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Image manipulation has become widely accessible to the masses over the past years due to the sophis-
ticated image editing tools which are readily-available and easy to use. As a result, image forgery has
increased such that it has become infeasible to discriminate authentic from tampered images with the
naked eye. Image forgery plays a prominent role in the spread of misinformation, which might be crim-
inalized under certain jurisdictions. Image splicing is a common type of image manipulation and consti-
tutes one of the most widespread image tampering methods on the internet. Efforts have been made to
tackle the implications of image forgery by developing computer algorithms that can discriminate tam-
pered images, however, more research is needed to keep up with the advancements of image editing
tools. Previously, we have explored fractional calculus in other image processing applications. In this
study, we propose a novel pixel’s fractional mean (PFM) algorithm to enhance images prior to classifica-
tion for better detection of image splicing forgery based on texture features. The proposed PFM enhances
each pixel separately depending on the occurrence number of the pixel’s intensity. Two sets of texture
algorithms are used to extract essential features from suspected spliced images. These features are then
used with the ‘‘support vector machine” (SVM) classifier to classify authentic and spliced images. The
proposed model demonstrated an accuracy rate of 97% when evaluated with the publicly-available image
splicing dataset ‘‘CASIA v2.0”. With a relatively low dimension feature vector, the proposed model
demonstrates high accuracy and efficiency, which corroborate the benefit of using fractional calculus
in image processing algorithms.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Identifying tampered images has been one of the primary chal-
lenges in image forensics research ever since the conception of dig-
ital image editing software. The field of image forensics deals with
the detection and analysis of image features that may reveal the
authenticity of the image. Image editing tools have boomed over
the past decade due to increased demand for image enhancements
and due to the increased computational power of personal devices.
Such tools are now available on personal computers, mobile
devices, and online, and offer different features according to each
type of software. Generally, they facilitate image tampering
through processes such as splicing, color enhancements and
manipulation, spot-healing, blurring, and many others. Even
though the implications of image forgery are outside the scope of
this discussion, it is noteworthy that the act of image manipulation
can be used for malicious purposes which may lead to deception
and the spread of misinformation. Thus, there is always a need to
develop new algorithms that can keep up with the advancements
of image editing tools.

Image splicing is a typical image manipulation method that
involves combining and merging parts from different images to
generate a composite forged image, as illustrated in Fig. 1 (A).
The generated forged image will have a disturbed pattern due to
the insertion of the spliced region from another image. This mani-
fests as artifacts that can be perceived as inconsistencies across the
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Fig. 1. Example of image splicing and the texture distortion that occurs due to the manipulation. (A) Shows the basic process of splicing (B) shows the change in the texture
features which can facilitate splicing detection.
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image. These artifacts can be exploited to design algorithms to
detect the splicing operation. For instance, the texture of an image
becomes distorted following the splicing operation. Since the
parameters of textures are mathematical representations of the
features of the image, this enables algorithms to detect splicing
manipulation through texture features. Fig. 1 (B) presents exam-
ples of how the image texture is distorted following the splicing
operation. The motivation to propose image splicing is that the tex-
tural features are directly influenced by the splicing process by
providing the quantitative basis to discriminate between authentic
and spliced images.

The image is processed in image forensics using two basic
detection methods: active and passive. (Al-Azawi et al., 2021;
Sadeghi et al., 2018). The inclusion of additional information intro-
duced into the image prior to distribution, such as in the case of
digital watermarking, is known as active detection. (Kapse et al.,
2018). Passive detection, on the other hand, uses statistical meth-
ods to identify changes in an image’s features (El-Latif et al., 2019).
Over the years, many passive algorithms for the detection of image
splicing have been proposed. For feature extraction, these algo-
rithms use a variety of algorithms, including the ‘‘Local Binary Pat-
tern” (LBP), Markov model, and deep learning. For instance, Zhang
et al. (2015) proposed image splicing detection algorithm that is
based on the ‘‘Discrete Cosine Transform” (DCT) and LBP. In this
algorithm, the input image, which is colored, is divided into
multi-sized blocks. To each of these blocks, the DCT is applied,
and for each block, LBP is used to extract features. The obtained
LBP histograms are then linked together to generate the feature
vector which is used with SVM for the classification of spliced
images. Despite the demonstrated accuracy of this method, LBP
can be impeding when dealing with the edges of an image. Alter-
natively, for the second type, the work presented in (Shi et al.,
2007) uses statistics-based feature extraction methods to create a
splicing detection algorithm. In this algorithm, the authors utilized
transition probabilities of Markov and wavelet sub-bands
moments of characteristic functions. This approach reportedly
achieved a detection accuracy of 91.8%. Similarly, a splicing detec-
tion algorithm has been proposed in (Zhang et al., 2009) based on
the merging of the features of Markov and DCT and 109-D feature
vector. This algorithm managed to achieve an accuracy rate of
91.5%.
2

