlinear FDE, however,
one mainly resorts to numerical methods (Diethelm, 1997;
Diethelm and Ford, 2002; Diethelm and Ford, 2004; Edwards
et al., 2002). These numerical methods involve discretization of
the variables, which gives rise to rounding off errors. Another
drawback of numerical methods stems from the requirement of
large computer memory.

In this paper, the homotopy analysis method (Liao, 1992) is
applied to solve the multi-order fractional differential equation
studied by Diethelm and Ford (2004):

D*y(t) = f(t,9(1), Dl y(t), ..., Dlry(1)),  y*(0) = ¢,
k=0,...,m,

where m<oa < m+1,0<p, <, <---<f,<a and D?
denotes Caputo fractional derivative of order .

Liao (1992) employed the basic ideas of the homotopy in
topology to propose a general analytic method for nonlinear
problems, namely homotopy analysis method (HAM), Liao
(1992, 2004, 2003). This method (HAM) (Liao, 2003) provides
an effective procedure for explicit and numerical solutions of a
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wide and general class of differential systems representing real
physical problems. Based on homotopy of topology, the
validity of the HAM is independent of whether or not there ex-
ist small parameters in the considered equation. Therefore, the
HAM can overcome the foregoing restrictions and limitations
of perturbation techniques so that it provides us with a possibil-
ity to analyze strongly nonlinear problems. Jafari and seifi have
been solved diffusion-wave equation and partial differential
equations and system of nonlinear fractional partial differential
equations using homotopy analysis method (Jafari and Seifi,
2009; Jafari and Seifi, 2009). This method has been successfully
applied to solve many types of nonlinear problems (Hayat
et al., 2004; Momani and Odibat, 2008). These authors have
discussed the analytical questions of existence and uniqueness
of solutions and investigated how the solutions depend on the
given initial data. Further they have presented an algorithm
to convert the multi-order FDE into a system of FDE under
some conditions and have developed numerical method to solve
the system of FDE. In this paper we present an algorithm to
convert the multi-order FDE into a system of FDE, without
putting any of the restrictions. Thus our algorithm is valid in
the most general case and yields fewer number of equations
in a system compared to those in Diethelm—Ford algorithm.
Consequently the solutions of the system of FDE have been ob-
tained by employing the HAM approach. The paper has been
organized as follows. Section 2 describes how to convert a mul-
ti-order FDE. In Section 3, HAM is developed to solve the sys-
tem of FDE. Section 4 presents some illustrative examples.
Discussion and conclusions are summarised in the Section 5.

2. Preliminaries

We enlist below some definitions (Luchko and Gorenflo, 1999;
Podlubny, 1999) and basic results.

Definition 2.1. A real function f{x),x > 0 is said to be in the
space C,, o € R if there exists a real number p(> o) such that
S(x) = xfi(x) where fi(x) € C[0,00). Clearly C, C Cp if
p < o

Definition 2.2. A function f{x),x > 0 is said to be in the space
' me N {0} if /) € C,.

Definition 2.3. The (left sided) Riemann-Liouville fractional
integral of order y > 0 of a function f € C,,o0 > —1 is defined
as:

oo L[,
PO =155 | o
PR = 110,

u>0, >0,

(1)

Definition 2.4. The (left sided) Riemann-Liouville fractional
derivative of f,f'e C",,m € IN |J {0} of order o > 0 is defined
as:

Difl1) =

m

d
11— £
S I,

m—1<u < m melN. 2)

Definition 2.5. The (left sided) Caputo fractional derivative of
e C”,me IN|J{0} is defined as:

o ()] m—1<pu<m, melN,
Difin) = {;%f(t) u=m. 3)

Note that
T(y+1)
C(y4+up+1)

(i) *DEf(t) =1(1) -

Zf“ (0+) k,7

(i) ' = £ >0, p>—1, t>0.

m—1l<u<m, melN.

