
Journal of King Saud University – Science 33 (2021) 101259
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
Original article
Approximate analytical solutions for some obstacle problems
https://doi.org/10.1016/j.jksus.2020.101259
1018-3647/� 2020 Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Mathematics Department, College of Science and Arts,
AlKamel, University of Jeddah, Saudi Arabia.

E-mail addresses: chamekhmourad1@gmail.com (M. Chamekh), mohamedali.
latrach@enit.utm.tn (M.A. Latrach).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Mourad Chamekh a,b,⇑, Mohamed Ali Latrach b, Tarig M. Elzaki a

aMathematics Department, College of Science and Arts, AlKamel, University of Jeddah, Saudi Arabia
bUniversity of Tunis El Manar, National Engineering School at Tunis, LAMSIN, B.P. 37, 1002 Tunis-Belvédère, Tunisia

a r t i c l e i n f o
Article history:
Received 29 November 2019
Revised 17 November 2020
Accepted 24 November 2020
Available online 8 December 2020

2010 MSC:
74K10
74M15
74S05

Keywords:
Obstacle problems
Penalty function method
Variational Iteration Method
a b s t r a c t

The paper deals with the variational iteration method to obtain a semi-analytical solution to some obsta-
cle problems. We will focus on applications of a contact problem for a deformed beam with an elastic
obstacle. To validate the accuracy this approach,the obtained solution has been compared with the exact
solution, in the case where it can be calculated in the closed-form expression. Otherwise, a comparison of
variational iteration method with the Adomian decomposition method for some nonlinear examples has
been used.
� 2020 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Obstacle problems are problems well studied in many scientific
literatures, including the problems of deformation of an elastic rod
in the presence of an elastic or rigid obstacle (Caffarelli, 1998;
Caffarelli and Figalli, 2013; Figalli and Serra, 2019). The resolution
of the problems is either difficult, or too long to implement like the
numerical problems of the contact in an elastic rod with or without
friction (Chamekh et al., 2014; Chamekh, 2015; Chamekh et al.,
2020a). Thanks to the penalization method, the obstacle problems
are transformed into types of differential equations which can be
solved by the Adomian decomposition method or the Variational
Iteration Method (VIM), see Alderremy et al. (2019), Chamekh
et al. (2020b) and Elzaki and Chamekh (2018).
This work emphasizes studies semi-analytical solutions related
to obstacle problem. The term of obstacle problem is usually used
for a classic motivating example in the analytical study of differen-
tial inequalities and free boundary problems. In the scientific liter-
ature, we can find a good number of applications that have a model
that is built on the obstacle problem, such as the finances, the engi-
neering problems, Stefan problem etc. For this purpose, for exam-
ple, we can consult the following references Baxter and Rennie
(1996), Brezzi et al. (1978) and Gupta (2003).

In this paper, the original idea had been to find a semi-
analytical solution of the deformation of a beam in the presence
of an elastic foundation. They answered that surround this engi-
neering application must not prevent to apply these results to
other specialties but, on the contrary, must pave the way for more
complex obstacle problems. On the alternatives of Lagrange multi-
plier method, J. H. He has developed the variational iteration
method (He, 1999) since the end of the last century. In scientific lit-
erature, the VIM is increasingly being used in different research
types. For example, we mention the viscoelastic beams (Martin,
2016), behavior fluids (Chamekh and Elzaki, 2018) etc. . .

Amongst the engineering problems leading to an obstacle prob-
lem which were classically raised, the bending analysis of
clamped–clamped Euler–Bernoulli beams, onto an elastic founda-
tion and subject to an applied load. The goal is to find the deflexion,
the maximum deflexion of this beam. This could also be in the case
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of a membrane but with an alternative form occupies a bounded
domain of the plane with a rigid obstacle. Vertical displacement
of the membrane is represented by the graph of a function U of
X in R. We then look for the equilibrium position taking the mem-
brane subjected to an external force, under the non-penetration
constraint U P W on X.

