
Journal of King Saud University – Science 33 (2021) 101221
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
Original article
Computable generalization of fractional kinetic equation with special
functions
https://doi.org/10.1016/j.jksus.2020.10.018
1018-3647/� 2020 Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: ilyaskhan@tdtu.edu.vn (I. Khan).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Yudhveer Singh a, Vinod Gill b, Jagdev Singh c, Devendra Kumar d, Ilyas Khan e,⇑
aAmity Institute of Information Technology, Amity University Rajasthan, Jaipur 303002, India
bDepartment of Mathematics, Govt. College Nalwa, Hisar, Haryana 125037, India
cDepartment of Mathematics, JECRC University, Jaipur 303905, Rajasthan, India
dDepartment of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India
e Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 72915, Viet Nam

a r t i c l e i n f o
Article history:
Received 30 June 2020
Revised 25 August 2020
Accepted 9 October 2020
Available online 17 November 2020

Keywords:
Fractional kinetic equation
Riemann-Liouville fractional integral
operator
Incomplete Aleph function
Elzaki transform
a b s t r a c t

The primarily object of this article is to derive the solutions of modified fractional kinetic equations
(MFKEs) containing the incomplete Aleph functions by using the application of Elzaki and inverse
Elzaki transforms and hereto we also established some novel results such as the Elzaki transform of
well-known the Riemann–Liouville operator and the incomplete Aleph functions (IAFs). The solutions
of modified FKEs discusses in this article can be utilized to figures out the variation of the chemical com-
position in our solar system. In this article, we also see that the character of thermonuclear function is
presented in terms of the incomplete @�functions and many more special functions through some inter-
esting corollaries. Finally, we established here a compact and easily figure out solutions in form of incom-
plete special functions and display the graphs of the obtained results in the end of this article to show the
behavior of integral operator of fractional order on reaction rate of the particle. Furthermore, results
holds here are also associated to the recent investigation of feasible astrophysical solutions of solar sys-
tem problems. The derived results notify the known results more precisely.
� 2020 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Stars have attracted scientists and astronomers equally. Some
amazing things whether it is our sun-like stars or solar system akin
to our other galaxies. A star is creating when a bit of gas is
destroyed onto its own gravity. When mass and length of interstel-
lar cloud extend to certain limits, then the clouds diverge from
entity in hydrostatic equilibrium (HE) and are destroyed. If its
gravitational force is equal is equal to its internal pressure then
in this situation the system is said to be hydrostatic equilibrium.
Therefore the system is neither burst nor collapse. Nevertheless
in the formation of a star the gravitational force inside the cloud
should be more than its internal pressure. As the interstellar cloud
collapse inward due to the variation of force inside, the tempera-
ture jump up when the cloud temperature reaches 104k, then
nuclear fusion will begin. Because of nuclear fusion the cloud radi-
ate the light and protostar come in existence. In this phase stellar is
known as pre-main sequence.

In thermal and HE, a star can be considered as a uniform gas
sphere with insignificant spinning and magnetic field. The internal
structure of star is entirely gases and it is characterized by three
parameters; temperature, pressure & mass. Mathematical models
(MMs) and structures of stars are examined and it is depend upon
the above parameters as well as its based on equation of state,
translucence and rate of nuclear energy produce. The hypothesis
of thermal and HE show that there is no dependency on time in
the MMs as well as in the equations expressing the inside forma-
tion of the star (Kourganoff, 1973; Perdang, 1976; Clayton, 1983).
The assessment of the star is conducted by a system of differential
equation. A system of differential equation is used in assessment of
the star like sun, kinetic equation (KE) is an equation that is appear
in non-equilibrium statistical physics (Lebowitz and Montroll,
1984). The result obtained from kinetic-equation estimate the dis-
tribution function of the movable position of a solitary particle,
which is normally based on time & velocity. Thus, we can say that
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KEs characterize the rate of change of chemical composition of star
for every kind in the form of reaction rate for production & destruc-
tion of that kind (Kourganoff, 1973; Perdang, 1976; Clayton, 1983).

