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In this study, nitrogen-nitrogen bonds containing compounds such as hydrazine derivatives are exam-
ined. There are relatively few hydrazine molecules in nature, but some have been isolated from plants,
marine organisms and microorganisms. Thus, hydrazine molecules are widely used in the manufacture
of synthetic catalysts, agriculture chemicals, pesticides, and also cause irreversible pollution to air, water,
and soil. Hydrazine compounds were evaluated via larvicidal profile in a stagnant water system.
According to the above observation, new 1H-pyrazolo[3,4-b]pyridin-3(2H)-one derivatives can be syn-
thesized via catalyst free green chemistry approach. A range of FT-IR spectroscopic measures, 1H and
13C NMR, as well as mass spectra, were used to characterize the compounds (2a-e). The compound 2e
was more potent (95,6% mortality, LD50: 20.1 mg/ mL) against Culex quinquefasciatus than natural pyrazo-
lidine derivatives. Therefore, the objective of this study, prospered with a few of the pyrzolopyridine
hydrazine models, which are demonstrated to be low toxic environmentally safe and high potential lar-
vicidal profile.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Environmental pollution, energy shortage and global warming
pose serious challenges to sustainable development. Energy
sources that are clean, renewable, and sustainable are imperative
in solving these problems. Hydrazine is a chemical precursor to
several pharmaceuticals and pesticides. Hydrazine is often con-
verted to heterocyclic rings such as pyrazoles and pyridazines for
these applications. In addition to insecticides, miticides, nemati-
cides, fungicides, antiviral agents, and attractants, hydrazine com-
pounds can also be used as herbicides and plant growth regulators.

Hydrazine organic matter: Organic matter increased the degra-
dation rate of hydrazine (Eimoori et al., 2020). Alkali and neutral
conditions make hydrazine solutions unstable, but in strongly
acidic or oxygen-free conditions, they are relatively stable
(Moliner and Street, 1989). In the hydrosphere, hydrazine decom-
poses primarily through biodegradation and autoxidation. Aqu-
eous biodegradation is driven primarily by bacterial abundance
in the water column (Jingqiu et al., 1994). Nitrogen gas is produced
by autooxidation when four electrons are oxidized (Slonim and
Gisclard, 1979). At this time, the effectiveness of auto-oxidation
is determined by the following factors: copper ion concentration,
mineral content, pH, and the content of organic matter in the water
(Jingqiu et al., 1994).

Hydralazine is primarily degraded by oxidation in water, but
biodegradation can also occur (Choudhary and Hansen, 1998).
Hydralazine half-life is affected by aquatic conditions, and alkaline
solutions and metal ions promote its degradation. Temperature,
water hardness, organic matter concentration, and dissolved oxy-
gen concentration are factors affecting degradation (Atkinson and
Carter, 1984). As shown by the degradation rate of hydrazine in
waters with diverse characteristics, this is evident. Water dissolved
in a polluted source of hydrazine degraded by nearly 66% in 2 h,
while water chlorinated for potable use degraded by roughly 90%
after 1 day and almost completely no reduction at 4 days
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(Slonim and Gisclard, 1979). It is attributed to the low organic mat-
ter and hardness of the water that the potable water decays slower
(Choudhary and Hansen, 1998). Hydrazine in pond water has been
reported to have a half-life of 8.3 days. Femur samples have been
extracted and enzymatic with hydrazine. It is known that the
bones contain functional groups of carbonate (CO3

2�) and phos-
phate (PO4

3�), as evidenced by their characteristic bands.
Natural hydrazine: This review will focus on the studies of nat-

ural products containing the pyrazole nucleus and exploring and
highlighting their potential since pyrazole nucleus is very impor-
tant in medicinal chemistry (Vinod et al., 2013). Currently
pyrazole-containing natural products include: withasomnine,
pyrazofurin, formycin, oxoformycin, nostocine, and fluviol nos-
tocine were produced by N2-fixing freshwater cyanobacteria, as
shown in Fig. 1 (Hirata et al., 2004).