As for the third type, a deep learning-based algorithm for uni-
versal use in image forensics has been proposed in (Bayar and
Stamm, 2016). This algorithm utilizes a CNN with a novel convolu-
tional layer that can learn features related to image manipulation
as opposed to the classical approach that learns features related
to the contents of an image. In that sense, the algorithm needs nei-
ther preprocessing nor a set of pre-selected features to detect
image manipulations. The approach managed to detect different
forms of image manipulations with an accuracy of 99.10%. A simi-
lar deep-learning based algorithm has been proposed in (El-Latif
et al., 2019). However, this algorithm employs PCA to reduce fea-
tures dimension, which makes it more efficient compared to the
one proposed in (Bayar and Stamm, 2016). In (Rao et al., 2020),
local feature descriptor-based image splicing detection algorithm
utilizing a two-branch CNN is proposed. This algorithm reportedly
achieved an accuracy rate of 96.97% with the SVM classifier and the
‘‘CASIA V2.0” dataset.

It can be concluded from the above discussion that the types of
features which are extracted from input images play a key role in
shaping the overall performance of the detection and classification
process.

Along the same lines, preprocessing is often employed to
enhance the details of the input images to make it easier to extract
essential information from the image. Preprocessing steps gener-
ally aim to improve the contrast and reduce the loss of details such
that the output image would contain better details for feature
extraction. Preprocessing may significantly improve the perfor-
mance of the classification algorithm due to its direct effect on
the image features. Therefore, in this study, we present a new pix-
el’s fractional mean (PFM) algorithm to enhance the quality of
input images in the preprocessing step to obtain better detection
accuracy of spliced images. The proposed PFM aims to preserve
low-frequency features in smooth areas of the image while still
enhancing texture details without changing gray level.

Many fractional calculus-based image enhancement techniques
have been used to improve the contents of an image for various
applications. A Riesz fractional model-based image enhancement
model was proposed for enhancing text images in license plate
images (Raghunandan et al., 2018). Another approach for the
image enhancement was proposed by (Roy et al., 2016) based on
fractional Poisson for enhancing text within video. These two
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image enhancement methods are not robust enough in the case of
low contrast text, because these two methods are only enhancing
the text edges. Moreover, an image enhancement model based
on adaptive fractional differential mask was proposed by (Zhang
and Yan, 2019). This approach used image segmentation as well
as the fractional order differential mask approach for image
enhancement.

Recently, (Ibrahim et al., 2022) presented a new fractional par-
tial differential (FPDE) model with some geometric functions for
enhancing medical images. In this study the of FPDE model
enhanced the image intensities with efficiently.

Our proposed PFM is based on fractional calculus, which has
applications in various physical and engineering disciplines. Previ-
ously, we have utilized fractional calculus in a number of image
processing algorithms, such as image denoising (Jalab, 2021;
Jalab et al., 2017; Jalab et al., 2019; Moghaddasi et al., 2014), where
we were able to demonstrate the benefit of using fractional calcu-
lus in the aforementioned applications. Here, we aimed to evaluate
whether using it as part of the preprocessing step of image splicing
detection model would yield favorable outcomes. The main contri-
butions of present image splicing detection study are:

1. Propose a novel pixel’s fractional mean image enhancement
model for better image splicing forgery detection.

2. Propose an efficient algorithm for image splicing detection
using two sets of texture algorithms for extracting the essential
image features from suspected spliced images.

2. The proposed model

The main objective of this study is to improve the detection of
image splicing by using a novel ‘‘fractional operators image
enhancement” technique (FOIE). Fig. 2 shows the main steps of
Preprocessing

• RGB to YCrCb
• PFM enhancement

Features Extraction

• HOG and GLCM

Fe

• M
s

Fig. 2. The proposed mo

Fig. 3. Illustration of preprocessing of a sample RGB image from the reference dataset.
feature extraction.