Let us assume a random reaction identify by a time dependent
quantity M = MðxÞ. Then we estimate the dM

dx by the following
equation

dM
dx

¼ �dþ p; ð1Þ

where d is destruction rate and p is the production rate ofM. In gen-
eral d ¼ dðMÞ or p ¼ p Mð Þ: Then the functional –differential equa-
tion expressing the reaction rate for destruction & production
carried out by Haubold and Mathai (2000):

dM
dx

¼ �dðMxÞ þ pðMxÞ; ð2Þ

where Mx refer the function presented as

Mx x�ð Þ ¼ M x� x�ð Þ; x� > 0:

Haubold and Mathai (2000) considered a particular case of (2),
when the quantity MðxÞ are ignored, then the Eq. (2) become

dMi

dx
¼ �ciMiðxÞ; ð3Þ

where ci > 0 (destruction of species i) and ci < 0(production of spe-
cies i) subject to the conditionMi x ¼ 0ð Þ ¼ M0 is the number density
of species i at time x ¼ 0 and Eq. (3) is known as standard kinetic
equation (SKE). Then the Eq. (3), after solution can be written as

Mi xð Þ ¼ M0e�cix; ð4Þ
if we drop index i due to sake of brevity in Eq. (3), then Haubold

and Mathai (2000), after integration demonstrate the SKE (3) as

M xð Þ �M0 ¼ �c0D
�1
x M xð Þ; ð5Þ

here 0D
�1
x denote the standard R-L operator. After this the oper-

ator mention in Eq. (5), is generalized into arbitrary order operator
and it is defined as

M xð Þ �M0 ¼ � cx0D
�x
x M xð Þ; ð6Þ

where 0D
�x
x is the familiar R-L integral operator (Oldham and

Spanier, 1974; Miller and Ross, 1993).
finally, the solution of SKE (6) obtained in series form Haubold

and Mathai (2000) as

M xð Þ ¼ M0

X1
h¼0

ð�1Þh
Cðxhþ 1Þ ðcxÞ

xh
: ð7Þ

So far, a lot of research has been done in last three decades to
improve the reaction rate of particle via FKE. A number of methods
are used for solving the generalized FKE (GFKE) and it is solved ear-
lier by several authors such as Saichev and Zaslavsky (1997), inves-
tigated the potential generalization of the normal diffusion
equation by using FKE as well as they established the relation
between FKE and Montroll-Weiss equation and generalized the
Kolmogorov-Feller equation. In a series of research papers so far,
many authors have investigated FKE and derived the solution in
easy and compact form to figure out the particle reaction rate such
as Haubold and Mathai (2000), developed the solution of KE to cal-
culate the variation of chemical composition of stars and discuss
the contribution of thermonuclear function in terms of G & H func-
tions. After this Saxena et al. (2002), investigated the FKE and
derived the generalized FKE in-terms of the Mittag-Leffler (M-L)
function, which was an increment of what had been done by
Haubold and Mathai (2000), in other article, Saxena et al.
(2004a), established the solutions of three GFKE in form of gener-
alized M-L functions. Further, Saxena et al. (2004b), explored the
2