Sustainability of hydrazine: The reaction of hydrazine with NH3

(pathway 2) is thermodynamically favorable. The decomposition
reaction is also influenced by the catalyst applied and conditions
(such as temperature and pressure) (Agusta et al., 2010). Hydrogen
production is reduced due to the formation of ammonia during
hydrazine decomposition (Dai et al., 2017). Hydrazine is a danger-
ous and toxic compound, containing carcinogenic, poisonous, haz-
ardous, cyanogenic, and nephrotoxic properties (Guo et al., 2010).
Hydrazine hydrates are used in a variety of applications, including
fungicides, regulators in plant growth, dyes and photographic
chemicals, pharmaceuticals, agrochemicals, rocket fuel, spacecraft
fuel, and explosives (Gholiv and Azadbakht, 2011). Hydrazine tox-
icity can cause irritation of the eyes and nose, loss of short-term
vision, fainting, vomiting, respiratory edema, liver dysfunction,
and unconsciousness (Casella et al., 1997). A skin absorption of
hydrazine can lead to burning and impair blood flow (Salimi
et al., 2008).
Fig. 1. Larvicidal interaction of natural pyrazole and de

2

Mosquito larvicidal: Every year, mosquitoes transmit diseases
such as malaria, filariasis, dengue fever, and yellow fever, which
cause millions of deaths (James, 1992). Mosquito larvae are the
vector of these diseases, and therefore the only way to prevent
their transmission. A larvicidal chemical is typically applied con-
tinuously, such as organophosphates and insect growth regulators
(Yang et al., 2002). Repetition of spraying these chemicals may
cause non target populations to become resistant to them (Cheng
et al., 2008). The Culex quinquefasciatus species is particularly
responsible for vector-spread diseases. Larvicides are insecticides
that kill larvae of insects. Methoprene inhibits larvae from devel-
oping significantly after pupa stage. The Culex quinquefasciatus
mosquito vector is common to both urban and rural areas
(Alvarez et al., 2006). Botanical insecticide studies have been con-
ducted in recent years to come up with alternatives to synthetic
insecticides (Scott, et al., 2003).

They are biodegradable, natural, low-toxicity, and biodegrad-
able, and can be used as insecticide, larvicide, antifeedants, repel-
lents, discouragement agents, and growth inhibitors (Isman,
2006). We cannot continue to use synthetic insecticides that cause
environmental problems in soil, water, and air, and contaminated
animals and food. 1H-pyrrolo[3,4-b]pyridin-5(2H)-one : Pyrazo
[3,4-b]pyridin-3-ones are fused heterocyclic molecules that have
antispasmodic (Paronikyan et al., 2001), cytotoxic (Manpadi
et al., 2007) properties, and inhibit hormone-sensitive lipases as
well.

Pyrazo[3,4-b]pyridines play an important role in pharmaceuti-
cal research, particularly as antimicrobials, antimalarials, antivi-
rals, antiproliferative, anticoagulant, hypotensive, and
antiarrhythmics (Foks et al., 2005). Pyrazo[3,4-b]pyridines have
been reported to be condensed with a type of microwave-
assisted synthesis (Dyadyuchenko and Dmitrieva, 2020).
sign target of pyrazolo[3,4-b]pyridine derivatives.
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There is a broad spectrum of biological activity in the 1H-
pyrazolo[3,4-b]pyridine framework (Fig. 1) (Beutner et al., 2009).
In the past decade, studies have demonstrated that 1H-pyrazolo
[3,4-b]pyridines possess antiviral properties, antitumor (Straub
et al., 2002), anti-inflammatory (Tucker et al., 2008), and antimi-
crobial (Ye et al., 2009). Besides herbicides and fungicides, pyra-
zoles are also used as agrochemicals (Giornal et al., 2013).
Mosquitoes are controlled primarily by chemical insecticides
(Bowman et al., 2016), due to their inherently toxic properties
and non-target effects, they are difficult to use (Jayaraj et al., 2016).

