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The objectives of this paper are in studying the liquid vibrations in rigid circular cylindrical shells with
internal flexible membranes or covered by membranes. The liquid in the container is supposed to be
an ideal and incompressible one, and the fluid motion is irrotational. In above formulated suppositions
the velocity potential is introduced; it satisfies the Laplace equation. The boundary value problem is for-
mulated for the velocity potential. To obtain boundary conditions on the liquid free surface, the mem-
brane deflection is considered, and the equality of normal components of liquid and membrane
velocities is satisfied. The incompressible and inviscid liquid is supposed to perform irrotational motion
in the fluid domain divided into two sub-domains by internal flexible membrane that is installed at the
given height. For solutions of the problems both numerical and analytical methods are in use. The ana-
lytical solutions of two boundary value problems are obtained for unknown velocity potential and mem-
brane deflection as the Fourier–Bessel series with coefficients depending on unknown frequency.
Satisfying boundary conditions, we obtain the system of homogeneous algebraic equations. The condition
of a non-trivial solution of this system gives the non-linear equation for evaluating the frequencies. The
coupled membrane and liquid vibrations in cylindrical tanks are studied also by FEM and BEM methods.
The comparison of results obtained using analytical approach with ones received with boundary and
finite element method is provided. The main results are as follows. As follows from numerical simula-
tions, if the membrane is installed inside the cylinder, then the most important parameter affecting
the result, is the height of the membrane installation. If the membrane is installed at a considerable dis-
tance from the free surface, then the sloshing frequency practically does not change, and more precisely,
it slightly increases. The dependencies of frequencies via the filling level are identified. The novelty of
proposed approach consists in possibility to study the influence of elastic baffles and roofs in the
liquid-filled tanks.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sloshing is an interesting and important physical phenomenon
that is often observed in fuel tanks and storage reservoirs partially
filled with liquids. Usually, such facilities operate at intensive ther-
mal and stress loadings, in interaction with liquids located in their
containers. These intensive loadings are the reasons for rigorous
oscillations in the liquid free surface. Such liquid motion is poten-
tially dangerous problem to engineering structures and environ-
ment that can lead to failure of structural units and loss of
stability. It is necessary to control the fluid–structure interaction
to maintain the stability of the structures used in various engineer-
ing applications such as transporting liquid, petroleum reservoirs
and space vehicles. Control of liquid sloshing inside a container
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has always been a challenge while designing any tank due to unin-
vited vibrations which are dangerous for the stability of the sys-
tem. A wide range of scientists have been working to tackle the
problems caused by sloshing. A significant work has been reported
in this direction.

The understanding of this coupled vibration process is required
the careful studying of the wave phenomena, specialty of vibrating
systems, interaction between different mediums, elastic effects of
the coupled structures, properties of materials, different and com-
plex operation conditions of equipment. Some of these aspects are
reflected in (Gatti, 2020, Tamura, 2020.)

Comprehensive reviews of the sloshing phenomenon with ana-
lytical predictions and experimental observations were done in
(Abramson, 2000; Ibrahim, 2005; Dodge, 1971). To damp the liquid
motion and prevent instability a lot of slosh-suppression devices
have been proposed Gnitko et al (2017). Such devices are used to
reduce structural loads encouraged by the sloshing liquid, to con-
trol liquid position within a tank, or to serve as deflectors
(Choudhary and Bora, 2017). One of the pioneering papers in the
area is Miles (1958). The approach is to find analytical solutions
in different sub-domains, it is motivated from the work done in
(Choudhary and Bora, 2016). The BEM and FEM methods for slosh-
ing analysis are used in (Gedikli and Erguven, 2003; Gnitko et al,
2019). The research on the topic (Bauer and Chiba, 2000; Gnitko
et al, 2018; Jamalabadi, 2020; Ravnik et al, 2016) demonstrate that
the dynamic response of liquid-containing structures can be signif-
icantly influenced by vibrations of their elastic walls in interaction
with the sloshing liquids. A mathematical model to discuss 2-D liq-
uid sloshing in rectangular geometry under the influence of damp-
ening devices is proposed in (Warnitchai and Pinkaew, 1998). A
fluid–structure interaction model was used to find analytical solu-
tion in cylindrical shells by Amabili (2001). A variety of researchers
have been discussing the effects of solid structures on sloshing fre-
quencies, and it is found that solid structure can dampen the slosh-
ing. The effect of such a solid structure called baffle is discussed in
(Evans and McIver, 1987; Gavrilyuk et al., 2006; Maleki and
Ziyaeifar, 2008). A study on reduction of infinitely amount of slosh-
ing modes in moving tanks have been discussed in (Noorian et al.,
2012; Zang et al, 2015). Natural sloshing modes in a rectangular
tank with a slat-type screen has been discussed in (Faltinsen and
Timokha, 2011). A reduced order model has been developed using
BEM for liquid domain in (Iseki et al, 1989; Noorian et al., 2012).