3

the proposed model, which include preprocessing (where the
RGB image is converted into YCbCr, and then enhanced using the
proposed PFM), features extraction, dimension reduction, and
classification.

2.1. Preprocessing

In the proposed model, we rely on preprocessing to ensure a
better features extraction process which will improve the accuracy
of the algorithm later on.

2.1.1. Chroma space
In this step, the input RGB image is converted to the YCbCr color

space. The RGB space is the most popular and widely used color
space in digital imaging. It simply represents the intensities of
the red, green, and blue colors. Although RGB has its own advan-
tages over the other color spaces, it is not suitable for use with
splicing detection because in RGB, the correlation between red,
green, and blue colors is very high, and the chromatic and achro-
matic information cannot be differentiated. We previously demon-
strated the advantage of using the YCbCr color space in forgery
detection through another algorithm (Moghaddasi et al., 2014;
Subramaniam et al., 2019). In short, the YCbCr represents the lumi-
nance (Y), blue difference (Cb) and red difference (Cr) chrominance
components, respectively. We chose Cb in our present study. Fig. 3
shows an RGB image and its YCbCr counterpart with the corre-
sponding channels.

2.1.2. Proposed image enhancement algorithm
Here, we explore new fractional operators to enhance and pre-

serve the fine details of the images for the purpose of image splic-
ing detection. The fractional operator is one of the significant
approaches in fractional analysis, which is utilized to measure
atures Reduction

ean, variance, and 
kewness

Classification

• “SVM” 

del’s block diagram.

The obtained Cb images are subsequently enhanced by PFM and are then used for



Fig. 4. The enhancement results of the proposed PFM. (A) The original spliced images, (B) the Cb converted images, (C) the PFM-enhanced images.
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the fractional structures of images. This approach is widely utilized
for resolving complex problems in image processing (Jalab, 2021;
Jalab et al., 2017; Jalab et al., 2019). We obtain the generalized frac-
tional image enhancement method by using the fractional operator
(Ibrahim, 2011) as follows:

Dv ;x
, # ,ð Þ :¼ 1

N
xþ1ð Þv
C 1�vð Þ

d
d,

R ,
0

,x# ,ð Þ
,xþ1�,xþ1ð Þv d,;v� 0;1ð �;x � 0# 1ð Þ

where m,x are the fractional operators.
Because the dimension in image processing is commonly con-

sidered to be two dimensions, it is convenient to use the two-
dimensional parmetric operator as specified in Eq (1). More than,
we consider the sample mean which is the arithmetic average of
the values of pixels in an image. By applying the discrete formula
of Eq. (1), we obtain the following expression for pixel’s fraction
mean D ,ð Þ:

For a function , in a fractional set, and v, and x > 1 then, the
mean of image pixels (D (,)) satisfies the following:

D ,ð Þ ¼ 1
N

PN
n¼1

1þxð Þv�1C 1þ n
1þxð Þ

C 1þ n
1þx�vð Þ , 1�vð Þ 1þxð Þ# 2ð Þ

, is the image’s pixel probability, N is the total number of image
pixels, and D ,ð Þ is the fractional mean parameter for input image
pixels.

The image enhanced by the proposed FOIE (Ien) will be the
result of the multiplication of the input image I with the mean
parameter D, as follows:

Ien ¼ IxD ,ð Þ# 3ð Þ
The effects attained by the proposed PFM for a set of sample

images are shown in Fig. 4 (C). It is noted from Fig. 4(B) that one
may not be able to directly notice the abrupt changes caused by
4

the splicing operation. However, when applying the PFM for
enhancement as shown in Fig. 4 (C), the spliced regions become
clearer and brighter. It can be seen that the proposed PFM
enhances the details and the structure of tampered objects despite
the overall noise and blur that affect the images.

The enhancement of the low visibility regions in the input
images is attributed to the ability of PFM to dynamically extract
the illumination values from the pixels of the input image. The
logic behind using PFM in image enhancement lies in its capability
to capture the details of the image according to the pixel’s proba-
bility, as well as to capture the high frequency details of an image,
irrespective of noise, blur, and distortion created by the forgery
operations. This signifies the contribution of PFM in this work. It
can be concluded that PFM helps to widen the differences between
the pixel values between authentic and tampered images.