A variety of larval active targets have been published previ-
ously, however chemical insecticides pose greater challenges due
to resistance development and disruption of the natural biological
control system (Yang et al., 2013). In order to overcome these prob-
lems, we have developed pyrrolidine derivatives as new mosquito
larvae inhibitors through green technologies.

2. Materials and methods

Chemicals were bought from Sigma-Aldrich Chemicals. Shi-
madzu 8201pc records FT IR (4000–400 cm�1). Recordings of 1H
and 13C NMR via BRUKER- (300 MHz & 75 MHz, respectively) in
DMSO d6. Fluorescence indicators were used for purity checking
by thin layer chromatography.

2.1. Procedure for synthesizing compound 1a-1e

A reaction mixture, pyrazolidine-3,5-dione (0.01 mmol, 1.0 mg),
and phenylhydrazine (0.01 mmol, 1.08 mg) were mixed and heat
with 100 �C to gives 1a compound 5-(2-phenylhydrazinyl)-1H-
pyrazol-3(2H)-one with 98% of yield. The above same method fol-
lowed from compounds (1b-e). The above procedure was followed
for compounds (1b-e) as well.

2.2. Procedure for synthesizing compounds 2a-2e

The compound 1a (0.01 mol, 1.90 mg) was reacted with cin-
namaldehyde (0.01 mol, 1.32 mg) in ethanol medium with reflux
10 hr at RT. After that mixture was filtered, solid material was
obtained, then washed with distilled water for soiled materials.
By using column chromatography (Ethyl acetate 4: hexane 6), the
final solid material has been separated. The above procedure was
followed for compounds (2b-e) as well.

2.3. 7-benzyl-6-phenyl-6,7-dihydro-1H-pyrazolo[3,4-b]pyridin-3
(2H)-one (2a)

Yellow solid; yield 87%; mw: 303.36; Solubility in water: 4.23 g/
L (25 �C); mp: 198 �C; IR (cm�1): 3358 (NH), 3174 (Ar-H), 2724 (Ph-
CHstr), 1625 (C@O); 1H NMR (300 MHz): d 9.34 (1H, s, NH), 7.48
(1H, s, NH), 7.33 (2H, t, J = 6.23, Ph), 7.22(1H, t, J = 6.23 Hz, Ph),
7.21(2H, d, J = 6.21 Hz, Ph), 7.33 (t, 2H), 7.24(t, 1H, J = 6.23 Hz),
7.21(d, 2H, J = 6.21 Hz), 6.25 (d, 1H, J = 6.21 Hz), 6.17 (d, 1H,
J = 6.21 Hz), 4.59 (1H, s, CH-Ph), 3.81 (s, 2H); 13C NMR
(300 MHz): 163.7, 167.1, 119.4, 116.4, 84.4, 138.1, 128.5, 127.9,
127.0, 136.1, 128.5, 127.9, 127.0, 60.5, 50.4 (1C, –CH2); EI-MS (m/
z): 304.14 (M+,21%); Elemental analysis: Calcd. For (C19H17N3O):
C, 75.23; H, 5.65; N, 13.85%; Found: C, 75.20; H, 5.66; N, 13.84%.

2.4. 7-(benzylideneamino)-6-phenyl-6,7-dihydro-1H-pyrazolo[3,4-b]
pyridin-3(2H)-one (2b)

Yellow solid; yield 89% ; mw: 316.36; Solubility in water:
3.87 g/L (25 �C); mp: 158 �C; IR (cm�1): 3354 (NH), 3170 (Ar-H),
2720 (Ph-CHstr), 1621 (C@O), 1540 ; 1H NMR (300 MHz): d 9.32
3