The effects of baffles as sloshing dampers have been studied in
(Bermudez et al, 2003; Biswal et al, 2004; Gnitko et al, 2017). In
(Kumar and Sinhamahapatra, 2016) FEM was applied to analyse
the sloshing motion with assumptions of linear wave theory. In
(Strelnikova et al, 2020a) liquid vibrations in circular cylindrical
tanks with baffles under coupled horizontal and vertical excita-
tions were simulated. The nonlinear effects of liquid sloshing for
both baffled and unbaffled tanks were considered in (Akyildız
and Erdem Ünal, 2006; Strelnikova et al, 2020b; Zhao et al,
2018). The pioneering research devoted to effects of baffle flexibil-
ity on the damping efficiency have been published in (Schwind
et al, 1967; Stephens, 1966). Then in (Cho et al., 2002; Cho et al.,
2005) the sloshing suppression in moving fuel tanks was studied
considering flexible annular ring baffles. Numerical simulation of
the behaviour of thin flexible membranes in interaction with a
fluid was done in (Pozhalostin and Goncharov, 2015). The effect
of perforated baffles on damping ratio was estimated in (Kumar
and Sinhamahapatra, 2016; Masouleh and Wozniak, 2016). The
floating foams as anti-sloshing devices were described in Zhang
et al (2019). Coupled sloshing-flexible membrane system was dis-
cussed in (Kolaei and Rakheja, 2019). It was supposed here that
membrane covered the free liquid surface.
2

The numerical simulation of sloshing process is required devel-
opment of the new advanced computing techniques (Caldarola
et al, 2020; Karaiev and Strelnikova, 2021).

Effectiveness of baffles for damping of liquid sloshing in tanks
has been demonstrated in many studies. But alternatively, liquid
sloshing could be substantially suppressed if the liquid free-
surface is constrained by a thin and lightweight structure such as
flexible membranes. The interaction between the liquid free-
surface and a flexible membrane has been addressed in only a
few studies. In those works, the membranes covered the free sur-
face, are under consideration. But the effective damping of the
sloshing can be archived when membrane is placed inside liquid
domain. In this study the effective methods are elaborated that
allow us to consider membranes that are placed at an arbitrary
height in the tank. Aa a result, the effect of internal flexible mem-
branes and membranes covered the free liquid surface in rigid
cylindrical tank can be studied. It allows us to receive optimal
dampers. Analysing sloshing in presence of flexible membranes is
the aim of the proposed work. In this paper the effect of internal
flexible membranes, and membranes covered the free liquid sur-
face in rigid cylindrical tanks are investigated.

2. Materials and methods

2.1. Liquid vibrations in cylindrical tanks with flexible membranes
covering free surfaces

In this section free vibrations of a liquid in a rigid cylindrical
tank with a flexible membrane covering the free surface are con-
sidered, Fig. 1a). Suppose that the liquid in the container is an ideal
and incompressible one, and its motion is irrotational. Then the

relative liquid velocity V has a potential U
�
¼ U

�
r; h; z; tð Þ, so that

V ¼ rU
�
.