solution of integrated form of FKE and presented the solution in
the form of the Wright function. In 2008, Saxena and Kalla
(2008), introduced a new way to solve the FKEs which was in addi-
tion to the Laplace transform technique. At the same time
Chaurasia and Pandey (2008), developed a compact and effortless
computable solution of GFKE and presented it in the form of the
Lorenzo-Hartely function which is very helpful to compute the
reaction rate. In continuation of solution of GFKE, Chaurasia and
Kumar (2010), established the solution of GFKE in associated with
M-series and derived some particular cases in form of well-known
GMLF. Recently Chaurasia and Singh (2015), further derived the
solution of GFKE involving GMLF and the Rathie I-function. Very
recently, Bansal et al. (2020b), introduced a new concept of the
incomplete I- function and derived the solution of FKE involving
the incomplete I-function (IIF). For the last few decades, we are
seeing that a lot of researcher has solved GFKE and has contributed
greatly to modify the particle reaction rate for more detail sees
(Chaurasia and Singh, 2011; Nisar et al., 2016; Nisar and Qi,
2017). The potential uses of FKEs in several problems come to
the light in some astrophysical problems, Science and engineering
can be referring these monographs (Podlubny, 1999; Hilfer, 2000;
Kilbas et al., 2006). In the present article the results are achieved in
a compact form in terms of the incomplete @�functions (Bansal
et al., 2020c), by using the application of Elzaki and inverse Elzaki
transform (Elzaki, 2011; Singh et al., 2019a, 2019b). The article is
unified as follows, Section 2 hold the definition of IGFs, incomplete
Aleph-functions, Elzaki transform and R-L operator. In Section 3,
we investigate the Elzaki transform of R-L operator and the incom-
plete Aleph-functions. After that in Section 4, we established the
solution of MFKE while some special cases, are also discussed in
Section 5 through corollaries in terms of the incomplete –I func-
tions (IIFs), @�function, H-function. The results established in this
article come up with an addition of consequences that are given in
recent paper Bansal et al. (2020b). Finally, we plot the graph of the
obtained results and found that the reaction rate decreases with
enhancement of time and continuously depends on the value of
fractional parameter.

In view of great significance and widely used of KE in diverse
physical problems, especially in astrophysics. So that we further,
derived the solution of MFKE associated with the incomplete
@�functions.

In the history of mathematics, the incomplete gamma functions
(IGFs) are kinds of special-functions that appear as solutions of
diverse problems of mathematical for instance some specific inte-
grals are extensively used in several area of mathematics in addi-
tion to other areas such as probability theory, Kinematics
(specially come to know time, displacement & velocity), thermody-
namics (to look into the change in free energy b/w two states). The
IGFs has a very old history of research (see e.g. Prym, 1877;
Abramowitz and Stegun, 1984; Arfken, 1985; Chaudhry and
Zubair, 1995). After that researcher has been done a lots of work
and take a step to proceed the research and development of
well-known IGFs c #; tð Þ and Cð#; tÞ defined in (8) & (9).The IGFs
are very crucial part of special function in view of their widely used
and great importance in statistics, Physics, engineering and many
more area of mathematics as mention above.

Recentaly, Srivastava et al. (2012), explore a well-known the
incomplete pochhammer symbols and discuss their utility and fun-
damental properties to the incomplete Gauss hypergeometric
(IGH) function and other associated functions which are probably
very helpful in definite and semi-definite integrals of several spe-
cial functions and can be implement these function in communica-
tion theory, probability theory and ground water pumping
modeling (GWPM). The important aspect of the gamma function
is that it decompose into IGFs and seems to be a closed form solu-
tion to a significant number of problems arise in plasma wave,
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science, engineering, astrophysics, mathematics and statistics as
well as in configuration of particle acceleration can be demonstrate
in terms of the IGFs given by (8) & (9). Taking inspiring from his
current research work Srivastava et al. (2012), explore a well-
established incomplete H-function cM;N

P;Q ðzÞ and CM;N
P;Q (z) along with

develop some special cases like Incomplete Fox-Wright general-
ized hypergeometric functions and established many fascinating
basic properties such as decomposition, several Integral trans-
forms, derivative formulas and many more (Srivastava et al.,
2018). Recently, Srivastava et al. (2012, 2018), investigated the
incomplete Pochhammer symbols, incomplete H-functions and
incomplete H – functions. Enthusiastic by the novel research work
of incomplete special functions which is done by some author’s
mention earlier, Bansal and Kumar (2020); Bansal et al. (2020c),
investigated the IIFs and the IAFs. Therefore keeping in mind the
greatness and utility of KE in classical astrophysical problems, we
further, investigate the compact and computable solution of MFKE
involving the incomplete @�functions.

2. Definitions and preliminaries

In this section, we develop a few important fundamental defini-
tion associated to fractional calculus, Elzaki transform and special
function to understand the further results and lemmas.

