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The applications of fractional partial differential equations (PDEs) in diverse disciplines of science and
technology have caught the attention of many researchers. This article concerned with the approximate
numerical solutions of three-dimensional two- and three-term time fractional PDE models utilizing an
accurate, and computationally attractive local meshless technique. Due to their tremendous advantages
like ease of applicability in higher dimensions in both regular and irregular domains, the interest in
meshless techniques is increasing. Test problems are considered to assess the reliability and accuracy
of the proposed technique.
© 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fractional PDE models are widely employed in many disciplines
of physics, and variety of methods are used in the literature for
their simulations (see Ain and He, 2019; Nadeem and Li, 2019;
He and EI-Dib, 2020a). Nowadays, it is in the limelight of active
researchers with extensive research to advance numerical and ana-
lytical solutions for linear and nonlinear fractional PDEs (He and
El-Dib, 2020b; He and Ain, 2020; He et al.,, 2012; Ahmad et al,,
2018, 2020a,b,c; Srivastava et al., 2020; He, 2018; Inc et al.,,
2020; He, 2014). In the current work, we have considered the fol-
lowing two- and three-term time fractional Sobolev equation
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where V? is the Laplacian and V denote Gradient operators and

B,7,8 are known parameters whereas 2 22 and 22 represent
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the Caputo derivative operator of order 0 < y; < 7,
function % (X, t).

Recent literature uses several meshless techniques to solve
numerically different PDE models in almost all disciplines of phy-
sics and mathematics. In particular, the meshless techniques using
radial basis function (RBF) are the main one of these processes. The
meshless property makes it popular among researchers. These
methods overcome the challenges of dimensionality using conven-
tional methods. In contrast to mesh-based methods, meshless
approaches do not need mesh in the domain. These techniques
can compute the solution utilizing uniform or non-uniform nodes
in both regular and irregular computational domains, which
increases the applicability and usefulness of the methods. Mesh-
less methods are in fact actionable and valuable that can be applied
to solve physical problems (Wang et al., 2021; Hussain et al., 2020;
Khan et al.,, 2020; Ahmad et al., 2019a, 2020d,e,f,g; Wang et al.,
2019, 2020; Nawaz et al., 2021; Wang and Zheng, 2016).

Like other numerical methods, the meshless methods, have
some drawbacks, which may be the most important one to choose
the optimal value of the shape-parameter and dense ill-
conditioned matrices. To circumvent these shortcomings, the local
meshless technique is the best alternative proposed by researchers
which is precise and stable in finding solutions for various integer
and fractional PDE models (Ahmad et al., 2019b,c). These methods
produce well conditioned sparse matrices and are less sensitive to
the selection of shape-parameters than the global version. In addi-
tion, the local meshless method is extra valuable and effective than
its global counterpart. Recently, these methods are explored in var-
ious form in different applications (Ahmad et al., 2017, 2020h; Shu,
2000).

In this paper, the local meshless technique is utilized for the
solution of model Eqgs. (1), (2). Inverse multiquadric (IMQ) radial
basis functions (RBFs) are taken into account. Moreover, Two kinds
of irregular domains are analyzed in numerical examinations.

< 7, < 1for the

2. Implementation of local meshless technique

According to the suggested technique, to approximated the
derivatives of #(X,t) at the centers X, by the neighborhood of
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where

W (%) =¥ (X — %|1),p = h1,h2, ... hnp,

for each k =i1,h2,...,hny. (7) can be written as

v = An, A, (8)
From (8), we obtain

= A 9)

(5) and (9) implies
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The derivatives of #(x,y,t) w.r.t. x and y can be found as
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To compute the derivative term we can proceed as follows,
where t; =q7,q=0,1,2,...,Q and time step size At in [0,t].
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Letting ao = 35— and b, = r+ D" —rln r=0,1,...,q, we