In this paper the linear water wave theory is in use. In above
formulated suppositions the velocity potential satisfies the Laplace
equation

r2 U
�
¼ 00 < r < R; 0 6 h 6 2p; 0 < z < h ð1Þ

The following boundary value problem (BVP) is formulated for

the velocity potential U
�
. In the fluid domain it satisfies the Laplace

equation (1). At the wall r ¼ R and at the bottom z ¼ 0 of the cylin-
drical tank the impermeability conditions are formulated as
follows:

@U
�

@r
¼ 0

@U
�

@z
¼ 0 ð2Þ

To formulate the boundary condition on the free surface, con-
sider at first the following equation of the membrane motion:

@2w
@r2

þ 1
r
@w
@r

þ 1
r2

@2w

@h2
� l

T
@2w
@t2

¼ � p
T

ð3Þ

where w is a membrane deflection, T is a tension per unit
length, l is mass per unit area of the membrane, p is the liquid
pressure on the membrane.

The following boundary conditions are formulated for mem-
brane deflections, at r = R:

w ¼ 0 ð4Þ
On the free liquid surface at z ¼ h the equality of normal com-

ponents of liquid and membrane velocities have to be satisfied

@U
�

@z
¼ @w

@t
ð5Þ



Fig. 1. Cylindrical tank with flexible membranes and levels of membrane installation.
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as well as the dynamic boundary condition

p ¼ �q @U
�

@z
� qgw ð6Þ

So, we have coupled boundary value problem (1)-(6) for evalu-
ating the unknown functions U and w.

Consider harmonic oscillations and assume that

U
�
ðr; h; z; tÞ ¼ U

�
ðr;h; zÞeix� t

U
�
ðr; h; zÞ ¼

X1
m¼0

X1
n¼1

Umðr; zÞcosðmhÞ: ð7Þ

Using the separation of variables method, we get

U
�
ðr;h; zÞ ¼

X1
m¼0

X1
n¼1

AmnJm
kmnr
R

� �
cosh

kmnz
R

� �
cosmh ð8Þ

where kmn are zeros of the first derivative of Bessel’s function
J0m krð Þ ¼ 0 at r ¼ R. From (6) we have the following expression for
pressure:

p ¼ eix
� t �qix�

X1
m¼0

X1
n¼1

AmnJm
kmnr
R

� �
cos mhð Þcosh kmnh

R

� �" #

� qgw:

For flexible membrane we suppose that

w ¼ w1 r; hð Þeix� t ð9Þ
It would be noted that membrane thickness is negligible. Using

above equations for p and w in membrane equation (4), we get

@2w1
@r2 þ 1

r
@w1
@r þ 1

r2
@2w1
@h2

þ lx
�2�gq
T

� �
w1 ¼

¼ iqx
�

T

P1
m¼0

P1
n¼1

AmnJm
kmnr
R

� �
cosðmhÞcosh kmnh

R

� �
;

ð10Þ

which is a non-homogeneous differential equation. Solution for
membrane deflections of Eq. (10) is following:

w r;h;tð Þ¼ ei-t
X1
m¼0

X1
n¼1

Amn
iqx

�
R2

T

 !
cosh

kmnh
R

� �
Jm

kmnr
R

� �
cosmh

c2 �k2mn

h i þ
X1
m¼0

BmJm
cr
R

� �
cosmh

2
4

3
5;c2

¼lx
� 2 �qg
T

ð11Þ
3

Condition (5) at z ¼ h gives

P1
m¼0

P1
n¼1

Amn
kmn
R Jm

kmnr
R

� �
sinh kmnh

R

� �
cosmh

¼ ix
�� � P1

m¼0

P1
n¼1

ix
�
R2

T AmnJm
kmnr
R

� �
cosh kmnh

R

� �
cosmh
c2�k2mn½ �

� 	

þþ ix
�� � P1

m¼0
BmJm

kmnr
R

� �
cosmh:

ð12Þ

Using condition w = 0 at r = R from (5), we get

X1
m¼0

X1
n¼1

Amn
iqx

�
R2

T

 !
JmðkmnÞcosmh

c2 � k2mn

h i cosh
kmnh
R

� �

þ
X1
m¼0

BmJmðcÞcosmh ¼ 0 ð13Þ

So, we have equations (12) and (13) to determine unknown

coefficients Amn;Bm and unknown frequency x
�
.