In the preprocessing step, the image is broken up into several
non-overlapping blocks with size of 16 � 16, and then the pixel
intensity occurrences number is calculated. The algorithm for
extracting the PFM for each block is based on Eq. (2) and is pre-
sented in Algorithm 1.

Algorithm 1: Pixel’s fractional mean (PFM)

1. Initialization: I = Input image, set the fractional power
x = 1.6

2. For each Input image I
3. [k1, k2, . . ., kn] split I into non-overlapped blocks size of

r � r pixels
4. For i = 1 to n
5. PFMv ;w  I // PFM is calculated as defined in Eq. (2)
6. EndFor
7. EndFor
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In the proposed PFM, the two fractional operators (x and v) play a
vital role in achieving better enhancement results. To determine the
optimal values that can give the best results across different data-
sets, 500 random samples were chosen from all the categories of
the dataset and NIQE was calculated for x when v = 1.5, as shown
in Fig. 5. Thex value has been selected experimentally as illustrated
in Fig. 5. It can be seen that when x value is 1.6, the proposed
method reaches the best NIQE score (lower is better and when
x = 1.6, NIQE is at its lowest). Therefore, the value of x has been
set to 1.6 across all of the experiments mentioned in this study.
NIQE was utilized because it is a no-reference image quality score
for measuring the quality of images that are affected by arbitrary
distortions.
2.2. Feature extraction

Our proposed model is based on the extraction of low dimen-
sion features for the detection of image splicing. We primarily deal
with the image artifacts that manifest as inconsistencies which can
be seen in the tampered image. Specifically, we are concerned with
the texture of the image which is altered as a result of the splicing
process.

For this study, we considered the effect of the textural features
of the tampered regions in forged images, which are represented
by the individual pixel’s statistical properties such as the mean,
variance, skewness, and kurtosis, in addition to the relation
between pixels. For this, we considered the following: ‘‘Histogram
of Oriented Gradient” (HOG) and ‘‘Gray-Level Co-Occurrence
Matrix” (GLCM) (Dalal and Triggs, 2005).

1. HOG allows the measurement of the histograms of gradient
directions (Dalal and Triggs, 2005). It describes the distribution
of the directions of the local pixel intensities in each region of
the image. This is done by dividing the image into smaller
regions and creating 1-D gradient orientation histogram for
each region. The direction and magnitude of the gradient, which
are later used to obtain the HOG, are determined from the pix-
els found inside the given region. 13824 HOG textural features
are obtained in total for every Cb image.

2. GLCM characterizes the texture of an image by considering the
spatial relationship of pixels. It describes the frequency at
which pixel pairs of certain values and spatial relationships
Fig. 5. Showing the relationship between NIQE and x. The value of the parameterx
is determined based on the lowest NIQE score.
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occur in a grey-level image via a statistical measure. We used
GLCM in the proposed work in four directions which indicate
the offset between a pair of pixels. These directions are
expressed as degrees (0�, 45�, 90�, 135�) where each one repre-
sents the neighborhood of the pixel i. In the present model, the
offset is calculated by a pixel-long distance expressed as [0 1;
�1 1; �1 0; �1–1] for all of the four directions. Fundamentally,
for each element (i,j) in the GLCM matrix, the occurrence of the
pixel with value ‘i’ in the direction to the pixel with value ‘j’ in
image P is given. We employed GLCM to obtain a measure of the
following features: contrast, correlation, energy, and homo-
geneity, which are described as follows:

Contrast ¼P
i� jj j2p i; jð Þ# 4ð Þ

The product of Eq. (4) represents the contrast between the given
pixel and its neighborhood in the whole image, where it is equal to
0 if the image is constant.

Correlation ¼P i�lið Þ j�ljð Þp i;jð Þ
rirj

# 5ð Þ

The correlation represents the joint probability occurrence of
the given pairs of pixels as formulated in Eq. (5), where m and r
represent the mean and standard deviation of pixel i and pixel j
respectively. The product of the equation specifies the extent to
which two neighbors are perfectly correlated. Correlation is always
expressed as values within the range of [�1,1] where a completely
positively-correlated image has a correlation of +1, and a com-
pletely negatively-correlated image has a correlation of �1.