2.1. Incomplete gamma functions c #; tð Þ and Cð#; tÞ

The well-known incomplete gamma functions c #; tð Þ and Cð#; tÞ
(also known as Prym, 1877) functions are expressed in the follow-
ing manner Abramowitz and Stegun, 1984; Arfken, 1985;
Chaudhry and Zubair, 1995):

c #; tð Þ ¼
Z t

0
x#�1e�xdx; R #ð Þ > 0; t = 0ð Þ; ð8Þ

and

Cð#; tÞ ¼
Z 1

t

x#�1e�xdx; t=0;R #ð Þ > 0 when t ¼ 0ð Þ; ð9Þ

respectively, hold the following decomposition formula:

c #; tð Þ þ Cð#; tÞ ¼ Cð#Þ; ðR #ð Þ > 0Þ: ð10Þ
where C #ð Þ well –known Gamma-function is defined as

C #ð Þ ¼
Z 1

0
x#�1e�xdx; R #ð Þ > 0ð Þ: ð11Þ

Each of these functions play a vital role in the analysis of an ana-
lytic solutions of a numbers of problems in various field of GWP
modeling, theory of Probability, quantum physics, Communication
theory, Mathematical Physics, Science and engineering (see, for
instance, Kilbas et al., 2006; Prym, 1877; Andrews, 1984;
Andrews et al., 1999; Srivastava and Karlsson, 1985; Temme,
1996; Kumar et al., 2019, 2020; Singh et al., 2019a, 2019b; Gill
et al., 2019; Baleanu et al., 2020; Bansal et al., 2020a; Modi et al.,
2020).

2.2. Incomplete Aleph functions

The Incomplete Aleph functions ðCÞ@m;n
pi ;qi ;ri ;r

ðxÞ and cð Þ@m;n
pi ;qi ;ri ;r

xð Þ con-

sisting the incomplete gamma functions c #; tð Þ and Cð#; tÞ recently,
introduced by Bansal et al. (2020c), and defined as:

ðCÞ@m;n
pi ;qi ;ri ;r

xð Þ¼ ðCÞ@m;n
pi ;qi ;ri ;r

x
a1;A1; tð Þ; aj;Aj

� �
2;n; rj aji;Aji

� �� �
nþ1;pi

bj;Bj
� �

1;m; rj bji;Bji
� �� �

mþ1;qi

�����
" #

ð12Þ
3

¼ 1
2pi

Z
L

U g; tð Þx�gdg;

where x– 0; and

U g; tð Þ ¼ C 1� a1 �A1g; tð ÞQm
j¼1C bj þBjg

� �Qn
j¼2C 1� aj �Ajg

� �
Pr

i¼1ri
Qqi

j¼mþ1C 1� bji �Bjig
� �Qpi

j¼nþ1C aji þAjig
� �h i ;

ð13Þ
and

ðcÞ@m;n
pi ;qi ;ri ;r

ðxÞ¼ ðcÞ @m;n
pi ;qi ;ri ;r

x
a1;A1; tð Þ; aj;Aj

� �
2;n; rj aji;Aji

� �� �
nþ1;pi

bj;Bj
� �

1;m; rj bji;Bji
� �� �

mþ1;qi

�����
" #

ð14Þ

¼ 1
2pi

Z
L

W g; tð Þx�gdg;

where x– 0; and

W g; tð Þ ¼ c 1� a1 �A1g; tð ÞQm
j¼1C bj þBjg

� �Qn
j¼2C 1� aj �Ajg

� �
Pr

i¼1ri
Qqi

j¼mþ1C 1� bji �Bjig
� �Qpi

j¼nþ1C aji þAjig
� �h i ;

ð15Þ
for details of existence conditions see Bansal et al. (2020c).