(s, 1H, NH), 8.52(s, 1H), 7.46 (s, 1H, NH), 7.33 (2H, t, J = 6.23),
7.26 (t, 1H, J = 6.23 Hz), 7.23 (d, 2H, J = 6.21 Hz), 7.83 (t, 2H,
J = 6.23 Hz), 7.54 (m, 3H), 6.25 (d, 1H, J = 6.21 Hz), 6.17 (d, 1H,
J = 6.21 Hz), 4.59 (1H, s, CH-Ph); 13C NMR (300 MHz, DMSO d6):
163.3, 164.1, 146.9, 119.1, 116.2, 88.4, 143.5, 128.1, 126.2, 125.1,
133.5, 131.2, 129.8, 128.1, 63.2 (1C, –CH-Ph); EI-MS (m/z):
317.14 (M+,21%); Elemental analysis: Calcd. For (C19H16N4O): C,
72.13; H, 5.10; N, 17.71%; Found: C, 72.10; H, 5.12; N, 17.70%.

2.4.1. 6-phenyl-7-((3-phenylallylidene)amino)-6,7-dihydro-1H-
pyrazolo[3,4-b]pyri din �3-(2H)-one (2c)

Yellow solid; yield 91% ; mw: 342.39; Solubility in water:
3.98 g/L (25 �C); mp: 184 �C; IR (cm�1): 3356 (NH), 3172 (Ar-H),
2722 (Ph-CHstr), 1623 (C@O), 1542; 1H NMR (300 MHz): d 9.30
(s, 1H), 7.50 (s, 1H, –CH = N), 7.42(s, 1H), 7.33 (t, 2H, J = 6.23),
7.26 (t, 1H, J = 6.23 Hz), 7.23 (d, 2H, J = 6.21 Hz, Ph), 7.60 (2H, t,
J = 6.23 Hz), 7.60 (2H, d, J = 6.21 Hz), 7.33 (1H, t, J = 6.23 Hz, Ar),
7.22 (s, 1H), 6.81 (d, 1H, J = 6.21 Hz, =CH), 6.25 (d, 1H,
J = 6.21 Hz), 6.17 (d, 1H, J = 6.21 Hz), 4.56 (s, 1H); 13C NMR
(300 MHz): 163.7, 137.2, 164.1, 134.1, 126.3, 119.9, 116.0, 88.4,
142.9, 129.1, 127.1, 126.8, 135.2, 127.9, 128.4, 127.2, 63.3; EI-MS
(m/z): 343.15 (M+,24%); Elemental analysis: Calcd. For
(C21H18N4O): C, 73.67; H, 5.30; N, 16.36%; Found: C, 73.65; H,
5.28; N, 16.38%.

2.4.2. 7-((3,7-dimethylocta-2,6-dien-1-ylidene)amino)-6-phenyl-6,7-
dihydro-1H-pyra zolo [3,4-b]pyridin-3(2H)-one (2d)

Yellow solid; yield 95%; mw: 362.47; Solubility in water:
2.58 g/L (25 �C); mp: 166 �C; IR (cm�1): 3360, 3176 (Ar-H), 2726
(Ph-CHstr), 1627, 1546; 1H NMR (300 MHz): d 9.26(s, 1H), 7.42(s,
1H, –CH@N), 7.38(s, 1H), 7.33 (t, 2H, J = 6.23), 7.26 (t, 1H,
J = 6.23 Hz), 7.23 (d, 2H, J = 6.21 Hz), 6.25 (d, 1H, J = 6.22 Hz),
6.15(1H, d, J = 6.22 Hz), 5.20 (1H, d, J = 6.21 Hz), 4.81 (1H, d,
J = 6.21 Hz, =CH), 4.59 (s, 1H), 2.0 (4H, m, –CH2), 1.80 (s, 6H),
1.70 (s, 3H); 13C NMR (300 MHz, DMSO d6): 163.1, 137.2, 164.1,
150.8, 132.6, 124.1, 122.4, 119.0, 116.2, 88.4, 143.3, 127.1, 126.1,
125.2, 63.0, 38.9, 25.9, 25.1, 18.9, 17.9; EI-MS (m/z): 363.21
(M+,25%); Elemental analysis: Calcd. For (C22H26N4O): C, 72.90; H,
7.23; N, 15.46%; Found: C, 72.92; H, 7.21; N, 15.45%.