For a fixed mode m the truncated series are received asXN
n¼1

Amn
JmðkmnÞ
c2 � k2mn

h i cosh kmnh
R

� �
iqx

�
R2

T

 !
þ BmJmðcÞ ¼ 0 ð14Þ

XN
n¼1

Amn
kmn

R
Jm

kmnr
R

� �
sinh

kmnh
R

� �

¼ ix
� XN

n¼1

ix
�
R2

T
AmnJm

kmnr
R

� �
cosh

kmnh
R

� �
1

c2 � k2mn

h i
þ ix

�
BmJm

kmnr
R

� �
: ð15Þ

There are constant coefficients before unknowns
Amn;Bm; n ¼ 1; ::;N in equation (14), and variable ones in equa-
tion (15), so we have to choose N points including end points in
0 6 r 6 R namely,

ri=(Ri)/(N �1), I = 0,1,. . .N
at the free surface for satisfying equation (15). Then we obtain

the following N + 1 homogeneous algebraic equations in the coef-
ficients X ¼ Am1;Am2; :::;AmN;Bm:

XN
n¼1

Amn
JmðkmnÞ
c2 � k2mn

h i cosh kmnh
R

� �
iqx

�
R2

T

 !
þ BmJmðcÞ ¼ 0 ð16Þ
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XN
n¼1

Amn
kmn

R
Jm

kmnRn1

N � 1

� �
sinh

kmnh
R

� �

¼ ix
� XN

n¼1

ix
�
R2

T
AmnJm

kmnn1

N � 1

� �
cosh

kmnh
R

� �
1

c2 � k2mn

h i
þ ix

�
BmJm

kmnn1

N � 1

� �
: ð17Þ

In (17) we suppose that n1 = 0,1,. . .N-1.
In matrix form system (16)-(17) can be written as

H1 x
�� �

X ¼ 0X ¼ Am1;Am2; :::;AmN;Bm ð18Þ

The condition of a non-trivial solution of system (18) gives the
non-linear frequency equation (the equality of the system determi-
nant to zero)

detðH1ðx
� ÞÞ ¼ 0 ð19Þ

for evaluating the frequencies x
�
.

2.2. Liquid vibrations in cylindrical tanks with internal flexible
membranes

Free vibrations of the liquid in the cylindrical tank with an
internal flexible membrane are considered, Fig. 1b). The incom-
pressible and inviscid liquid is supposed to perform irrotational
motion in the fluid domain divided into two sub-domains by inter-
nal flexible membrane that is installed at the height h1, Fig. 1c). The
first fluid sub-domain is confined by bottom, the lower part of the
cylindrical wall, and the flexible membrane. The liquid velocity in

this domain is described by potential U
�
1. The second fluid sub-

domain is bounded by the flexible membrane, the upper part of
the cylindrical wall, and the free surface. The liquid velocity in this

domain is described by potential U
�
2.

Two BVP are formulated to determine these potentials. So, for

potential U
�
1 we have the Laplace equation

r2U
�
1 ¼ 00 < r < R; 0 6 h 6 2p; 0 < z < h1 ð20Þ

with wall and bottom impermeability conditions as follows:
@U
�
1

@r ¼ 0, r = R, 0 < z < h1,
@U
�
1

@z ¼ 0, z = 0. (21)

For potential U
�
2 we have the analogical BVP with Laplace’s

equation

r2U
�
2 ¼ 0; 0 < r < R; 0 6 h 6 2p; h1 < z < h2 ð22Þ

and the next impermeability conditions at the cylindrical wall:

@U
�
2

@r
¼ 0; r ¼ R; h1 < z < h2: ð23Þ

At the free surface z ¼ h2 we have

@2U
�
2

@t2
þ g

@U
�
2

@z
¼ 0 ð24Þ

To formulate the boundary conditions on the flexible mem-
brane at z ¼ h1, consider the equation of membrane motion as
follows:

@2w
@r2

þ 1
r
@w
@r

þ 1
r2

@2w

@h2
� l

T
@2w
@t2

¼ �1
T
ðp1 � p2Þ ð25Þ

where p1;p2 are liquid pressures on the membrane in two sub-
domains.