2.3. Elzaki transform

Let the function h xð Þ belongs to a classK,
Where K = fh xð Þ : 9 N; p1; p2 > 0 such that jh xð Þj < Ne xj j=pi if

x�ð�iÞjx½0;1Þg,
Elzaki transform of function h xð Þ introduced by Tarig M. Elzaki

is defined as (Elzaki, 2011):

E h xð Þ½ � ¼ u

Z1
0

e�
x
u h xð Þdx ¼ L uð Þ; x > 0; ue �p1; p2ð Þ: ð16Þ
2.4. Convolution property

The Elzaki convolution property of f xð Þandg xð Þ is given by

E f � gð ÞðxÞ½ � ¼ 1
u
F uð ÞG uð Þ; ð17Þ

where F uð Þ and GðuÞ are the Elzaki transform of f xð Þ and g xð Þresp:,
and

f � gð Þ xð Þ ¼
Z x

0

f xð Þg x� uð Þdu:
2.5. R-L integral operator

A well-known integral operator introduced by Riemann-
Liouville and presented as (Oldham and Spanier, 1974; Miller
and Ross, 1993).

0D
�x
x ¢ xð Þ� � ¼ 1

C xð Þ
Zx
0

¢ sð Þ
x� sð Þ1�x

ds; R xð Þ > 0ð Þ: ð18Þ
3. Elazki transform of Riemann-Liouville integral operator &
incomplete Aleph functions ðCÞ@m;n

pi ;qi ;ri ;r
ðxÞ and cð Þ@m;n

pi ;qi ;ri ;r
xð Þ

In this portion, we introduce a formula of the Elzaki transform
of R-L integral operator and the incomplete @�function.
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Lemma 3.1. The Elzaki transform of R-L integral operator is
given by

E 0D
�x
x ¢ xð Þ� � ¼ ux¢ uð Þ; R xð Þ > 0ð Þ: ð19Þ

Proof. Elzaki transform of the function defined in (18) is given
by

E 0D
�x
x ¢ xð Þ� � ¼ E

1
C xð Þ

Z x

0

y sð Þ
ðx� sÞ1�x

ds

2
4

3
5;

¼ E
1

C xð Þ
Z x

0

ðx� sÞx�1y sð Þds
2
4

3
5;

applying the convolution property of the Elzaki transform on
above equation, we have

¼ 1
C xð Þ :

1
u
E y xð Þ½ �:E ðxÞx�1

h i
;

finally, yield the desired result.
Lemma 3.2. The Elzaki transform of the incomplete Aleph func-

tions ðCÞ@m;n
pi ;qi ;ri ;r

ðxÞ and cð Þ@m;n
pi ;qi ;ri ;r

xð Þis given by

E xf�1ðCÞ@m;n
pi ;qi ;ri ;r

hxv
a1;A1; tð Þ; ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

; u

" #
¼

ufþ1ðCÞ@m;nþ1
piþ1;qi ;ri ;r

huv
a1;A1;tð Þ;ð1�f;vÞðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

; ð20Þ

and

E xf�1ðcÞ@m;n
pi ;qi ;ri ;r

hxv
a1;A1; tð Þ; ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

;u

" #
¼

ufþ1ðcÞ@m;nþ1
piþ1;qi ;ri ;r

huv
a1;A1;tð Þ;ð1�f;vÞðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

; ð21Þ

provided that each member exit in (20) and (21).
Proof. We begin the proof of (20), by taking the Elzaki transform

of left hand side in (20), then

E xf�1ðCÞ@m;n
pi ;qi ;ri ;r

hxv
a1;A1; tð Þ; ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

; u

" #

¼ E xf�1 1
2pi

Z
L

U g; tð ÞðhxvÞ�gdg;u
� �

;

where U g; tð Þ is given by (13).
Changing the order of integration that is acceptable under the

prescribed condition of the incomplete@�function, then we have

E xf�1ðCÞ@m;n
pi ;qi ;ri ;r

hxv
a1;A1; tð Þ; ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

; u

" #

¼ 1
2pi

Z
L

U g; tð Þh�g
E xf�vg�1� �

dg:

By using result of the Elzaki transform, then

E xf�1ðCÞ@m;n
pi ;qi ;ri ;r

hxv
a1;A1; tð Þ; ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

; u

" #

¼ 1
2pi

Z
L

U g; tð Þh�gC f� vgð Þuf�vgþ1dg:
4

At last, after the little simplification and with the help of Eqs.
(12) and (13), we arrive at desired result.