2.4.3. 7-((3-methylbut-2-en-1-ylidene)amino)-6-phenyl-6,7-dihydro-
1H-pyrazolo[3,4-b]pyridine-3(2H)-one (2e)

Yellow solid; yield 88%; mw: 294.35; Solubility in water:
4.21 g/L (25 �C); mp: 178 �C; IR (cm�1): 3361, 3177, 2727, 1628,
1547 ; 1H NMR (300 MHz): d 9.24 (s, 1H), 7.50 (1H, s, –CH@N),
7.38 (s, 1H, NH), 7.33 (t, 2H, J = 6.23), 7.24(t, 1H, J = 6.23 Hz),
7.23 (d, 2H, J = 6.21 Hz), 6.25 (1H, d, J = 6.21 Hz), 6.15 (1H, d,
J = 6.21 Hz), 4.80 (1H, s), 4.56 (s, 1H, CH-Ph), 2.15 (3H, s), 1.93
(3H, s); 13C NMR (300 MHz): 163.5, 137.2, 164.1, 151.1, 123.2,
119.2, 116.0, 88.4, 142.9, 128.4, 125.8, 125.8, 63.9, 26.8, 20.8;
EI-MS (m/z): 295.15 (M+,20%); Elemental analysis: Calcd. For
(C17H18N4O): C, 69.37; H, 6.16; N, 19.03%; Found: C, 69.35; H,
6.14; N, 19.05%.
2.5. Biological activities

2.5.1. Larvicidal activity
Culex quinquefasciatus eggs were collected from the drainage

water. A method described previously (Abdel-Fattah Mostafa
et al., 2019) was used to deviate test compounds at concentrations
of 10, 25, 50, and 100 mg/mL. Cotton buds were used to remove
excess water from larvae collected with a pasteur pipette. By calcu-
lating the ratio of dead to live larvae, the compounds were calcu-
lated to cause mortality in larvae (%). Probit analysis was used to
calculate the LD50 values.
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%mortality ¼ %teat mortality� %controlmortality
100�%controlmortality

� 100

The number of larvae still alive after 24 h was counted. Statisti-
cally, the results had to be repeated three times.
3. Results

The grindstone method was used to synthesize the pyrazolo
[3,4-b]pyridin-3(2H)-one derivatives using ethanol medium. The
reaction is a [3 + 2] cycloaddition with an 85–92 % yield. Scheme 1
shows that synthetic route outline for pyrazolo[3,4-b]pyridin-3
(2H)-one derivatives (1a-e, 2a-2e). As a result of column chro-
matography, the final product was characterized by FT-IR, 1H
NMR, 13C NMR, and mass spectrometry. A reaction mixture,
pyrazolidine-3,5-dione reacted with phenylhydrazine was heat
with 100 �C to gives 1a compoumd 5-(2-phenyl hydrazinyl)
�1H-pyrazol-3(2H)-one with 98% of yield. The compound 1a was
treated with cinnamaldehyde in EtOH medium with reflux 10hr
at RT to give compound 2a. After that mixture was filtered, solid
material was obtained, then washed with distilled water for soild
materials. From column chromatography (Ethyl acetate4:hex-
ane6), the final solid material was separated. Compounds 1b-1e
and 2b-2e were prepared using the same method. The mothod of
preapration easy way for syntheed all reamining compounds and
yield such as 91, 89, 90, 92 % respectivily. The compoumd 2a-e
where chaterized by FT-IR, the strching frequincy for –NH-CO–,
NH, –CH–, and Ar-CHstr corresponding to 1621–1621 cm�1,
3354–3361 cm�1, 2727–2720 cm�1 and 3170–3177 cm�1 respec-
tivily. The 1H NMR spectarl inticated that –CO-NH, NH, and –CH–
chemical shift values correspoding of 7.38–7.48, 9.28–9.34, 4.56–
4.59 ppm respectivily. 13C NMR spectra of carbon group presence
such as –C@O-, –HC@CH–, and –CH corresponding to 163.1–
163.7, 119.0–119.9, 116.0–116.4, and 60.5–63.9 ppm respectivity.