(i) D"{r) < Z]f(’ 0+ k'> m—1<u<m, melN.
r- ’ff(), ifo>p,

(iv) DP'rfin =4 f), ifa=8,
DF=*f11), ifa< B.

(v) D*D"f(t) =D*™"f(t), m=0,1,2,....n—1<a<n.

Definition 2.6. The Mittag-Leffler function E,(z) with o > 0 is
defined by the following series representation valid in the
whole complex plane (Mainardi, 1994):

o Z"
2 _; Tn+t1)

Lemma 2.7 Diethelm and Ford, 2002. Let y(f) € C*[0, T] for
some T >0 and k € IN and let q ¢ IN be such that 0 < g < k.
Then D?y(0) = 0.

a>0, zeC. (4)

3. Multi-order FDE as a system of FDE

Daftardar-Gejji and Jafari have solved multi-order FDE by
Adomian decomposition method (Daftardar-Gejji and Jafari,
2007):

Dy(t) = f(1,9(2), DI (1), ..., Dly(1)), ¥ (0) = ¢,
k=0,...,m, (5)

wherem <o < m+1,0<f, <p, <--- < f, <aand D! de-
notes Caputo fractional derivative of order «. It should be
noted that f can be non linear in general.

npeQa—pf, <L F—py <LV,and0 < f < 1.

(6)
In Daftardar-Gejji and Jafari (2007), it was proved that the
Eq. (5) can be represented as a system of FDE, without any

additional restrictions mentioned in Eq. (6). Here we present
their approach. Set y, = y and define:

Dly, = y,. (7)
Case () If m—1 < B, < f, < m then define
Dy, =y, (8)
Claim: y; Dﬁzy If B=m—1, then DFhy, =
Dﬂ2 m—1) y Dﬂvy
Hence the clalm. If B, ¢ IN, then by Lemma 2.6, Dfiy (0) =

0andas f, — B, <1,
DFh [Dﬁlyd — DPh [Dﬂ‘y ] DI +B =B pr— ﬂl '")

_ D11+n1 ﬁzy(m) = "= [fqym D/fzy

=DPy. 9)

Therefore y, = DF>~Fry, = Dly.
Case (ii) Consider m—1 < f, <m < f,. If py=m—1,
then define D ~F1y, = y,.
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sz*ﬂlyz — sz*erlysm—l) _ szy].
Ifm—1<p, <m < f,, then define
Dy, = ys. (10)

Claim: y, = y™. As B, ¢ IN, D1y,(0) = y,(0) = 0 (in view of
Lemma 2.6), and 0 <m — f;, < 1,

Din—/ﬂyz — Dm—/i]yz — DIl+ﬂ1—mIm—ﬂ1y(1m) — Dly(lm) — yg’”)

=y, (11)
Hence y; = y™. Further define:
DEyy = . (12)

Claim y, = D"y, As y, = D7y, = pPmytm) = phy, - And
continuing similarly we can convert the initial value problem
(5) into a system of FDE. The following example will illlustrate
the method. Consider

Disy :f(x7y7 Di.2y7 Dalf‘7y7 Di'1y> Dis)’)7 (]3)

where y(0) = ¢g, y'(0) = ¢1, »"(0) = ¢, and y”"(0) = ¢;. This
initial value problem can be viewed as the following system
of FDE.

D2y (x) = 1(x), »(0) =co, »(0)=q,

DYyy(x) = y3(x) (= DL7y(x)),  y,(0) =0,

DY yy(x) = ya(x)(="(x)), y3(0) =0,

DIy (x) = ps(x) (= DI'y(x)),  24(0) = s, (14)
DYys(x) = ys(x) (=37 (x)),  ¥5(0) =0,

DSASJ%(X) = y;(x) (: Di‘sy(x)), Y6(0) = a3,

DS'IJH(X) =%, 31,¥2, Y3, V5, ¥7),  ¥7(0) =0,

where y,(x) = y(x).

