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Cancer-causing nature is one of the toxicological endpoints bringing about the most elevated concern.
Likewise, the standard bioassays in rodents used to survey the cancer-mitigating capability of chemicals
and medications are expensive and require the sacrifice of animals. Thus, we have endeavored the devel-
opment of a worldwide QSAR model utilizing an information set of 85 compounds, including drugs for
their anti-leukemia potential. Considering expansive number of information focuses with different struc-
tural elements utilized for model development (ntraining = 68) and model validation (ntest = 17), the
model developed in this study has an encouraging statistical quality (leave-one-out Q2 = 0.833,
R2pred = 0.716) for pLC50 and (leave-one-out Q2 = 0.744, R2pred = 0.614) for pGI50. Our developed
model suggests that the absence of methanal fragments, low dipole moment and presence of some 2D
autocorrelated molecular descriptors reduces the carcinogenicity. Branching, size and shape are found
to be crucial factors for drug-mitigating carcinogenicity.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drugs and other chemical agents that interact with specific
enzymes are usually shown as graphs and paths when establishing
a relationship with their bio-activities (Speck-Planche et al.,
2012b). Each vertex in the polygonal path represents a unique
property referred to as molecular descriptors of a molecule. For
the past decade, drug researchers have established that the geom-
etry of drugs plays an important role in influencing their functions
when complexed with a targeted receptor (Dunnington and
Schmidt, 2015). This information justifies that the molecular
descriptors of chemical compounds are correlated to their chemi-
cal properties, such as the large number of topological indices that
have been reported for isomer discrimination and the study of
molecular complexity by Arthur (Arthur et al., 2016a), others such
as the rational combinatorial library design for deriving multilinear
regression models were also reported (Andrada et al., 2015).

At present, cancer is one of the leading cause of death in the
human population around the world, and it is predicted to increase
within that trend in the coming years (Alanazi et al., 2014). The use
of chemical agents to inhibit cancer cell growth is the cheapest and
most promising treatment for this disease. A major advantage of
chemotherapy is its use to treat a different type of cancer, where
surgery and radiation therapies are limited (Rischin et al., 2000,
Kashiwagi et al., 2011). The presence large libraries of discovered
compounds with high activities compiled by drug databanks and
institutes such as National Cancer Institute gives options of drugs
that can be studied but at the same time provides a compelling
problem which involves the factor time and capital cost in experi-
mentally screening and validating the effectiveness of the new
drug.

QSAR analysis is an effective method for optimizing lead
compounds and designing new drugs. It is used in predicting the
activity, toxicity, and carcinogenicity of compounds based on the
molecular descriptors of compounds established in appropriate
mathematical models. The rapid development of computational
chemistry software has improved the chances and reduced the
time spent in obtaining chemical parameters of compounds for this
study. The aim of this research is to obtain two new models, one to
predict the activity and the other toxicity of the selected dataset

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2018.05.023&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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and hopefully able to predict new strategies with improved activ-
ities capable of mitigating cancer in drug-resistant P388ADR
leukaemia cell line (Gagic et al., 2016; Chen et al., 2015, Speck-
Planche et al., 2012a, Zhao et al., 2013).
2. Materials and methods

The computational hardware and software used in this work
includes: Computer (HP pavilion Intel(R) Core i5-4200U with
1.63 Hz and 2.3 Hz processor and Windows 8.1 operating system),
Spartan 14 (Hehre and Huang, 1995), ChemBio Ultra 12.0 (Li et al.,
2004, Evans, 2014), Padel-descriptor (Yap, 2011), MS Excel
(Denton, 2001).