The larvicital activity value shows that Table 1, as an indication
of the result of compound compared with natural larvicidal com-
pounds and pyrazolidine-3,5-dione, the compound 1a has very
low activity and no effect in 50 mg/mL concentration.

The compound 1a-1ewere obtained LD50: >100 mg/mL, it shows
that very low active even 100 mg/mL also not reached 50% activity,
whereas the compound containing pyrazolo [3,4-b]pyridin-3(2H)-
HN

HN

O

O

+ NH2-R

HN

HN

O

NH

R

R = (2a)

N
H

(2b)

N

(1a-e)

(2d)

Scheme 1. Synthedic route of pyrazolo[3,4-b]p

4

one 2a-2e has significant of activity, based on the data for com-
pound 2a, 82.2% showed activity at 100 mg/mL and LD50 was
31.3 mg/mL. With the compound 2b, 88.6% of the activity was at
100 mg/mL and the LD50 was 29.9 mg/mL and the compound 2b
shows that 88.6% of activity reached 100 mg/mL with LD50:
29.9 mg/mL. For compound 2c, 92.3% of activity reached 100 mg/
mL with an LD50 of 23.5 g/mL, and for compound 2d, 100% reached
100 mg/mL with an LD50 of 15.4 mg/mL. Compound 2e displays
95.6% on the activity scale with LD50 of 20.1 mg/mL. The com-
pounds were all highly active when compared with environmen-
tally benign compounds.
4. Discussion

Fig. 2 shows mortality between natural and synthetic hydrazide
at 100 mg/mL concentration analysis. Natural products such as
withasomnino, pyrazofurin, formycin B, nostocine A, Fluviol A,
were observed at 12 – 33 % of activity and low toxicity in the water
system, whereas larvicidal also had very low activity. Witha-
somnine (pyrazole alkaloid), first isolated from withania somnifera
Dun, the root bark of an Indian medicinal plant, shows 10% mortal-
ity in larvicidal screening (Schroter et al., 1966); which larvicidal
activity ranges 22% mortality in stagnant water.

Pyrazofurin (Pyrazomycin) is a nucleoside analogue found in
Streptomyces candidus, and is related to ribavirin (Canonico et al.,
1982) which obtained 30% of mortality against larvicidal activity
in stagnant water samples. The compound formycin B (FB) is also
an effective inhibitor of bacterial (Escherichia coli) enzymes
because it is a moderate inhibitor of mammalian purine nucleoside
phosphorylase (PNP) (Bzowska et al., 1992), which performed lar-
vicidal activity 30% mortality in stagnant water systems. The sec-
ondary metabolites of cyanobacteria (Patterson et al., 1994) are
useful for agriculture or medicine. While the uses of cyanobacterial
metabolites in the natural environment haven’t been studied
extensively, some of them act as toxins or alkylating agents
(Pflungmacher, 2002). In a study by Kelly (Kelly et al., 2006), the
structures of 2 pigments of this group were clearly delineated,
namely nostocine A and fluviol A, with larval mortality profiles of
12–20%, respectively. An evaluation of the ovicidal, larvicidal, and
repellent properties of Cinnamomum verum (CV) extracts against
CHO HN

N
H

O

N

R

N N

N

(2c)

(2e)

(2a-e)

yridin-3(2H)-one derivatives (1a-e, 2a-2e).



Table 1
Larvicidal activity of compounds (1a-e, and 2a-e).