In the equilibrium state, if the membrane is out of contact with
the obstacle, the elasticity produces a balance of the membrane
tension and the surface of the membrane is described by U. If the
membrane comes in contact with the obstacle, the function fulfills
the curvatures of U. More generally, in monodimensional case,
these discussed problems can induce the type of system

� @ðkÞUðxÞ
@xk P FðUðxÞ; xÞ; x 2 X;

UðxÞ P WðxÞ; x 2 X;

@ðkÞUðxÞ
@xk

þ FðU; xÞ
h i

UðxÞ �WðxÞ½ � ¼ 0; x 2 X;

WðxÞ 6 0; x 2 @X;

8>>>>><
>>>>>:

ð1Þ

with X ¼ ½a; d� and subject to k boundary conditions among the fol-
lowing conditions:

@ðiÞU
@xi

ðaÞ ¼ ai and
@ðjÞU
@xj

ðdÞ ¼ bj foriþ j ¼ 0;1; . . . ; k� 1; ð2Þ

where ai and bj are real constants.
The obstacle problem has many extensions well-respected in

the literature, particularly in the nonlinearity of the elastic reac-
tions and/or the noncommutative effects are considered of the
membrane, because of that, we have obtained the last possible
generalized form. The function FðUð�Þ; �Þ is continuous on X and
W is the obstacle function. The system (1–2) results of the mathe-
matical modeling of problems containing the contact, unilateral,
obstacle, deformation, and/or free boundary value. In the remain-
der, some possibilities are discussed concerning the semi-
analytical solutions of this type of system using the VIM.

2. Main equations

The penalty method is the most commonly used method of con-
straint handling. The goal is to take advantage of the fact that this
penalty can reduce differential inequalities in the form of equali-
ties. In this regard, by using the penalty technique which has been
applied by Lewy-Stampacchia (Lewy and Stampacchia, 1969) to
give the regularity of the solutions of the variational inequalities,
the system (1) results in the equation given by:

� @ðkÞUðxÞ
@xk

� UðxÞ �WðxÞ½ �þ ¼ FðUðxÞ; xÞ; x 2 ½a; d�; ð3Þ

where ½s�þ ¼ maxð0; sÞ is the penalty function.
In the following, for the sake of simplicity, we assume that the

obstacle function W is known as follows (see Al-Said et al., 1996):

WðxÞ ¼ �1 x 2 ½a; b½[½c;d�;
1 x 2 ½b; c½;

�
ð4Þ

where a < b < c < d.
Upon substitution of (4) into (3) with taking into account the

penalty function we finally obtain

� @ðkÞUðxÞ
@xk

¼ FðUðxÞ; xÞ þ UðxÞ þ 1 ifx 2 ½a; b½[½c;d�;
FðUðxÞ; xÞ ifx 2 ½b; c½:

� ð5Þ

As well as taking into consideration the boundary conditions (2)

and continuity conditions of U; @U
@x ; � � � ; @

ðpÞU
@xp at b and c, where p < k.
2

3. Variational Iteration Method (VIM)

The VIM or the He’s method is a simple and however capable
method for solving a wide class of nonlinear problems. It success-
fully has been applied to many problems. For example, He has
utilized his method to solve the classical Blasius equation, a few
well-known nonlinear problems, and ordinary differential systems.
Presently, the VIM has been used inmany fields, it is capable of han-
dling a large class of linear or nonlinear differential equations.
Adaptability and adjustment given by this method have made it
promptly appropriate for cases where the analytical solutions are
not available as is often the case in the applied sciences and engi-
neering. The VIM gives effective calculation for analytic approxi-
mate solutions and numeric simulations for real-world
applications in sciences. Thismethoddoesnot require theutilization
of additive computation algorithms regularly utilized to confront
the nonlinear terms as the Adomian decomposition method, which
would complicate the analytical calculations. The VIM approaches
directly the linear and nonlinear problems straightforwardly in the
same way.