In this study, a data set of eighty-five (85) compounds from NCI
database were optimized at the density functional theory (DFT)
level using Becke’s three-parameter Lee–Yang-Parr hybrid func-
tional (B3LYP) in combination with the 6-311G⁄ basis set
(Benarous et al., 2016, Bauernschmitt and Ahlrichs, 1996). The
optimized structures were used to generate molecular descriptors
using the paDEL program. We calculated 1875 descriptors (1444
1D, 2D descriptors, and 431 3D descriptors) molecular descriptors
using the paDEL program (PaDEL-Descriptor, 2014) for example,
atom-type electrotopological state descriptors, McGowan volume,
molecular linear free energy relation descriptors, ring counts, 2D-
Autocorrelations, Aromaticity Indices, Randic Molecular Profiles,
Radial Distribution Functions, Functional Groups, Atom- Centred
Fragments, Empirical and Properties. WHIM, Petitjean shape index,
count of chemical substructures identified by Laggner, while bin-
ary fingerprints and count of chemical substructures identified
by Klekota, Roth and Frederick (Klekota and Roth, 2008), Dragon
descriptor software (Talete, 2007, Mauri et al., 2006) was also used
to calculate some other descriptors such as 3D-MoRSE descriptors,
GETAWAY descriptors, WHIM descriptors and Drug-like indices.
We likewise incorporate into the analyses 5 other molecular
descriptors calculated from the DFT computation (dipole moment,
the energy of the HOMO and LUMOmolecular orbitals, total energy
and HOMO–LUMO gap).

2.1. Scaling of activities and descriptors data

The response variable (biological activities) and the explanatory
variable (molecular descriptors) and were scaled using auto-
scaling and range scaling procedure. According to Golbraikh et al.
(2003), the modeling set and the evaluation set were scaled sepa-
rately. Usually, variables with larger pre-scaled value have high
coefficient and those with smaller pre-scaled values has a low coef-
ficient in the regression equation (Foudah et al., 2014). Hence, the
need to transform the variables data to the standard data by sub-
tracting the mean and dividing by its standard deviation.

x0i
ðxi � l̂iÞ

r̂i

where xi is the original descriptors,l̂i is the arithmetic mean of each
descriptors, r̂i is the standard deviation, and x0i the scaled descrip-
tors. This process removes the dependence of the regression coeffi-
cient on unit. This is good for cases where variables indicate
concentrations or amounts of chemical compounds, or were vari-
ables represent measurements in unrelated units (Wehrens, 2011,
Mevik et al., 2011).

Range scaling techniques or normalization usually give linear
transformation that set the maximum and minimum of each scale
to be [0, 1] or [�1, 1], etc. Here, the minimum value in a vector (a
column representing a given variable ‘‘y”) is subtracted from every
data point ‘‘yn” of N samples and the results are divided by the
range.
N½�1;1�ðynÞ ¼ 2
yn � ymin

ymax � ymin

� �
� 1

where ymin and ymax are, respectively, the minimum and maximum
values that can be found in the data set, with respect to all the data
points and the variable to normalize. The minimum and maximum
value of the evaluation set was used in this normalization proce-
dure (Tropsha, 2010, Roy et al., 2013). These range-scale descriptors
have a minimums and maximum the value of �1 and 1 respectively.

These compounds were then divided into training and test sets
by the Kennard-Stone algorithm (Kennard and Stone, 1969). The
QSAR models were generated using the Genetic Function Approxi-
mation (GFA). The GFA technique is a collection of Genetic Algo-
rithm used to evolve a population of equations that best fit the
training set (Deb et al., 2002, Leardi et al., 1992). A unique feature
of GFA is that it yields a population of models, instead of generat-
ing a single model. The developed models were then subjected to
internal and external validation and Y-randomization tests so as
to justify their predictability (Tropsha, 2010).

2.2. Splitting of data-set into modelling sets and evaluation test sets

The data set was divided into two sets, the modelling set, and
test set. The modelling set is used in developing the model, it con-
tains eighty percent of the entire data set. While the test set which
constitutes the remaining twenty percent of the whole data set
was not used in the construction of the model but to ascertain
the predictive ability of the model (Tropsha, 2010).

2.2.1. Model development
Multiple Linear Regression was used to establish a relationship

between the bioactivities (pGI50) and the molecular descriptors.
The model was written such that sum-of-squares difference
between the experimental and predicted values of the bioactivities
were minimized.

2.2.2. Evaluation of the QSAR model
The QSAR models developed was validated by subjecting the

models to some statistical tests as: R2; Fishers test; cross-
validated test and pred R2.