T=71)
have
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Table 1
Problem 1, results of the local meshless technique.
N=38 N=10 N=12
AT Max(error) RMS Max(error) RMS Max(error) RMS
Two-term 0.1 2.8416e—-04 8.8737e-05 2.9285e—-04 9.2558e—-05 2.9732e-04 9.5131e-05
0.05 7.0957e—-05 2.2159e-05 7.3125e—-05 2.3112e-05 7.4237e-05 2.3753e-05
0.01 2.8334e-06 8.8481e-07 2.9195e—-06 9.2271e-07 2.9633e-06 9.4813e-07
0.005 7.0756e—07 2.2096e—-07 7.2896e—-07 2.3039e-07 7.3980e—-07 2.3671e-07
0.001 2.8171e-08 8.7973e—-09 2.9007e—-08 9.1677e—-09 2.9420e—-08 9.4132e—-09
0.0005 7.0184e—09 2.1916e-09 7.2236e—09 2.2830e—-09 7.3231e-09 2.3430e—09
Three—term 0.1 2.8404e—-04 8.8701e—-05 2.9272e-04 9.2515e-05 2.9716e—-04 9.5082e—-05
0.05 7.0915e—-05 2.2146e-05 7.3078e—-05 2.3097e—-05 7.4183e-05 2.3736e—-05
0.01 2.8296e—-06 8.8364e—07 2.9152e-06 9.2135e-07 2.9584e-06 9.4657e—07
0.005 7.0624e—07 2.2054e-07 7.2744e-07 2.2991e-07 7.3807e—07 2.3615e—-07
0.001 2.8053e—-08 8.7602e—09 2.8870e—-08 9.1244e-09 2.9266e—-08 9.3636e—09
0.0005 6.9765e—09 2.1785e—09 7.1754e—-09 2.2677e—-09 7.2683e—09 2.3254e-09
Table 2
Problem 1, results of the local meshless technique using N = 10.
t=1 t=2 t=3
b Max(error) RMS Max(error) RMS Max(error) RMS
Two-term 0.2 7.3170e—-07 2.3126e—-07 5.3832e-07 1.7014e-07 2.9704e—-07 9.3882e-08
0.4 7.3053e—-07 2.3089e—-07 5.3746e—-07 1.6987e—07 2.9657e—-07 9.3733e-08
0.6 7.2584e—-07 2.2940e-07 5.3402e-07 1.6878e—07 2.9468e—07 9.3134e—-08
0.8 7.0765e—07 2.2364e-07 5.2065e—07 1.6455e—07 2.8731e-07 9.0801e—08
Three—term 0.2 7.3154e—-07 2.3121e-07 5.3818e—07 1.7010e—07 2.9696e—07 9.3856e—08
0.4 7.2979e—-07 2.3065e—-07 5.3690e—07 1.6969e—07 2.9626e—-07 9.3634e—-08
0.6 7.2276e—-07 2.2843e-07 5.3174e-07 1.6805e—07 2.9342e-07 9.2735e—-08
0.8 6.9547e—07 2.1979e-07 5.1169e—-07 1.6171e—07 2.8237e-07 8.9235e—-08
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Fig. 1. Problem 1, ¢ versus error norms (left) two-term model equation, (right) three-term model equation.
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The fractional derivative of order y, and y; can be found as
above.

ao (%' - °),

3. Results

The local meshless technique is tested for applicability, accu-
racy and efficiency to approximate the solution of model Egs. (1),
(2). In this paper, different computational domains are utilized

with uniform and scatted nodes. Throughout the paper, we have
employed the Crank-Nicolson scheme, IMQ RBF with
¢ =100, At = 0.005, and spatial domain [0, 1] unless specifically
stated. The accuracy is measure as follows

Absolute — error = |U — |,

Max(errer) = max(Absolute — error),
(11)

where U is the exact solution.
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Problem 1. The exact solution for Eqs. 1,2 with f=1,7=6=01s
U(X,t) = e”" sin(mx) sin(my) sin(nz), X € Q, (12)

The results of the proposed local meshless technique for
Problem 1 are displayed in Table 1. Various number of nodes
N, final time t =1 and time step size At are utilized whereas
in two- and three-term time fractional model the values of frac-
tional order are y; =y, =0.5 and ), =y, = y; = 0.5 respectively.

Furthermore, the error norms stand for Max(error) and RMS.
These results exposed the evidence that the proposed technique
is competent for better results and the accuracy increases some-
what when At decreases. To examine the performance of the
method, the results are calculated for different time fractional
order y’s and final time up to t = 3, and shown in Table 2. Better
accuracy has been obtained for various fractional order utilizing
N = 10.
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The accuracy and stability of the RBF-based meshless technique
are extremely dependent on the value of the shape-parameter c,
and the results will be different and unstable as the shape-
parameter value changes a little. However, the accuracy and
stability of the proposed technique are tested against Problem 1, as
shown in Fig. 1 for N=10,y, =y,=05 (in two-term),
Y1 =72 =73 = 0.5 (in three-term) and t = 1. Fig. 1 exposed that
the proposed technique is accurate and stable. In the current paper,
we have studied two irregular domains which are illustrated in
Fig. 2. In Figs. 3 and 4, the results are shown for Problem 1
regarding the non-rectangular domains. For two-term case, we
have considered the value of y; =y, =0.1 (for Domain-1) and
Y1 =7, =0.9 (for Domain-2) whereas in case of three-term,
7, =0.8,7, =0.6,7; =04 are taken into account for both
Domain-1 and Domain-2, for various time up to t = 4. These figures
visualized better accuracy in both types of domains.