Our proof of Eq. (21) is much similar to that of (20).

4. Fractional – order kinetic equations

Here, we derive the solution of modified FKEs involving the
Incomplete Aleph functions (12) and (14) and established some
parallel corollaries.

Theorem 1. Lett > 0; m > 0;x > 0; c > 0; f > 0; aj; bj;Aji;Bji 2 C;

Aj > 0 j ¼ 1; � � � ; pið Þ and Bj > 0 j ¼ 1; � � � ; qið Þ; the modified FKE:

MðxÞ�M0xm�1ðCÞ@m;n
pi ;qi ;ri ;r

�fxxx
a1;A1; tð Þ;ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

¼ �cx0D
�x
x M xð Þ; ð22Þ

where 0Dx
�x is the well-known Riemann-Liouville integral operator

(Oldham and Spanier, 1974; Miller and Ross, 1993). Then there
holds the solution as follows:

M xð Þ ¼ M0xm�1
X1
s¼0

ð�cxxxÞs

ðCÞ@m;nþ1
piþ1;qiþ1;ri ;r

�fxxx
a1;A1;tð Þ; 1�m;xð Þ;ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rj bji;Bji
� �� �

mþ1;qi
;ð1�m�xs;xÞ

�����
" #

:

ð23Þ
Proof. On applying the Elzaki transform (Elzaki, 2011; Singh

et al., 2019a, 2019b) on both sides of (22), we have

E MðxÞ;u½ ��E M0xm�1ðCÞ@m;n
pi ;qi ;ri ;r

�fxxx
a1;A1; tð Þ;ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

;u

" #

¼ E �cx0D
�x
x M xð Þ;u� �

; ð24Þ
using the result defined in (19), we arrive at

M uð Þ �M0
1
2pi

Z
L

U g; tð Þð�fxÞ�gE xm�xg�1	 

dg ¼ �cxuxM uð Þ;

where U g; tð Þ is given by (13).
After little simplification the above equation can be express as

M uð Þ ¼ M0

ð1þ cxuxÞ
1
2pi

Z
L

U g; tð Þ �fxð Þ�gC m�xgð Þum�xgþ1dg;

¼ M0

X1
s¼0

ð�cxÞs 1
2pi

�
Z
L

U g; tð Þ �fxð Þ�gC m�xgð Þumþxs�xgþ1dg: ð25Þ

Now, implementing the inverse Elzaki transform on both sides
of (25), then

M xð Þ¼M0

X1
s¼0

ð�cxÞs 1
2pi

Z
L

U g;tð Þ �fxð Þ�gC m�xgð Þ xmþxs�xg�1

C mþxs�xgð Þdg;

M xð Þ¼ M0xm�1
X1
s¼0

ð�cxxxÞs 1
2pi

Z
L

U g;tð Þ �fxð Þ�gC m�xgð Þ ðxxÞ�g
C mþxs�xgð Þdg:

Finally, after rearrangement of terms, we obtained our desired
solution (23).

Theorem 2. Lett > 0; m > 0;x > 0; c > 0; f > 0; aj; bj;Aji;Bji 2 C;

Aj > 0 j ¼ 1; � � � ; pið Þ and Bj > 0 j ¼ 1; � � � ; qið Þ; then themodifiedFKE:
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MðxÞ�M0xm�1ðcÞ@m;n
pi ;qi ;ri ;r

�fxxx
a1;A1;tð Þ;ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

¼ �cx0D
�x
x M xð Þ; ð26Þ

has the solution as follows:

M xð Þ ¼ M0xm�1
X1
s¼0

ð�cxxxÞs

�ðcÞ@m;nþ1
piþ1;qiþ1;ri ;r

�fxxx
a1;A1;tð Þ; 1�m;xð Þ;ðaj;AjÞ2;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rj bji;Bji
� �� �

mþ1;qi
;ð1�m�xs;xÞ

�����
" #

:

ð27Þ
Proof. We can get the proof of Theorem 2, in the same way as

we did in Theorem 1.
5. Special cases

In this segment, we set up some significant corollaries of our
leading results

Corollary 1. Letm > 0;x > 0; c > 0; f > 0; aj; bj;Aji;Bji 2 C;Aj >

0 j ¼ 1; � � � ; pið Þ and Bj > 0 j ¼ 1; � � � ; qið Þ; then the modified FKE:

MðxÞ �M0xm�1@m;n
pi ;qi ;ri ;r

�fxxx
ðaj;AjÞ1;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rjðbji;BjiÞ
� �

mþ1;qi

�����
" #

¼ �cx0D
�x
x M xð Þ; ð28Þ

has holds the solution will be as follows:

M xð Þ ¼ M0xm�1
X1
s¼0

ð�cxxxÞs

�@m;nþ1
piþ1;qiþ1;ri ;r

�fxxx
1� m;xð Þ; ðaj;AjÞ1;n; rjðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; rj bji;Bji
� �� �

mþ1;qi
; ð1� m�xs;xÞ

�����
" #

ð29Þ
Proof. If we sett ¼ 0, in (22), we arrive at the required result in

terms of the Aleph-function (Chaurasia and Singh, 2012, 2014;
Südland et al., 1998, 2001) and which is known result recently
obtained by Dutta et al. (2011; p. 44, Eq. (17)).

Corollary 2. Lett > 0; m > 0;x > 0; c > 0; f > 0; aj; bj;Aji;Bji 2 C;

Aj > 0 j ¼ 1; � � � ; pið Þ and Bj > 0 j ¼ 1; � � � ; qið Þ; then themodifiedFKE:

MðxÞ �M0xm�1ðCÞIm;n
pi ;qi ;r

�fxxx
a1;A1; tð Þ; ðaj;AjÞ2;n; ðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; ðbji;BjiÞ
� �

mþ1;qi

�����
" #

¼ �cx0D
�x
x M xð Þ; ð30Þ

has the solution obtained in terms of the incomplete –I function
as follows:

M xð Þ ¼ M0xm�1
X1
s¼0

ð�cxxxÞs

�ðCÞIm;nþ1
piþ1;qiþ1;r �fxxx

a1;A1;tð Þ; 1�m;xð Þ;ðaj;AjÞ2;n; ðaji;AjiÞ
� �

nþ1;pi

ðbj;BjÞ1;m; bji;Bji
� �� �

mþ1;qi
;ð1�m�xs;xÞ

�����
" #

:

ð31Þ
Proof. If we set rj ¼ 1, in (22), we arrive at the required result

and which is recently attained by Bansal et al. (2020b; p. 5, Eq.
(26)).
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Corollary 3. Lett > 0; m > 0;x > 0; c > 0; f > 0; aj; bj;Aji;Bji 2 C;

Aj > 0 j ¼ 1; � � � ; pið Þ and Bj > 0 j ¼ 1; � � � ; qið Þ; then themodifiedFKE:

MðxÞ �M0xm�1ðcÞIm;n
pi ;qi ;r

�fxxx
a1;A1; tð Þ; ðaj;AjÞ2;n; ðaji;AjiÞ

� �
nþ1;pi

ðbj;BjÞ1;m; ðbji;BjiÞ
� �

mþ1;qi

�����
" #

¼ �cx0D
�x
x M xð Þ; ð32Þ

has holds the solution will be as follows:

M xð Þ ¼ M0xm�1
X1
s¼0

ð�cxxxÞs

�ðcÞIm;nþ1
piþ1;qiþ1;r �fxxx

a1;A1;tð Þ; 1�m;xð Þ;ðaj;AjÞ2;n; rjðaji;AjiÞ
� �

nþ1;pi

ðbj;BjÞ1;m; rj bji;Bji
� �� �

mþ1;qi
;ð1�m�xs;xÞ

�����
" #

:

ð33Þ
Proof. Again, if we set rj ¼ 1, in (26), we get the desired result

and which is recently attained by Bansal et al. (2020b; p. 6, Eq.
(28)).