From He (1999), we recall the basic concept of VIM associated
with the problem (5) follows the following iterative formula

Unþ1ðxÞ ¼ UnðxÞ þ

R x
a kðsÞ @ðkÞUnðsÞ

@sk þ FðUnðsÞ; sÞ þ UnðsÞ þ 1
h i

ds; a 6 x < b;R x
b kðsÞ @ðkÞUnðsÞ

@sk þ FðUnðsÞ; sÞ
h i

ds; b 6 x < c;R x
c kðsÞ @ðkÞUnðsÞ

@sk þ FðUnðsÞ; sÞ þ UnðsÞ þ 1
h i

ds; c 6 x 6 d;

8>>>><
>>>>:

ð6Þ
with k is Lagrangian multiplicative. The possible practical form of k
is given by:

kðsÞ ¼ ð�1Þk ðs� xÞk�1

ðk� 1Þ! ; x 2 ½a; d�: ð7Þ

But we must note that in some special cases, we may first have to
face the challenge of finding the optimum value of k to accelerate
the convergence of the solution. So we have to take back the calcu-
lation of variations necessary to find k. Iterative techniques rely on
the computation of a recurrence from an initial function U0and
which, step by step, tends towards the solution. These techniques
are effective as long as one starts from a well chosen initial value
U0. With some initial value, this method may not converge to a
desired approximate solution because the starting point is not suit-
able. To do this, we will try to discuss the choice of the initial value
of the different examples treated in the numerical section. Another
interesting measure to consider the choice of U0 is the continuity
conditions of the solution and its derivatives within the interior of

domain X
�
.

4. Numerical examples

The proposed examples of the solutions of the linear and non-
linear problems show the effectiveness of the studied approach.
The classical examples where we can give a closed-form solution
that is possible enables us to evaluate the precision of calculated
solutions.

4.1. Third-order linear obstacle problem

In the areas of oceanography (Al-Said et al., 1996), for example,
the modeling can contribute to third-order differential equations.
Taking FðU; xÞ ¼ U; k ¼ 3; a ¼ 0; b ¼ 1

4 ; c ¼ 3
4 and d ¼ 1, with

boundary conditions a0 ¼ a1 ¼ b0 ¼ 0, we obtain the following
problem



Fig. 1. Comparing the exact solution in blue dashed-line with the two-iteration VIM
solution in red straight-line.
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� @ð3ÞUðxÞ
@x3

¼ 2UðxÞ þ 1 x 2 ½0; 14 ½[½34 ;1�;
UðxÞ x 2 ½14 ; 34 ½:

(
ð8Þ

Using (7), we obtain kðsÞ ¼ � ðs�xÞ2
2 .

From the variational formulation we can easily verify the regu-
larity of solution in Sobolev space H2

0ðXÞ of the next problem which
is equivalent to problem (8) (see Al-Said et al., 1996):

� @ð3ÞUðxÞ
@x3 P UðxÞ x 2 ½0;1�;

UðxÞ P WðxÞ x 2 ½0;1�;
@ð3ÞUðxÞ

@x3 þ UðxÞ
h i

UðxÞ �WðxÞ½ � ¼ 0 x 2 ½0;1�;

8>><
>>: ð9Þ

The exact solution is as follows

UðxÞ ¼
� 1

2 þ a0e�
ffiffi
23

p
x þ a1 cos

ffiffi
3

p ffiffi
23

p
x

2

� �
þ a2 sin

ffiffi
3

p ffiffi
23

p
x

2

� �h i
e
ffiffi
23

p
x

2 x 2 ½0; 14 ½;

b0e�x þ b1 cos
ffiffi
3

p
x

2

� �
þ b2 sin

ffiffi
3

p
x

2

� �h i
e

x
2 x 2 ½14 ; 34 ½;

� 1
2 þ c0e�

ffiffi
23

p
x þ c1 cos

ffiffi
3

p ffiffi
23

p
x

2

� �
þ c2 sin

ffiffi
3

p ffiffi
23

p
x

2

� �h i
e
ffiffi
23

p
x

2 x 2 ½34 ;1�:

8>>>>><
>>>>>:

ð10Þ
where the constants ai; bi and ci is given with i ¼ 1; . . . ;3 by apply-
ing the continuity conditions on U;U0;U00.

a0 ¼ 0:220300649527402; a1 ¼ 0:279699350472598; a2

¼ 0:0928967833270709;

b0 ¼ �0:00973786559844113; b1 ¼ 0:0208426867753722; b2

¼ 0:00712428122870885;

c0 ¼ 0:423614465941949; c1 ¼ 0:145695066676027; c2

¼ 0:168780738107810:

We can now find the approximate solution of the problem (8)
by using VIM. According to the iterative formula (6), we can write
the problem (8) in the iterative form

Unþ1ðxÞ¼UnðxÞþ

�1
2

R x
0 ðs�xÞ2 @ð3ÞUnðsÞ

@s3 þ2UnðsÞþ1
h i

ds; 06 x< 1
4 ;

�1
2

R x
1
4
ðs�xÞ2 @ð3ÞUnðsÞ

@s3 þUnðsÞ
h i

ds; 1
46 x< 3

4 ;

�1
2

R x
3
4
ðs�xÞ2 @ð3ÞUnðsÞ

@s3 þ2UnðsÞþ1
h i

ds; 3
46 x61:

8>>>><
>>>>:

ð11Þ
Using the boundary conditions at 0, we obtain a possible para-

metric expression of U0 that is given by

U0ðxÞ ¼
a2x2 þ a1xþ a0; x 2 0; 14

� �
;

b2ðx� 1
4Þ

2 þ b1ðx� 1
4Þ þ b0 x 2 1

4 ;
3
4

� �
;

c2ðx� 3
4Þ

2 þ c1ðx� 3
4Þ þ c0; x 2 3

4 ;1
� �

:

8>><
>>: ð12Þ

Using (12), we obtain a parametric expression of U2 after two VIM
iteration. Then, applying the continuity condition of U;U0 and U00 at
the points 1

4 and 3
4 and the boundary condition at the point 1, we

obtain a system of linear equations in seven variables
a2; b0; b1; b2; c0; c1 and c2. This system get to the following solutions:

a2 ¼ 955=7478;
b0 ¼ 103=19166; b1 ¼ 252=7745; b2 ¼ 52=23575;
c0 ¼ 184=8365; c1 ¼ 749=22436; c2 ¼ �31=25704:

Thus, the expression of U2 is as follows
3

U2ðxÞ ¼

21x8
828766 þ x6

360 � 45x5
10571 � x3

6 þ 955x2
7478 ; 0 6 x < 1

4 ;

� x8
9139846 þ 3x7

481004 � x6
274566 � 7x5

176854 � 24x4
18373

þ 23x3
52801 þ 37x2

15578 þ 127x
4051 � 99

37879 ;
1
4 6 x < 3

4 ;

� x8
4178973 þ 3x7

3107408 þ 63x6
22850 � 44x5

3467 þ 154x4
7285

� 463x3
2442 þ 1637x2

4151 � 224x
869 þ 397

5728 ;
3
4 6 x 6 1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð13Þ
Fig. 1 shows that the curve of the exact solution merges with

that of the VIM solution. This precise result can be clearer in
Fig. 2 where we notice that the order of the relative error is 10�7.
After the second iteration of VIM, we obtained satisfactory results,
which indicates the effectiveness and high accuracy of this method
for an optimal computing cost.