2.2.3. Validation of the QSAR model
The ability of a QSAR equation to predict the bioactivity of the

compounds within the training set was carried out, using the
leave-one-out cross-validation method. The cross-validation
regression coefficient (Qcv

2) is given as:

q2
CV ¼ 1� PRESS=TOTAL ¼ 1�

Pn
i¼1ðyexp � ypredÞ2Pn

i¼1ðyexp � �yÞ2

where ypred, yexp, and y~ are the predicted, experimental, and mean
values of experimental activity respectively. It has been reported
that high estimation of statistical attributes is not enough to justify
the ability of a model, and so to assess the predictive capacity of the
new QSAR model, the method depicted by Golbraikh and Tropsha
(2002) and Roy et al. (2015) were utilized. The coefficient of deter-
mination for the test set Rtest

2 , was calculated through the accompa-
nying mathematical statement

R2
Test ¼ 1�

X
ðYpredtest � YTestÞ2X

ðYpredtest � �YTrainingÞ2

�YTraining is the average activity value of the training set com-
pounds (Tropsha et al., 2003). Additional assessment of the predic-
tive power of the QSAR model for the test set compounds was done
by calculating the value of (rm2 ), using the rm2 metric by Roy et al.
(2013).
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3. Results and discussion

The predicted activities of the training set compounds which
was generated by the Material Studio Software, as well as the pre-
Table 1
Chemical Names of Dataset with NSC numbers with Activity/Toxicity value.

Serial Number (ID) NAME NSC P38
(Exp

1 20-DEOXY-5-FLUOROURIDINE 27,640 6.6
2 3-HP 95,678 6.4
3 5,6-DIHYDRO-5-AZACYTIDINE 264,880 5
4 5-AZA-20-DEOXYCYTIDINE 127,716 7
5 5-AZACYTIDINE 102,816 6.5
6 5-HP 107,392 5.9
7 ACIVICIN 163,501 6.5
8 ALPHA-TGDR 71,851 4.1
9 AMINOPTERIN DERIVATIVE1 132,483 7.3
10 AMINOPTERIN DERIVATIVE2 184,692 7.7
11 AMINOPTERIN DERIVATIVE3 134,033 8
12 AMONAFIDE 308,847 5.9
13 AN ANTIFOL 623,017 8
14 ANTHRAPYRAZOLE DERIVATIVE 355,644 6.7
15 ARA-C 63,878 7.3
16 ASALEY 167,780 5.8
17 AZQ 182,986 5.6
18 BAKER’S SOLUBLE ANTIFOL 139,105 5.6
19 BCNU 409,962 5.1
20 BETA-TGDR 71,261 6.6
21 BISANTRENE HCl 337,766 4.1
22 BREQUINAR 368,390 6.7
23 BUSULFAN 750 4
24 CAMPTOTHECIN 94,600 7.6
25 CAMPTOTHECIN, HYDROXY- 107,124 7.4
26 CAMPTOTHECIN, NA SALT 100,880 7.5
27 CCNU 79,037 5.3
28 CHLORAMBUCIL 3088 5.2
29 CHLOROZOTOCIN 178,248 4.1
30 CLOMESONE 338,947 4.6
31 COLCHICINE 757 5.9
32 CYANOMORPHOLINODOXORUBICIN 357,704 8.6
33 CYCLOCYTIDINE 145,668 6.9
34 CYCLODISONE 348,948 5.1
35 DAUNORUBICIN 82,151 5.9
36 DEOXYDOXORUBICIN 267,469 6.4
37 DIANHYDROGALACTITOL 132,313 5.8
38 DICHLORALLYL LAWSONE 126,771 5.8
39 FLUORODOPAN 73,754 3.5
40 FTORAFUR (PRO-DRUG) 148,958 4.6
41 GUANAZOLE 1895 3
42 HEPSULFAM 329,680 4.1
43 HYCANTHONE 142,982 5.2
44 HYDROXYUREA 32,065 4.2
45 INOSINE GLYCODIALDEHYDE 118,994 4.2
46 L-ALANOSINE 153,353 5.1
47 M-AMSA 249,992 6.6
48 MAYTANSINE 153,858 8
49 MELPHALAN 8806 5.2
50 MENOGARIL 269,148 5.9
51 METHOTREXATE 740 7.6
52 METHYL CCNU 95,441 5.8
53 MITOMYCIN C 26,980 5.9
54 MITOXANTRONE 301,739 7.7
55 MITOZOLAMIDE 353,451 4.9
56 MORPHOLINODOXORUBICIN 354,646 8.6
57 N-(PHOSPHONOACETYL)-L-ASPARTATE