The remark is in order

1. This algorithm is valid in the most general case, because
we do not impose any of the restrictions on «, f§; as mentioned
in Eq. (6). We let o, 5; € R, whereas in Diethelm and Ford
(2004) o, p; € 10.

4. Homotopy analysis method and a system of FDE

We can present the multi-order Eq. (5) as system of fractional
differential equations:

DYy (t) =y, i=12,...,n—1,

Dy (1) =, 91,25 -5 V0),

y;k)(O):c;;, 0<k<m m<o <m+1, 1 <i<n
(15)

According to the HAM, we construct the so called zero-order

deformation equations:

(1 = q)D"[o;(t;q) — yio(1)] = ah; Hi()[D" @:(t; q) — @i (1 4)],
i=1,2,...n—1,
(1 = q)D"[9,(t;q) — v, (1)] = qh:H,()[D" ¢, (; ) —
.f(t7(p17q)27~..7(pn)}7
(16)
where ¢ € [0,1] is an embedding parameter, /; # 0 are non-

zero auxiliary parameters for H(r) #0, i=1,2,...,n are
non-zero auxiliary functions, y,(f) are initial guess of y,(),

¢,(t; ¢) are unknown function, respectively. It is important that
one has great freedom to choose auxiliary things in HAM.
Obviously, when q = 0 and q = 1, it holds

(pi(t§0):yi0(t)>¢i(t§l):yt(z)7 i=1,2,....n, (]7)

respectively. Thus as q increases from 0 to 1 the solution
@,(t;q) varies from the initial guesses y,(f) to the solution
»;(¢). Expanding ¢,(#;¢) in Taylor series with respect to g,
we have

(pi(t;q):yiO(t)+Zyin1(t)qm7 l: 1,2,..471’17 (18)
m=1
where
1 9"pi(t:9) ,
yim(l):_—‘q:m i=12,...n, (19)

ml g™

If the auxiliary linear operator, the initial guess, the auxiliary
parameter h and the auxiliary function are so properly chosen
the series Eq. (18) converges at ¢ = 1, then we have

30 =ya()+ 3w, i=12,n (20)

m=1
Define the vector

7[ = {yio(l)vyil([)v s 7yfn(t)}'

Differentiating Eq. (16) m times with respect to the embedding
parameter ¢ and then setting ¢ = 0 and finally dividing them
by m!, we obtain the mth-order deformation equation for
i=1,2,...,n,

D* D}im(t) — AmYim-1 (t)] = thi(l)Rflﬂ(?lll1fl7 RN ?nmfh t)>
i=1,2,... 11,
D“” D/nm(l) - menm—l (I)] = hiHn(l)an(7lmfl> ceey ?nmfh 1)7
(1)
where
Rim(?]m—h ey 7nm—l ) t)
L D e(t9) — ¢ (1)) |
(m—1)! g q=07
an(?lmfh ey ?nmfly t)
= ! am_l(Da’.(pn(t;q) _f(tv (plv(p27~-.>(/)n))|
(m _ l)l 8qm—l q=0"
(22)
and
o { 0, m <1,
=, ms

Applying the Riemann-Liouville integral operator I on both
side of Eq. (21), we have

n—1 i

. t

yim([) = AmYVim-1 ([) — Im Zyi'm—l (0+)]_|
J=0 ’

+FihiHi t Rim _7)771— 7"'1_)nm— 7t1
(DR (Y 11 Vim-1,1) (23)

n—1 i

. ﬂ

ynm(t) = menm—l(t) —Im E y;m—l (0+)ﬁ
J=0 :

+ pihiHn(t)Rnn1(7ln1—l ) ?nm—l ) t)'
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In this way, it is easily to obtain y,, form > 1 at Mth order,
we have

M
yi([)zzy[n1([)7 l.:1,2,.4.,7’l. (24)
m=0

When M — oo, we get an accurate approximation of the origi-
nal Eq. (15).

5. Illustrative Examples

To demonstrate the effectiveness of the method we consider
here some multi-order FDE. We transform multi-order FDE
to a system of FDE and solve the system of FDE using HAM.