Corollary 4. Letm > 0;x > 0; c > 0; f > 0; x 2 C (�1; 0Þ;l > 0;
d; k 2 C, then the modified FKE:

MðxÞ �M0xm�1Jld;kð�fxxxÞ ¼ �cx0D
�x
x M xð Þ ð34Þ

has holds the solution will be as follows:

M xð Þ¼M0xm�1
X1
s¼0

ð�cxxxÞs

�H1;2
2;4 �fxxx

1�m;xð Þ; kþ d
2 ;1

� �
kþ d

2 ;1
� �

; d
2 ;1
� �

; l kþ d
2

� ��k�d;l
� �

; 1�m�xs;xð Þ

�����
" #

:

Proof. If we assign suitable value to the parameters in (12), then
we have the following relation given in the monograph by Mathai
et al. (2010; p.25, Eq. (1.139)),

Jld;kðxÞ ¼ H
1;1

1;3

x2

4
kþ d

2 ;1
� �

kþ d
2 ;1

� �
; d

2 ;1
� �

; l kþ d
2

� �� k� d;l
� �����

� �
;

where Jld;kðxÞ is the generalized Bessel-Maitland function, and if we
use this relation in (22), then after little simplification, we obtained
the desired result given by (35).
6. Numerical simulation

In this part, we compute the results numerically for the MFKE
(22) by assigning separate values to the distinct variables and
parameters demonstrated through the Figs. 1–3. The effect of time
and order of R-L integral operator of arbitrary order on the reaction
rate is demonstrated in Figs. 1–3. It is observed from the Figs. 1–3
that the reaction rate decreases with enhancement of time and
continuously depends on the value of fractional parameter.
7. Conclusions

We summarize this investigation by keeping in mind the poten-
tial uses and greatness of the KE in astrophysical problems. The
objective of this paper is to figure out the reaction rate of particle
by making use of MFKE for stars. A lot of authors have contributed
to calculate the reaction rate of particle such as Saxena et al.
(2002); (2004a; 2004b; 2008;), have a huge contribution to sys-
tematically studied the standard KE and generalized to FKE and
expressed their results in the form of special functions which are
used to figure out the variation of chemical composition in our
solar system.



Fig. 2. Surface of solution when M0 ¼ 4; f ¼ 0 and c ¼ 0:7.

Fig. 1. Surface of solution when M0 ¼ 2; f ¼ 0 andc ¼ 0:7.

Fig. 3. Plots of solution when M0 ¼ 2; f ¼ 0 and c ¼ 0:7 for different values of
fractional parameter.
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In the present work, we have investigated the modified FKE and
derived the solution and this solution can play a vital role to figures
out the reaction rate of the particle and with this, we have also
established the Elazki transform of R-L integral operator and IAF.
The MFKE investigated in this article involving the incomplete
Aleph functions and established the results in terms of special
functions. From this work we can easily find out known and novel
FKEs and their results respectively. It should be noted that the
MFKE discussed here consist new and known results which are
obtained very recently by Bansal et al. (2020c), Dutta et al.
(2011), and these results hold here are also associated with the
6

recent investigation of feasible astrophysical solution of solar sys-
tem problems. In the solution of MFKE (6) given in Eqs. (23) and
(27), the standard exponential decay is obtained for x ¼ 1.

To validate the results discussed here, we plot the graphs and
compute the results numerically for MFKE at distinct values of
variables and parameters to show the behavior of reaction rate
decreases with enhancement of time and continuously depends
on the value of fractional parameter. All the novel results derived
in this article have been come out by the use of incomplete special
function for fractional calculus, notably the incomplete Aleph func-
tions and by the application of the Elzaki transform.

Finally, the current investigation highlights the effectiveness
and greatness of the MFKE involving the IAF by using the Elzaki
transform and on the basis of this study we can say that it would
be potentially useful in astrophysics. Such a potential connection
needs further investigation.
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