(PALA)
224,131 4.1

58 N,N-DIBENZYL DAUNOMYCIN 268,242 5.8
59 NITROGEN MUSTARD 762 7.2
60 OXANTHRAZOLE 349,174 5.9
61 PCNU 95,466 4.6
62 PIPERAZINE DRUGSMAINATOR 344,007 4.6
63 PIPERAZINEDIONE 135,758 6.6
64 PIPOBROMAN 25,154 4.8
65 PORFIROMYCIN 56,410 5.1
dicted test set values calculated using MSExcel 2013 (Carlberg,
2014) are presented in Table 1.

The results for the validation of the QSAR models presented
as
8ADR
erimental pGI50)

P388ADR
(Predicted pGI50)

P388ADR
(Experimental pLC50)

P388ADR
(Predicted pLC50)

4.800a 3 3.122
6.017 3 3.246
5.228 2.8 2.962
6.325 3.5 2.975
5.812 2.7 2.969
6.653 2.8 2.920
6.823 3 2.966
6.147 2.3 2.278
7.411 4 4.339
9.171a 4 4.016
7.602 4 3.867
5.679 3.9 4.158
7.770 4 3.871
5.841 4 3.937b

6.608 4 2.982b

7.769a 4.1 3.824b

4.377 3.9 3.756
5.924 3 3.035
4.818 3.5 3.006b

6.225 2.9 2.725
5.612 3.6 3.904
7.403a 3.3 3.237
4.105 3.6 3.501
7.603a 4.5 3.992
7.499 4.2 3.810b

7.508 3.8 3.806
5.723 3.7 3.431
5.396 3.3 3.545
4.861 2.9 3.213b

4.845 2.3 2.520
5.710 3.2 3.557
5.437a 4.6 4.032
6.649 3 3.278b

5.175 2.7 2.553
6.556 4 3.762b

5.659a 3.8 3.795
6.496a 3.8 3.797
7.239a 3.7 3.754
4.617a 2.6 2.345
5.204 3 2.593
3.224 2 1.793
3.962 2.6 3.425b

5.990 4.1 4.019
4.411 2.7 2.826
5.417a 2.6 3.808b

5.059 3.3 3.268
6.268 4.1 4.138
7.321 4.6 4.535
5.636 3.7 3.621
6.745 4.3 3.884
8.522a 4.1 3.908b

5.748 3.6 3.458
5.445 4.6 3.559
6.715 4.6 4.055
5.273 2.9 3.080
7.223a 4.7 4.366b

3.986 2 2.090b

6.780 4.3 3.855
6.971 4.1 3.473
5.930 3.6 4.128b

5.214 2.9 3.380
5.154a 3 3.372
6.145a 3 3.135
4.493 3.4 3.363
5.254 3 3.299



Table 1 (continued)

Serial Number (ID) NAME NSC P388ADR
(Experimental pGI50)

P388ADR
(Predicted pGI50)

P388ADR
(Experimental pLC50)

P388ADR
(Predicted pLC50)

66 PYRAZOFURIN 143,095 6.3 6.013 2.3 2.905
67 PYRAZOLOACRIDINE 366,140 6.7 5.772 4.6 4.167
68 PYRAZOLOIMIDAZOLE 51,143 3.5 3.786 2 2.640
69 RHIZOXIN 332,598 8 7.654 4.7 4.825
70 RUBIDAZONE 164,011 5.3 6.821 3.9 3.646
71 SPIROHYDANTOIN MUSTARD 172,112 4.5 5.463 3.6 3.338b

72 TAXOL 125,973 6.2 5.974 4 5.186
73 TEROXIRONE 296,934 5.7 4.698a 2.6 2.477
74 THIOPURINE 755 6 5.405 3.8 3.690
75 THIOGUANINE 752 6.7 5.517a 3.1 2.871b