Journal of King Saud University - Science 33 (2021) 101604

Problem 2. The exact solution for Egs. (1), (2) with
B=1,y=6=0is
AX,t) = eV sin(mx) sin(my) sin(nz), X € Q, (13)

Determining the accuracy of the recommended technique,
results of Problem 2 are compared with the exact solution for
diverse At and N using t =1 for y; =y, = 0.3 (for two-term) and
Y1 =7, =73 =03 (for three-term). These results are shown in
Table 3. In this table, we can notice that the recommended method
provides better results with few iterations and is become more
accurate when iterations increase and both the error norms
reached up to 10°°. In Table 4, the results are achieved using var-
ious y’s for N =10, t = 1,2 and t = 3. Observing this table we can
say that accurate results have been achieved for various time frac-
tional orders in this problem as well.

Table 3
Problem 2, results of the local meshless technique for t = 1.
N=8 N=10 N=12
AT Max(error) RMS Max(error) RMS Max(error) RMS
Two-term 0.1 2.1364e—-04 5.9329e-05 2.0995e—04 6.1905e—05 2.1083e—04 6.3636e—05
0.05 5.3362e—05 1.4819e—-05 5.2441e-05 1.5462e—05 5.2659e—05 1.5894e—05
0.01 2.1334e-06 5.9244e-07 2.0964e—-06 6.1814e—-07 2.1051e—-06 6.3539e—07
0.005 5.3324e-07 1.4808e—07 5.2401e-07 1.5451e—07 5.2616e—07 1.5881e—07
0.001 2.1318e-08 5.9201e—09 2.0947e—-08 6.1764e—09 2.1032e-08 6.3482e—-09
0.0005 5.3278e—09 1.4795e—09 5.2349e—-09 1.5435e—-09 5.2559e—09 1.5863e—09
Three—term 0.1 2.1360e—04 5.9319e-05 2.0991e—-04 6.1894e—-05 2.1079e—-04 6.3623e—-05
0.05 5.3351e—05 1.4816e—05 5.2429e-05 1.5459e—05 5.2645e—05 1.5890e—05
0.01 2.1326e-06 5.9223e-07 2.0956e—06 6.1790e—07 2.1042e-06 6.3512e-07
0.005 5.3302e—-07 1.4802e—07 5.2376e—-07 1.5443e—-07 5.2588e—-07 1.5873e-07
0.001 2.1303e-08 5.9159e—-09 2.0931e-08 6.1715e—09 2.1014e-08 6.3426e—09
0.0005 5.3232e-09 1.4783e—09 5.2297e—-09 1.5420e—09 5.2502e—09 1.5846e—09
Table 4
Problem 2, results of the local meshless technique using N = 10.
t=1 t=2 t=3
v Max(&) RMS Max(g) RMS Max(g) RMS
Two-term 0.1 5.2442e-07 1.5463e—07 3.8582e-07 1.1376e—-07 2.1289e-07 6.2772e—-08
0.3 5.2401e-07 1.5451e-07 3.8552e-07 1.1367e-07 2.1273e-07 6.2724e—-08
0.7 5.1568e—07 1.5205e—07 3.7941e-07 1.1187e—07 2.0936e—07 6.1733e—-08
0.9 4.9040e—-07 1.4460e—07 3.6082e—-07 1.0639e—07 1.9911e-07 5.8712e—-08
Three—term 0.1 5.2437e-07 1.5461e—07 3.8578e—-07 1.1375e-07 2.1286e—-07 6.2763e—-08
0.3 5.2376e—07 1.5443e—07 3.8532e-07 1.1361e-07 2.1262e-07 6.2691e—08
0.7 5.1127e-07 1.5075e—07 3.7615e—-07 1.1091e—-07 2.0757e—-07 6.1204e—-08
0.9 4.7334e—-07 1.3958e—07 3.4827e-07 1.0270e—07 1.9219e-07 5.6673e—08

Apporoximate solution

0.2 04

X
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Exact solution

0.2

0.4 06

X

Fig. 5. Problem 3, two-term model equation at z = 0.5 (left) numerical solution (right) exact solution.
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Fig. 6. Problem 3, three-term model equation at z = 1 (left) numerical solution (right) exact solution.

Problem 3. The exact
B=1,y=1 6=m?is

solution for Egs. (1), (2) with

«(X,t) = e' sin(mx) sin(my) sin(nz), X € Q, (14)

For Problem 3, the behavior of numerical and exact solutions using
N =21, t =0.01 are visualized in Fig. 5 atz= 0.5, 7, =7, =0.5(in
two-term) whereas in Fig. 6 the solutions are shown at z =1 for
Y1 =Y, = Y3 = 0.5 (in three-term). One can see from these figures
that the numerical solution is very compatible with the exact
solution.

4. Conclusion

In this paper, we have examined the effectiveness and applica-
bility of the suggested local meshless technique to compute the
numerical solution of time fractional Sobolev model equations.
The obtained results prove that the suggested technique works
amazingly in fractional PDE models. Numerical experiments show
that the algorithm gives good accuracy and in light of these analy-
ses, we suggest that the local meshless technique can be imple-
mented to such types of fractional PDE models which appear in
physical problems.
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