The impermeability conditions at z ¼ h1 are following:
4

@U
�
1

@z
¼ @U

�
2

@z
¼ @w

@t
ð26Þ

The additional boundary conditions are formulated for mem-
brane deflections, at r = R

w ¼ 0 ð27Þ
For pressure components at z = h1 we consider

p1 ¼ �q @U
�
1

@t
¼ 0; p2 ¼ �q @U

�
2

@t
ð28Þ

Assuming that

U
�
kðr;h; z; tÞ ¼ Ukðr;h; zÞeix� t

; k ¼ 1;2 ð29Þ
insert expressions (28) for pk k ¼ 1;2ð Þ into membrane equation

(25). Taking into account equations (20), (22), we get at z = h1

@3U1
@z3 þ x

�2
l

T
@U1
@z ¼ qx

� 2

T ðU2 �U1Þ;
@3U2
@z3 þ x

�2
l

T
@U2
@z ¼ qx

� 2

T ðU2 �U1Þ:
ð30Þ

Assuming that

Ukðr;h; zÞ ¼
X1
m¼0

Uk
mðr; zÞcosmh ð31Þ

and using the separation of variables method, we get

U
�
1ðr; h; z; tÞ ¼ eix

� t
X1
m¼0

X1
n¼1

AmnJm
kmnr
R

� �
cosh

kmnz
R

� �
cosmh

" #

ð32Þ

U
�
2ðr; h; z; tÞ ¼ eix

� t
X1
m¼0

X1
n¼1

Bmncosh
kmnz
R

� �
þ Cmnsinh

kmnz
R

� �� �
Jm

kmnr
R

� �
cosmh

" #

ð33Þ

where kmn are the zeros of the first derivative of Bessel’s function
J0m krð Þ ¼ 0 at . Using free surface conditions at z ¼ h2

@2U
�
2

@t2
þ g

@U
�
2

@z
¼ 0

and considering at z = h1 the following boundary condition

@U
�
1

@z
¼ @U

�
2

@z

we get truncated series for the fixed mode m

XN
n¼1

kmn

R
g Bmnsinh

kmnh2

R

� �
þ Cmncosh

kmnh2

R

� �� �
Jm

kmnr
R

� �
�

�
XN
n¼1

x
� 2

Bmncosh
kmnh2

R

� �
þ Cmnsinh

kmnh2

R

� �� �
Jm

kmnr
R

� �
¼ 0

XN
n¼1

Amn
kmn

R
Jm

kmnr
R

� �
sinh

kmnh1

R

� �
¼
XN
n¼1

kmn

R
Bmnsinh

kmnh1

R

� ��

þCmncosh
kmnh1

R

� ��
Jm

kmnr
R

� �
;

XN
n¼1

Amn
kmn

R

� �3

þx
� 2

T
kmnl
R

 !
sinh

kmnh1

R

� �
þ qx

� 2

T
cosh

kmnh1

R

� �" #
Jm

kmnr
R

� �
¼

¼
XN
n¼1

qx
� 2

T
Bmncosh

kmnh1

R

� �
þ Cmnsinh

kmnh1

R

� �� �
Jm

kmnr
R

� �
:
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Then we choose N points including end points in 0 6 r 6 R at
the free surface, namely ri = (Ri)/(N-1), i = 0,1,. . .N and obtain the
following 3 N homogeneous algebraic equations in the coefficients
Y ¼ Am1;Am2; :::;AmN;Bm1;Bm2; :::;BmN; Cm1;Cm2; :::; CmN:

XN
n¼1

kmn

R
g Bmnsinh

kmnh2

R

� �
þ Cmncosh

kmnh2

R

� �� �
Jm

kmnn1

N � 1

� �
�

�
XN
n¼1

x
� 2

Bmncosh
kmnh2

R

� �
þ Cmnsinh

kmnh2

R

� �� �
Jm

kmnn1

N � 1

� �
¼ 0

for n1 ¼ 0;1; :::;N � 1,

PN
n¼1

Amn
kmn
R Jm

kmnn1
N�1

� �
sinh kmnh1

R

� �
¼

¼ PN
n¼1

kmn
R Bmnsinh kmnh1

R

� �
þ Cmncosh kmnh1

R

� �� �
Jm

kmnn1
N�1

� �
;

for n1 ¼ 0;1; :::;N � 1,

XN
n¼1

Amn
kmn

R

� �3

þx
� 2

T
kmnl
R

 !
sinh

kmnh1

R

� �
þ qx

� 2

T
cosh

kmnh1

R

� �" #
Jm

kmnn1

N � 1

� �
¼

¼
XN
n¼1

qx
� 2

T
Bmncosh

kmnh1

R

� �
þ Cmnsinh

kmnh1

R

� �� �
Jm

kmnn1

N � 1

� �
;

for n1 ¼ 0;1; :::;N � 1.
In matrix form this system can be written as

H2 x
�� �

Y ¼ 0 ð34Þ

The condition of a non-trivial solution of system (34) gives the
non-linear frequency equation (the equality of the system determi-
nant to zero)

detðH2ðx
� ÞÞ ¼ 0 ð35Þ

for evaluating the frequencies x
�
.

3. Numerical results and discussion

3.1. Validation study

Numerical results are obtained by twomethods. First, we obtain

frequencies x
�

for both considered problems by solving the non-
linear equations (19), (35) using combination of Newton and para-
bolic interpolation methods (Choudhary and Bora, 2017).

To validate our results, the methods based on coupled FEM and
BEM methods (Gnitko et al, 2017; 2019; Jamalabadi, 2020), are in
use.

Consider the rigid partially filled cylindrical tank with radius
R = 0.5 m and filling level h = 1 m. Let the liquid density be
q = 998 kg/m3.

To testify our numerical results, we compare data for the first
non-axisymmetric frequency, obtained by boundary (BEM) and
finite (FEM) elements methods with analytical values of Ibrahim
(2005), obtained by the following formula

xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
lk

R
tanh

lk

R
H

� �r
=2p

where lk are roots of the equation J01 xð Þ ¼ 0, J1(x) is the Bessel func-
tion of the first kind.

The comparison of numerical results obtained by using coupled
BEM and FEMmethods with analytical ones is presented in Table 1.
The results demonstrate good agreement. In BEM the one-
dimensional elements with constant approximation of densities
5

are applied. It would be noted that considered frequency is the
lowest one of liquid vibrations in the tank.

Fundamental sloshing modes of fluid vibrations are shown in
Fig. 2.

Next, we consider vibrations of flexible membranes of different
materials, without interaction with liquids. Consider the clamped
silicon membrane with radius R = 0.5 m, thickness hm = 0.001 m,
material density qm = 2800 kg/m3, Young modulus E = 50Mpa, Poi-
son’s ratio m = 0.49 and the Eva plastic membrane with radius
R = 0.5 m, thickness hm = 0.001 m, material density qm = 950 kg/
m3, Young modulus E = 24.5 MPa, and Poison’s ratio m = 0.48.

The BVP is solved for the following equation:

@2w
@r2

þ 1
r
@w
@r

þ 1
r2

@2w

@h2
� l

T
@2w
@t2

¼ 0 ð36Þ

with boundary conditions (5). First modes of silicon and Eva
plastic membranes that correspond to axisymmetric and non-
axisymmetric vibrations are shown in Fig. 3 and Fig. 4,
respectively.

For validation study the present BEM-FEM approach is also
employed to simulate the hydro-elastic frequencies in an upright
cylindrical tank of radius R = 1 m with an elastic free-surface
membrane.