76 THIO-TEPA 6396 5.1 4.822 3.1 2.401b

77 TRIETHYLENEMELAMINE 9706 6.3 5.981 1.1 1.329
78 TRIMETREXATE 352,122 7.6 7.571 3.6 3.928
79 TRITYL CYSTEINE 83,265 5.3 4.751 3.9 4.015
80 URACIL NITROGEN MUSTARD 34,462 5.8 5.530 3.5 3.461
81 VINBLASTINE SULFATE 49,842 7 7.386 5.7 5.554
82 VINCRISTINE SULFATE 67,574 6.8 6.593 3.3 3.810
83 VM-26 122,819 6.2 4.681 4.6 4.047
84 VP-16 141,540 4.2 5.275 3.1 3.577
85 YOSHI-864 102,627 3.4 4.978 2 2.134

Where superscript a and b represent test sets for P388ADR leukemia cell line for the activity and toxicity model respectively.
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Toxicity

pLC50 ¼ �2:05459ðMethanalÞ � 1:70276ðShadowlength
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Fig. 1. Graphical representation of predicted against experimental toxicity by GA-
MLR (P388ADR CELL LINE).
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Fig. 2. Graphical representation of Standardized residual against experimental
toxicity (P388ADR CELL LINE).
Ntest ¼ 17;R2
test ¼ 0:614;RMSEtrain ¼ 0:680;RMSEtest ¼ 0:1:338

The calculated Q2
LOO value, 0.833 and 0.744 respectively for pLC50

and pGI50 suggests a good internal validation. An external validation
method where the test set constituting 30% of the dataset was sub-
jected to the model, confirms the model was indeed good since their
values were 0.716 and 0.614 respectively for the toxicity and activity
models. These values suggest the robustness of the constructed
models. The result of predict test set data are given in Table 1. The
predicted values for pLC50 for the compounds in the training and
test sets using Eq. (1) were plotted against the experimental pLC50

values in Fig. 1, while the for pGI50 it was shown Fig. 3. As can be
seen from Table 1 and Figs. 1 and 3, the calculated values for the
pLC50 as well as pGI50 are in good agreement with those of the
experimental values.
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Fig. 3. Graphical representation of predicted against experimental activity by
GA-MLR (P388ADR CELL LINE). Fig. 5. Uzairu’s plot: A graphical representation of Standardized residual against

normalized mean distance of activity (pGI50).
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In 2016, similar research by Arthur et al. (2016b), published a
QSAR model for the pGI50 and pLC50 model of anticancer com-
pounds on SR leukemia cell line. The research shows that the
descriptor TDB3i is the most important descriptor since it has the
highest coefficient in the model, and the predicted R2 values for
the pGI50 (0.656) and pLC50 (0.580) were in good comparison with
the models developed in this work. Descriptors such as number of
Methanal group (nMethanal) and Secondary butyl, Sum of atom-
type E-State:-F (S_Sf), were found to be principally responsible
for the activity nature of the compounds on SR cell lines, thereby
supporting the effect of Methanal group on the activity of the anti-
cancer compounds in controlling cancer cells.

3.3. Applicability domain study

The applicability domain of the models were evaluated using
Uzairu’s plot which is novel applicability domain technique by
Arthur et al. (2016a). This techniques involves plotting the stan-
dardized residuals of the activities and toxicities against the nor-
malized mean distance between the values for the complete
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Fig. 4. Graphical representation of Standardized residual against experimental
activity (P388ADR CELL LINE).
dataset of the molecular descriptors appearing in the model for
both the toxicity and activity.

The plots shown in Figs. 5 and 6, indicates that all the com-
pounds in both cases fell within the chemical space of the models.
Fig. 5 shows the presence of one outlier with ID = 32, which is
cyanomorpholinodoxorubicin, while in Fig. 6 the outlier Taxol
was identified with ID = 72. These models were unable to predict
the experimental values of these compounds because the molecu-
lar structure of the compound were completely different. We
found out that these compounds were very large in size and they
do not contain the primary molecular descriptor needed to predict
their experimental values.