4.2. Third-order nonlinear obstacle problem

In the next, we Take FðU; xÞ ¼ U2; k ¼ 3; a ¼ �1; b ¼ � 1
2 ; c ¼ 1

2

and d ¼ 1, with boundary conditions a0 ¼ a1 ¼ b0 ¼ 0, under (5)
we obtain the following problem

� @ð3ÞUðxÞ
@x3

¼ U2ðxÞ þ 2UðxÞ þ 1 x 2 ½�1;� 1
2 ½[½12 ;1�;

U2ðxÞ þ UðxÞ x 2 ½� 1
2 ;

1
2 ½:

(
ð14Þ

We can use the iterative formula (6) associated with VIM to find an
approximate solution of the previous problem, we write

Unþ1ðxÞ ¼ UnðxÞ

þ

� 1
2

R x
0 ðs� xÞ2 @ð3ÞUnðsÞ

@s3 þ U2
nðsÞ þ 2UnðsÞ þ 1

h i
ds; �1 6 x < � 1

2 ;

� 1
2

R x
1
4
ðs� xÞ2 @ð3ÞUnðsÞ

@s3 þ U2
nðsÞ þ UnðsÞ

h i
ds; � 1

2 6 x < 1
2 ;

� 1
2

R x
3
4
ðs� xÞ2 @ð3ÞUnðsÞ

@s3 þ U2
nðsÞ þ 2UnðsÞ þ 1

h i
ds; 1

2 6 x 6 1:

8>>>><
>>>>:

ð15Þ
With the same procedures, we consider the following expression of
U0



Fig. 2. The curve of relative error.

Fig. 3. Comparing the two-iteration VIM solution in straight-line (blue), with the
Adomian solution in dashed-line (red).
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U0ðxÞ ¼
a0 þ a1ðxþ 1Þ þ a2ðxþ 1Þ2; �1 6 x < � 1

2 ;

b0 þ b1ðxþ 1
2Þ þ b2ðxþ 1

2Þ
2
; � 1

2 6 x < 1
2 ;

c0 þ c1ðx� 1
2Þ þ c2ðx� 1

2Þ
2
; 1

2 6 x 6 1:

8>><
>>: ð16Þ

Applying (15) to U0, we obtain U2 last two VIM iteration. Then, the
use of the continuity conditions on U;U0 and U00 at points � 1

2 and
1
2

and the boundary conditions leads to a nonlinear system in variable
ai; bi and ci, where i ¼ 0;1;2. This system is solved by using the
Newton method. We obtain the following solution

a0 ¼ 321=6281; a1 ¼ �160=463; a2 ¼ �520=2191;
b0 ¼ 155=3403; b1 ¼ 849=3166; b2 ¼ 93=14320;
c0 ¼ 311=989; c1 ¼ 721=2197; c2 ¼ �419=1566:

It should be noted that already after two steps of VIM calculation,
14th degree polynomials result. The expression of U2 is given in
the following fourth order and we deny the rest.

U2ðxÞ¼

� 242x4
19403� 403x3

1799 � 520x2
2191 þ 323x

2502þ 243
1525 ; �1

26 x<�1
2 ;

� 207x4
13696� 247x3

6889 þ 113x2
2871 þ 409x

1538þ 271
1489 ; �1

26 x<�1
2 ;

� 133x4
11509� 299x3

1230 þ 415x2
1166 þ 547x

5163
671
3213 ;

1
26 x61:

8>>>>>><
>>>>>>:

ð17Þ

Fig. 3 shows that the curve of the Adomian solution merges
with that of the VIM solution. It should be noted, however, that
we have used the Adomian method for comparison purposes. This
allows us to draw the following conclusion: The VIM and Adomian
method give almost the same precision for this nonlinear problem
of the obstacle.

5. Conclusion

The differential inequalities which describe the obstacle prob-
lem are transformed into the differential equations thanks to the
penalization method. The equations thus obtained were processed
by the variational iteration method. The discussed examples of a
beam with an elastic obstacle show some the major benefits: It
leaves freedom of choice, on various loads, to an arbitrary point
or region on the beam, on the boundary conditions at the ends of
the beam; and the VIM is inexpensive and simple to implement
and therefore the required programming skills are not necessary.
4

We conclude the effectiveness and reliability of this method for
solving certain type of these problems.
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