Frequencies x2
ijR/g, associated with the first three vibration

modes corresponding to the axisymmetric circumferential mode,
i = 0;j = 1,2,3, and to non-axisymmetric mode i = 1 and j = 1,2,3
at different filling levels, h/R, ranging from 0.1 to 0.5 for liquid den-
sity equal to q = 1000 kg/m3 were calculated for comparison with
data (Kolaei and Rakhej, 2019). The results were obtained for
l = 1 kg/m2 and T = 10 N/m. Tables 2 shows the first normalized
frequencies for different numbers of circumferential mode at dif-
ferent filling levels and relative difference d between solutions
obtained by proposed method and data from (Kolaei and Rakhej,
2019).
3.2. Coupled membrane and liquid vibrations in cylindrical tanks

Suppose that the flexible membrane is installed into cylindrical
tank, or covered the free surface, Fig. 1. Both silicon and Eva plastic
membranes are examined. Fig. 5 demonstrates changing in values
of frequencies for axisymmetric vibrations of Eva plastic mem-
brane and liquid in dependence of the installation level h1,
Fig. 1b) and Fig. 1c). The system ‘‘Liquid- Membrane” performs
coupled vibrations, and mutual influence of both components is
sufficient.

As follows from numerical simulations, if the membrane is
installed inside the cylinder, then the most important parameter
affecting the result, is the height h1 of the membrane installation.
If the membrane is installed at a considerable distance from the
free surface, then the sloshing frequency practically does not
change, and more precisely, it slightly increases. This phenomenon
is clearly demonstrated in Fig. 5, between 0 and 0.85 value of
membrane installation level. Solid lines correspond to calculations
made by using BEM-FEM software, points correspond to calcula-
tions made by using analytical approach, described above, with
N = 40. The results are in good agreement. The difference between
analytical and numerical results is near 0.001. When the mem-
brane is near the free surface, the sloshing frequency drops signif-
icantly, approaching the membrane frequencies. That is clearly
demonstrated in Fig. 5, in the interval from 0.85 to 0.99 values of
the membrane installation level.

Also, depending on the vertical arrangement of the membrane,
the sloshing modes are also changed.

At low levels of the membrane installation both sloshing modes
and frequencies resemble the modes and frequencies of the tank



Table 1
Comparison of Numerical and Analytical Results, Frequency, Hz.

Method Modes of vibrations, n

1 2 3 4

BEM, 40 elements 0.95582 1.62832 2.05986 2.41284
BEM, 400 elements 0.95598 1.62779 2.05979 2.41245
FEM, 12000 elements 0.95576 1.62739 2.05986 2.41223
Analytical solution 0.95597 1.62777 2.05970 2.41198

Fig. 2. Fundamental sloshing modes and frequencies of liquid in the cylindrical tank,

Fig. 3. Two first modes and frequencies of plastic membranes axisymmetric vibrations.
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Fig. 4. Two first modes and frequencies of plastic membranes vibrations of first harmonic.

Table 2
Comparison of normalized hydroelastic frequencies in the cylindrical tank.

i = 0

h/R x2
01R/g d x2

02R/g d x2
03R/g d

0.1 1.412 0.005 4.727 0.006 9.503 0.006
0.2 2.567 0.005 7.310 0.006 11.921 0.006
0.3 3.432 0.005 7.713 0.006 12.012 0.006
0.4 3.994 0.004 8.102 0.005 12.231 0.005
0.5 4.100 0.004 8.106 0.004 12.452 0.004

i = 1

h/R x2
11R/g d x2

12R/g d x2
13R/g d

0.1 1.102 0.006 5.028 0.008 10.209 0.009
0.2 2.516 0.006 6.997 0.008 12.644 0.009
0.3 2.720 0.006 7.510 0.008 12.836 0.009
0.4 2.873 0.005 7.523 0.006 12.837 0.007
0.5 3.015 0.004 7.533 0.004 12.837 0.005

Fig. 5. First natural frequencies of the Eva plastic membrane and the liquid free surface (x) via level (h1).

N. Choudhary, N. Kumar, E. Strelnikova et al. Journal of King Saud University – Science 33 (2021) 101589
without membranes. When the membrane is close to the free sur-
face, the modes of the latter are exposed to the modes of the mem-
brane, and look different, see Fig. 6a).