Also, the plot of the residual against the predicted values of
pLC50 and pGI50 for both the training and test sets shown in Figs. 2
and 4 respectively. The model did not show any proportional and
systematic error because the propagation of the residuals on both
sides of zero is random.

The multi-collinearity amid the descriptors existing in the mod-
els was spotted by calculating their variation inflation factors (VIF),
which can be calculated as follows:
Fig. 6. Uzairu’s plot: A graphical representation of Standardized residual against
normalized mean distance of toxicity (pLC50).



Table 3.1
Definition of molecular descriptors with their corresponding Mean effects and
Collinearity study for the Toxicity model.

Descriptors Description MF VIF

Methanal Functional group count �0.09934 1.126
Shadow length: LX Geometrical descriptor �1.60374 3.392
Dipole (debye) Electrostatic descriptor �0.83386 1.138
AATSC4i Average centered Broto-Moreau

autocorrelation – lag 4/weighted
by first ionization potential

�1.5074 1.129

MATS3e Moran autocorrelation – lag 3/
weighted by Sanderson
electronegativities

2.163385 1.130

SpMax_Dt Leading eigenvalue from detour
matrix

1.36951 2.501

naaaC Count of atom-type E-State:::C: 0.265287 1.292

Table 3.2
Definition of molecular descriptors with their corresponding Mean effects and
Collinearity study in the Activity model.

Descriptors Definition MF VIF

AATS8e Average Broto-Moreau autocorrelation – lag
8/weighted by Sanderson
electronegativities

�0.290 2.515

ATSC6c Centered Broto-Moreau autocorrelation –
lag 6/weighted by charges

0.098 1.100

ATSC6i Centered Broto-Moreau autocorrelation –
lag 6/weighted by first ionization potential

0.407 1.412

AATSC6v Average centered Broto-Moreau
autocorrelation – lag 6/weighted by van der
Waals volumes

�0.159 2.184

AATSC1p Average centered Broto-Moreau
autocorrelation – lag 1/weighted by
polarizabilities

0.376 1.195

GATS7v Geary autocorrelation – lag 7/weighted by
van der Waals volumes

�0.047 1.790

SpMin2_Bhs Smallest absolute eigenvalue of Burden
modified matrix – n 2/weighted by relative

0.621 2.494
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VIF ¼ 1
1� R2

where R2 is the correlation coefficient of the multiple regression
between the variables within the model (Shapiro et al., 2002). The
corresponding VIF values of the descriptors were presented in
Table 3.1 and 3.2. The tables show, all the variables have VIF values
of less than five except for two descriptors, indicating that the
descriptors were reasonably orthogonal.

In order to assess the strength of the model, the Y-
randomization test was used in this study (Golbraikh et al., 2003,
Tropsha et al., 2003). Y-randomization test settles whether the
model is gotten through coincidental correlation, and is a true
structure–activity relationship to validate the capability of the
training set molecules.

The new QSAR models (after several repetitions) would be
expected to have low R2 and Q2

LOO values (Table 2.1 and 2.2). If
the opposite happens, then an acceptable QSAR model cannot be
obtained for the specific modeling method and data. The results of
Tables 2.1 and 2.2 indicate that an acceptable model is obtained
by GA–MLR method and the model developed is statistically signif-
icant and robust.

3.4. Interpretation of descriptors

By interpreting the descriptors contained in the QSAR model, it
is plausible to increase a few bits of information into factors, which
are identified with the anti-leukemia action. Hence, a satisfactory
understanding of the chosen descriptors is given below. The brief
representations of descriptors shown in Table 3.1 and 3.2. To look
at the comparative meaning and also the importance of every
descriptor in the model, the assessment of the mean effect (MF)
was established for every descriptor (Pourbasheer et al., 2009,
Riahi et al., 2009); This was achieved by using an MF mathematical
statement which is given as
Table 2.1
R2
train and QLOO values for Toxicity model (pLC50) after several Y-randomization tests.