Energy ¼P
p i; jð Þ2# 6ð Þ

Energy measures the angular second moment of an image. The
equation in Eq. (6) represents the sum of squared elements in the
GLCM. The values of energy range from 0 to 1, where the energy is
equal to 1 if the image is constant.

Homogeneity ¼P p i;ið Þ
1þ i�jj j# 7ð Þ

Homogeneity provides a measure of how close the diagonal dis-
tribution of elements is in GLCM. Given in Eq. (7), the homogeneity
values range from 0 to 1.

Overall, we extract (4 � 4) GLCM texture features by applying
the aforementioned equations. Therefore, 1536 textural features
from every Cb image are extracted from the GLCM for the purpose
of splicing detection.

As mentioned previously, textural features are directly affected
by the splicing operation such that any disturbances can be
detected by the splicing detection algorithm. The distribution of
textural features provides a quantitative basis to discriminate
between authentic and spliced images. This behavior is illustrated
in the scatter plot shown Fig. 6, in terms of the mean and standard
deviation. Such plot allows us to demonstrate that the classifica-
tion classes (i.e., authentic, and tampered) are distinctive, and
can indeed be separated. From the figure, it can be noticed that
the features are divided into two categories: ‘‘authentic” and
‘‘tampered”.

2.3. Dimension reduction

Reducing the dimensionality of features is needed to be imple-
mented to reduce the computational overhead and resources allo-
cation. This ensures that the algorithm is operating at optimal and
efficient settings, which leads to performance gains during the
training and testing phases. Dimension reduction is carried out
by removing non-essential features from the feature vector. The
resulting feature vector would contain only essential features that
give the best representation of the image.



Fig. 6. The feature distribution of authentic and spliced images from the reference
database.
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In the present work, the mean, variance, and skewness are used
to reduce the dimensionality of the data where these values are
calculated for each feature set extracted by HOG and GLCM. At
the end of feature reduction, the final feature vector would com-
prise sets of 28 features (12 from HOG and 16 from GLCM). The for-
mer is subsequently used by the SVM classifier to conduct the
classification step
2.4. The classification

The proposed work employs the SVM classifier which is a well-
known and is applied in different applications, such as pattern
recognition and classification. The code for this classifier is accessi-
ble through MATLAB R2021b (The Mathworks (2021). ‘‘Matlab”.).

The SVM is a binary classifier works to divide images into two
classes based on a kernel function (RBF). The SVM classification
includes the split of the image’s dataset into training and testing.

In this study, 5-fold cross-validation is implemented. The data-
set is divided into 5 subsets, and the main method is repeated 5
times, where in each iteration, 70% of the images are used for train-
ing, and the remaining 30% are used for testing. Additionally, for
each iteration, one of the five subsets is used for testing while
the rest are used for training. The setting ensures that every image
is used for training and testing, thus eliminating any possible bias
that could arise due to manual selection of data.
3. Experimental results and discussion

All the tests and coding were implemented using MATLAB
2021b.
Table 1
Comparison between the proposed model and other image splicing detection methods on

Feature Extraction Methods Features Dimensions

Moghaddasi et al. (2014) Cb color space 50
Jaiprakash et al. (2020) Cr color space 212
Li et al. (2017) 972
El-Latif et al. (2019) 1024
Subramaniam et al. (2019) CbCr color space 48
Proposed Method Cb 28
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3.1. Image dataset

We used the publicly-available ‘‘CASIA V2.0” dataset in our pre-
sent study (CASIA Tampered Image Detection Evaluation Database
(CASIA TIDE v2.0)). This dataset is widely used in splicing detec-
tion. The dataset contains 12,614 images in total, of which 7491
(60%) are authentic, and 5123 (40%) are spliced. The images are
classified into several categories and are offered in JPG, TIF, BMP
image formats.

3.2. Evaluation metrics

Accuracy, true positive rate (TPR), and true negative rate (TNR)
metrics were used to evaluate the performance of the proposed
model. These metrics were calculated as follows:

TPR ¼ TP
TPþFN# 8ð Þ

TNR ¼ TN
TNþFP# 9ð Þ

Accuracy ¼ TPþTN
TPþTNþFNþFP# 10ð Þ

where TP (‘‘True Positive”) and TN (‘‘True Negative”) indicate the
number of spliced and original images that have been appropriately
classified, whereas FN (‘‘False Negative”) and FP (‘‘False Positive”)
represent the number of spliced and original images that are mis-
takenly labeled.