(i) Consider the following initial value problem in case of
the inhomogeneous Bagley—Torvik equation (Diethelm
and Ford, 2002):

DXy(1) + Dy(1) + y(t) =1+1, y(0) =1,
1. (25)

In view of the discussion in the Section 3, the Eq. (25) can be
viewed as the following system of FDE:

DYy =y, 3(0) =),(0) =1,
DYy, ==y, =y + 141, »,(0)=0.
Using Eq. (23) we get the following scheme:
Yo =14 1,1=0,

Yim = AmVim + hl[l.S(DJ«.Sylmfl - y2mfl)?

YVom = AmVo2m + hZIOlS(DS.Sybﬂ—I +y2m—1 +ylm—l
_(I_Xln)(l+t))7 m = 1

m = 1,

Thus we get:

yip = I (DFPyyg = yy) =0,

Va1 = W (D sy 4 yog + y19 — (1 +1)) =0,
and hence
Vim=0, »y, =0, m > 1

In view of the above terms, we find y,(t) = 1 + ¢ and y,(¢) = 0.
So y(t) = 1 + ¢ is the required solution of (25).
(i1)) Consider the following initial value problem,

Diy(t) + DXy(t) + (1) = ', p(0) =»'(0)=0, »"(0)=2.
(26)

If we choose y() = y, and D**y(¢) = y,, then Eq. (26) can be

reduced to the following system of nonlinear FDE:

Dis)ﬁ =y, »(0)=51(0)=0, »"(0)=2,

D¥y, =1t —y,—y, »(0)=0.

Applying *° and I’ to both sides of above system and using

HAM Eq. (23) we get the following scheme:

Yie="1, yn=0,

Yim = XmV1im + hl[Z-S (Di-sylmfl - y2mfl)7 m = 17

m—1
Yom = AmVom + hZIO.S (DS'SJ}mel - t4 + Yom-1 + Zyliylnklﬂ'%

i=0

m = 1. (27)

Thus
Y= hl[Z‘s(DisJ’lo) =0,
Vo1 = I (DPyyy — 1* + yy +37,) = 0.

SO Yimet = Vams1 =0, for m > 1. Hence we find y,(7) = 7
and y,(f) = 0. Therefore y(z) = ¢ is the required solution.
(iii) Consider the following equation,

01 Evses(=1)
Eya45(—1)

+ Exp(=21) — [Dy(1)]’. (28)

DS y(1) = —¢ Exp(t)y(1) D) (1)

Eq. (28) is equivalent to the following system of three FDE
only.

DIy (x) = (),

DIy, (x) = y3(x)(= V' (x)),
o1 Ersas(—1)

DOASS () = _f
) Eyas(—1)

Exp(t)y, (1)y,(1) + Exp(=21) — y3(1),
(29)
where y,(f) = y(¢). In view of Eq. (29) and HAM we get

Yo =11(0), ¥ =2,(0),  y3 = »5(0),
Vim = Indim + WL (D = a0,
Yom = Indam + P (DIy,, = p3,1),
Vim = InYam + BIPP (DI y,,

o1 Busis(=0)

+1
Ea5(—1)

Exp(t)ylmflybnfl (t) - EX])(*Z[) + y%m—l)'

In Fig. 1, we draw exact solution (y = y, = ¢™') and solu-
tion obtained after 3 iterations i; = —1.4.

1.4

1.2

0.2

t

0.2 0.4 0.6 0.8 1

Figure 1  Exact solution (solid line) and HAM solution obtained
after 3 iterations (y = y,5) (dashed line).
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The computations presented here have been carried out
with the help of Mathematica 5.

6. Discussion and conclusions

Homotopy analysis method consequently has been utilized to
solve the system of fractional differential equations generated
by a multi-order fractional differential equation. Thus it
has been demonestrated that HAM proves useful in solving
linear as well as non linear multi-order fractional differential
equations.
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