Model R2
train QLOO

Random 1 0.059245 0.13348
Random 2 0.125744 0.17506
Random 3 0.125553 0.30854
Random 4 0.065366 0.25758
Random 5 0.098924 0.21199
Random 6 0.159696 0.11592
Random 7 0.095924 0.1475
Random 8 0.153763 0.2116
Random 9 0.17986 0.06468
Random 10 0.061857 0.3686
Random Models Parameters
cRp2: 0.65333

Table 2.2
R2
train and QLOO values for Activity model (pGI50) after several Y-randomization tests.

Model R2
train QLOO

Random 1 0.068698 �0.28859
Random 2 0.068368 �0.23595
Random 3 0.130789 �0.14449
Random 4 0.067171 �0.23575
Random 5 0.214743 �0.09546
Random 6 0.138033 �0.11832
Random 7 0.180078 �0.05679
Random 8 0.104373 �0.3549
Random 9 0.174189 �0.12221
Random 10 0.051069 �0.45851
Random Models Parameters
cRp2: 0.515361

I-state
mindsCH Minimum atom-type E-State: dbndCHsbnd 0.062 1.564
RDF70m Radial distribution function - 070/weighted

by relative mass
�0.056 2.117
MFj ¼
bj

Pi¼n
i¼1dijPm

j bj

Pn
i dij

MFj is given as the mean effect for the considered molecular
descriptor j, while bj is the coefficient of the descriptor j, dij repre-
sents the values for the target descriptors of each molecule, and
m is the total number of descriptors in the model. The MF values
proves the relative implication of a descriptor, associated with other
descriptors in the model. Its sign shows the variation direction in
the estimations of the model as an effect of the descriptor values.

The dipole moment is an electric polarization descriptor; it
encodes information about charge distribution in molecules. They
are also important in modelling solvation properties of the com-
pounds which depend on solute/solvent interactions since the
mean effect of the dipole moment was found to be negative hence
a reduction in the polarity of these compounds was found to stea-
dily decrease the toxicity of anti-leukemia compounds. The dipole
moment is given as

l ¼ �
Xocc
i¼1

Z
ðVÞ

/i r̂/idv þ
XM
a¼1

Za
~Ra

/i – molecular orbitals
r̂ – electron position operator
Za – a-th atomic nuclear charge
~Ra – position vector of a-th atomic nucleus
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Methanal as a functional group count descriptor, whose mean
effect was also found to negatively affect the toxicity of the com-
pounds, while the shadow length Lx is the maximum dimensions
of the molecular surface projections and it also negatively affects
the toxicities of these compounds, this was confirmed by the neg-
ative values of the mean effect.

AATSC4i, MATS3e, and AATS8e, ATSC6C, ATSC6i, AATSC6v,
AATSC1p, GATS7v are 2D Autocorrelation descriptors developed
by (Todeschini and Consonni, 2009), The 2D autocorrelation
descriptors have been successfully employed by Fernandez et al.
(Fernandez-Lozano et al., 2015) Caballero (Caballero, 2010,
Fernández et al., 2005, Vilar et al., 2009).

In these descriptors, the molecule atoms represent a set of dis-
crete points in space, and the atomic property and function are
evaluated at those points. The sign on the mean effects influences
their behaviors in whatever model they are found in. theses
descriptors as defined on Table 3.1 and 3.2 describes the weight
by first ionization potential, weighted by Sanderson electro-
negativities, weighted by charges, by van der Waals volumes and
by polarizabilities of the molecules used determines the potency
of anti-leukemia compounds.

4. Conclusion

The aim of the present work was developing a QSAR study and
predicting the anti-leukemia activities and toxicities of some
potent NCI anticancer compounds. Different hypothetical molecu-
lar descriptors were ascertained by paDEL Software and chose by
Genetic Algorithm. The developed GA–MLR model was surveyed
extensively (inward and outside validations), and every one of
the validation show that the QSAR model we fabricated is vigorous
and agreeable. Selection of seven variables in toxicity and nine
variables for the activity model showed that the descriptors
methanal, shadow length LX, dipole moment, AATSC4i, MATS3e,
SPMax_DT, naaaC and AATS8e, ATSC6C, ATSC6i, AATSC6v,
AATSC1p, GATS7v, SpMin2_Bhs, MindsCH, RDF70m of the mole-
cules play a main role in the anti-leukemia activity and toxicity
of the compounds.
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