When the membrane is placed on the liquid free surface, the
modes and frequencies of the membrane change drastically.
7

Instead of the axisymmetric mode, the mode of first harmonic
becomes corresponding to the lowest frequency, Fig. 6b).

The frequencies of the membrane installed in the fluid are sig-
nificantly reduced due to the added mass of fluid. The lowest fre-
quency of the membrane is obtained when the membrane is near



Fig. 6. First modes and frequencies: a) first sloshing mode at h1 = 0,99 m, b) first mode and frequency of membrane covered the liquid free surface.

Fig. 7. First natural frequencies of the silicon plastic membrane and the liquid free surface (x) via level (h1).

Fig. 8. First modes and frequencies of ‘‘Liquid-Membrane system”with silicon plastic roof on waterline.

N. Choudhary, N. Kumar, E. Strelnikova et al. Journal of King Saud University – Science 33 (2021) 101589
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the bottom of the cylinder. With increasing the level of the mem-
brane installation its frequency increases up to the level of instal-
lation of 0.5 m. Further, the membrane frequency decreases up to
the level of its installation on the free surface of the liquid, where a
sharp decrease in the frequency of the membrane occurs. When
installing the membrane on the surface of the liquid, the sloshing
frequency and the membrane frequency tend to be equal.

The silicon membrane installed in liquid-filled cylindrical tank
shows the similar characteristics.

Fig. 7 demonstrates changing values of frequencies of silicon
membrane and liquid in dependence of the installation level h1.

In case of placing the membrane directly on the free surface, the
frequencies andmodes of the sloshingpractically coincidewith ones
of the membrane, Fig. 8 and present modes and frequencies of this
coupled ‘‘Liquid- Membrane” system. As a result, the lowest fre-
quencies of the system with silicon roof on waterline are equal to
x1 = 0.0763Hz,x2 = 0.3081Hz,x3 = 0.7645Hz. The lowest frequen-
cies of the systemwith Eva plastic silicon roof onwaterline (without
free surface), are equal to x1 = 0.0527 Hz, x2 = 0.214 Hz,
x3 = 0.523 Hz.

These results show the significant decrease in the frequency of
sloshingwithmembrane on thewaterline, comparedwith installing
themembrane at the level of 0.99m, and the significant increasing in
the frequency of the membrane on the waterline compared with
internal membrane at the same installation level h1 = 0.99 m.
4. Conclusion

The mathematical model is developed for estimating the influ-
ence of baffle elasticity. The flexible membranes are considered as
baffles. Two BVP are considered in dependence of the baffle instal-
lation level. The internal baffle is installed at different levels. The
limit installation level is waterline. In this case membrane can be
considered as a covering roof. These two BVP require different
approach for their solving. For internal flexible membranes the
method of sub-domains is in use both in analytical method and
in coupled BEM and FEM methods. Changes in values of frequen-
cies for axisymmetric and first harmonic vibrations of plastic mem-
brane of different materials and liquid in dependence of the
installation level are analysed.

If the membrane is installed at a considerable distance from the
free surface, then the sloshing frequencies and modes practically
do not change, but the membrane frequencies became more smal-
ler Depending on the vertical arrangement of the membrane, the
sloshing modes are also changed. At low levels of the membrane
installation both sloshing modes and frequencies resemble the
modes and frequencies of the cylindrical tank without membranes.
When the membrane is close to the free surface, the modes of the
latter are exposed to the modes of the membrane and look essen-
tially different. When the membrane is placed on the liquid free
surface, the modes and frequencies of the membrane change dras-
tically. Instead of the axisymmetric mode, the mode of first har-
monic becomes corresponding to the lowest frequency.

As follows from numerical simulations, if the membrane is
installed inside the cylinder, then the most important parameter
affecting the result, is the height of the membrane installation.
The novelty of proposed approach consists in possibility to study
the influence of elastic baffles and roofs in the liquid-filled tanks.
The dependencies of frequencies via the filling level are identified.
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