The results reveal that the proposed method is capable of
achieving TPR, TNR, and accuracy rates of 98.80%, 98%, and
98.40% respectively with 28-D vector obtained from the CASIA
V2.0 dataset (see Table 1). Another way to validate the classifica-
tion results is using the ‘‘reception operating characteristic”
(ROC) curve and its score (‘‘area under the curve” AUC). This curve
presents the classification performance at all thresholds by plot-
ting the TP and FP rates. We constructed an ROC curve for the pro-
posed model with the CASIA V2.0 dataset as shown in Fig. 7. From
the figure, the AUC is equal to 0.99 (higher is better), which indi-
cates better and improved separation of the classification classes.

3.3. Comparison with other image splicing detection algorithms

The proposed algorithm’s performance was compared to those
of similar state-of-the-art splicing detection approaches to verify
its robustness. These include the following: Moghaddasi et al
(2014) applied the ‘‘run length run number” algorithm along with
PCA and kernel PCA for feature reduction to detect image splicing.
This method achieved an accuracy rate of 93.80% with 100-D fea-
ture vector. Jaiprakash et al (2020) utilized image statistics and
pixel correlation obtained from DCT and DWT domains to detect
splicing and copy-move forgeries. The achieved accuracy by this
method was 89.5% with 212-D feature vector. Li et al. (2017)
employed Markov feature vector in quaternion discrete cosine
transform to detect image splicing through the use of SVM. Their
method achieved an accuracy rate of 92.38% with feature dimen-
CASIA 2.0 dataset.

TPR (%) TNR (%) Accuracy (%)

87.97 93.51 90.74
89.10 90.90 89.50
49.00 93.00 92.38
96.00 96.45 96.36
99 96 97.90
98.80 98.00 98.40



Fig. 7. The ROC curve for the proposed model using the CASIA V2.0.
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sion of 972. El-Latif et al. (2019) proposed an algorithm for the
detection of image splicing using deep learning with 1024-D vector
for an automated generation of features from colored images.
Despite the high accuracy of the method, which is comparable to
ours, deep learning requires large overhead and thorough datasets,
with limited hardware support. This can be considered as a disad-
vantage when aiming to develop an efficient algorithm.

Table 1 shows the results of the relative comparison between
our method and the referenced state-of-the-art methods (El-Latif
et al., 2019; Jaiprakash et al., 2020; Li et al., 2017; Moghaddasi
et al., 2014; Subramaniam et al., 2019).

The experimental results showed that the proposed method
achieved the highest splicing detection results, which showed
how good the proposed method in detecting the spliced and
authentic images. Moreover, the (Subramaniam et al., 2019)
achieved the second highest accuracy among the five other
methods.

The results shown in the table confirm that the proposed
method achieves the highest accuracy with the lowest number of
feature dimensions. This attest to the efficacy and reliability of
the method, and further proves the benefit of using fractional cal-
culus in image processing.

4. The limitations

1. The proposed image enhancement process is dependent upon
the value x, which is determined experimentally.

2. The limitation of the proposed method of image splicing detec-
tion is associated with the feature dimension reduction which
can lead to reduce the detection accuracy due to data loss of
extracted image features.

5. Conclusion

We proposed a novel PFM algorithm to enhance the quality of
images in a new approach to improve the accuracy of the image
splicing detection. The proposed PFM aims to preserve low-
frequency features in the smooth regions of the image while still
enhancing the details of textures. We extracted the texture fea-
tures using both GLCM and HOG approaches to obtain features that
represent the manipulations done to the image. Feature reduction
7

was implemented to improve the overall efficiency of the method.
The proposed method demonstrated an accuracy rate of 98.40%
with feature dimension of 28 when assessed using the CASIA
V2.0 dataset. This proves that the method can provide accurate
identification of spliced images. The proposed method is advanta-
geous over similar methods in the sense that it achieves high clas-
sification accuracy with the lowest number of feature dimensions.
Future works may aim to utilize the present algorithm to detect
other types of image forgeries.
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