Compounds Mortality (%) LD50

25 mg/mL 50 mg/mL 100 mg/mL (mg/mL)a

pyrazolidine-3,5-dione 05.2 ± 0.3 – – >100
1a 09.14 ± 0.1 12.14 ± 0.1 12.14 ± 0.1 >100
1b 08.14 ± 0.1 18.16 ± 0.7 35.11 ± 0.4 >100
1c 0.0 ± 0.0 14.28 ± 0.7 30.74 ± 0.2 >100
1d 0.0 ± 0.1 12.14 ± 0.1 23.09 ± 0.3 >100
1e 11.14 ± 0.1 22.10 ± 0.3 43.04 ± 0.2 >100
2a 44.1 ± 0.1 63.3 ± 0.3 82.2 ± 0.6 31.3
2b 42.2 ± 0.3 69.1 ± 0.1 88.6 ± 0.2 29.9
2c 46.3 ± 0.1 72.3 ± 0.2 92.3 ± 0.2 23.5
2d 49.1 ± 0.1 82.2 ± 0.3 100 ± 0.4 15.4
2e 47.3 ± 0.2 76.5 ± 0.5 95.6 ± 0.3 20.1

a Values are mean ± SD (n = 3).
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mosquito vectors of Culex quinquefasciatus and also cinnamalde-
hyde showed that 83.53% of larvicidal activity (Nakasen et al.,
2021). The citral showed (33.50%) marked larvicidal activity
against Cx. pipiens quinquefasciatus (Yang et al., 2005). Based on
above report, which is compared with phenylhydrazine 56% mor-
tality reached but very high risk in environmental toxicity whereas
phenyl hydrazine connected with pyrazol-3(2H)-one, which
obtained low mortality same time toxicity range also reduced, as
a requirement only target for mosquito larvae same time that need
low toxic compounds, so that we design the pyridine moiety con-
nected with pyazolidne, the preparation of pyrazolidine conned
with pyridine via green chemistry approach for synthesis of cin-
namaldehyde reacted with 5-(2-phenyl hydrazinyl)-1H-pyrazol-3
(2H)-one to give high yield (87%) for compound 2a, which reached
morality range 82.2% whereas very low toxicity in water system.
As same way remaining compounds 2b also reached 88.6 % of
activity when compared with 5-(2-benzylidenehydrazinyl)-1H-
pyrazol-3(2H)-one 35% of and also benzylidenehydrazine reached
72% of mortality. The compounds 2c also reached 92.3 % of activity
when compared with 5-((2-((3-phenyl allylidene)hydrazinyl)-1H-
pyrazol-3(2H)-one 35% of and also 3-phenylallylidene)hydrazine
reached 92.3% of mortality. The compound 2d also reached 100%
of activity when compared with 5-((2-(3,7-dimethy locta-2,6-die
n-1-ylidene)hydrazinyl)-1H-pyrazol-3(2H)-one 23% of and also
3,7-dimethylocta-2,6-dien-1-ylidene)hydrazine 62% reached
92.3% of mortality. The compound 2e also reached 95.6% of activity
when compared with 5-(2-(3-methylbut-2-en-1–ylidene)hydrazi
nyl)-1H-pyrazol-3(2H)-one (43.04%) of and also (3-methylbut-2-
en-1-yli dene)hydrazine hydrazine (71%) reached for mortality.

5. Conclusions

This study identified the most effective and easily prepared 1H-
pyrazolo[3,4-b]pyridin-3(2H)-one derivatives using the [3 + 2]
cycloaddition grindstone method, with high yields. It was investi-
gated whether these compounds could be used as larvicides
against Culex quinquefasciatus. Based on the screening of 10 com-
pounds (1a-e), and (2a-e), compound 2e was found to be most
active against Culex quinquefasciatus (95% mortality rate, LD50 = 1
2.09 mg/mL). The results of this study indicate that compound 2e
has the best larvicidal activity and that the compounds described
here could be used to develop eco-friendly pesticides and
biopharmaceuticals.
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