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Abstract The equations of magnetohydrostatic equilibria for plasma in a gravitational field are
investigated analytically. An investigation of a family of isothermal magneto static atmospheres
with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry
is carried out. The distributed current in the model J is directed along the x-axis where x is the hor-

tions; izontal ignorable coordinate. These equations transform to a single nonlinear elliptic equation for

Travelling waves

the magnetic vector potential u. This equation depends on an arbitrary function of u that must be

specified with choices of different arbitrary functions, we obtain analytical nonlinear solutions of
the elliptic equation using the (%) -expansion method. Finally, the hyperbolic versions of these equa-
tions will be solved by the travelling wave hypothesis method.
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1. Introduction

The equations of magnetostatic equilibria have been used
extensively to model the solar magnetic structure (Aslan,
2010; Heyvaerts et al., 1982; Khater et al., 2000, 2008; Kudrya-
shov, 1988, 1990, 1991, 2010a; Low, 1982). An investigation of
a family of isothermal magnetostatic atmospheres with one
ignorable coordinate corresponding to a uniform gravitational
field in a plane geometry is carried out. The force balance con-
sists of the between J A B force (B, magnetic field induction, J,
electric current density), the gravitational force, and gas pres-
sure gradient force. However, in many models, the tempera-
ture distribution is specified a priori and direct reference to
the energy equations is eliminated. In solar physics, the equa-
tions of magnetostatic equilibria have been used to model di-
verse phenomena, such as the slow evolution stage of solar
flares, or the magnetostatic support of prominences (Khater
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et al., 1997, Zwingmann, 1987). The nonlinear equilibrium
problem has been solved in several cases (Khater, 1989; Lerche
and Low, 1980; Webb, 1988; Webb and Zank, 1990). In this
paper, we obtain the exact analytical solutions for the Liouville
and sinh-Poisson equations using the ((G) expansion method.
Because these two models will be special case of magnetostatic
atmospheres model. Also here there is force balance between
different forces. Recently the (‘) -expansion method, first
introduced by Wang et al. (2008) has become widely used to
search for various exact solutions of nonlinear evolution equa-
tions (Jafari et al., in press; Kudryashov, 2010b; Li and Wang,
2009; Wang et al., 2008). The method is based on the explicit
linearization of nonlinear evolution equations for travelling
waves with a certain substitution which leads to a second-order
differential equation with constant coefficients. Moreover, it
transforms a nonlinear equation to a simplest algebraic com-
putation. The outline of this paper is as follows:

First we describe the (%)-expansion method and the basic
equations. Then we solve Liouville and sinh-Poisson equations
with this method.

2. Basic idea of G'/G-expansion method
To illustrate the basic idea of this method, we consider the fol-

lowing nonlinear partial equation with only two independent
variables x and ¢ and a dependent variable u

Ny gy thyy Uy Uy . ..) =0 (1)
using the travelling wave transformation
u=u(f), &=x-—ct (2)

Eq. (1) reduces to an ordinary differential equation (ODE) in
the form:

N(u(&), —e (), (8), (&), u'(&),...) = 0. (3)

The ( ) -expansion method is based on the assumption that
the travelling wave solution of Eq. (3) can be expressed by a
¢

polynomial in (%) as

n G/ i
:;Ai(g) 5

where G = G(¢) satisfies the second order linear ODE

A,#0; 4)

G"+AG' +uG =0 (5)

And 4(i=0,1,2,...,n), A, uare constants to be determined
later, and G is the solution of (5), the general solutions of (5) are:
G/

AV 72 —4u | cj cosh—~ +¢2 smhi“w
2 \/— \/—,4;

G . ‘/* ‘/f
\ 4u—2° <(lcos E—cp sin ) . )2 . 4/1 <0
2 \/ vV ;A / 27 )

+(| sin:

—4 P —4p>0

¢; cosh

E+c) sinh~Y———

(6)

u(¢) can be determined explicitly by using the following steps:

Step (1) By considering the homogeneous balance between
the highest nonlinear terms and the highest order
derivatives of u(¢) in Eq. (3), the positive integer n
in (4) is determined.

Step (2) By substituting (4) with Eq. (5) into (3) and collect-
ing all terms with the same power of ( ) together,
the left hand side of Eq. (3) is converted into a poly-
nomial. After setting each coefficient of this polyno-
mial to zero, we obtain a set of algebraic equations
interms of 4; (i =0, 1,2,...,n),c¢ 4, u

Step (3) Solving the system of algebraic equations and then
substituting the results with the general solutions of
Eq. (5) into (4) gives travelling wave solutions of (3).

3. Basic equations

The relevance of magnetohydrostatic equations consisting of
the equilibrium equation with force balance will be as:

JAB—pV® —-VP =0 (7)
which is coupled with Maxwells equations:
VAB
J= 8
” (3)
V-B=0 9)

where P, p, u and @ are the gas pressure, the mass density, the
magnetic permeability and the gravitational potential, respec-
tively. It is assumed that the temperature is uniform in space
and that the plasma is an ideal gas with equation of state
p = pRy Ty, where Ry is the gas constant and T is the temper-
ature. Then the magnetic field B can be written by the following:

Ou —0Ou
B=VuAn X Bv,v: vai:
uNec+ Be ( 9z oy )
The form of (10) for B ensures that § - B = 0, and there is no
mono pole or defect structure. Eq. (7) requires the pressure
and density be of the form (Low, 1977):

(10)

P(y.2) = P)eF,  p(r.z) = (g—lh)mmﬁ (11)

where s = is the scale height and z measures height.
Substituting Eqs (8)-(11) into Eq. (7), we obtain

Vi + flu)eT = 0, (12)
where
d

fly =% (13)
Eq. (13) gives

=P, +i /f(u)du (14)
Substituting Eq. (14) into Eq. (11), we obtain
P02 = (Po 1 [ o) (15)

1 1 .

p02) = (Po + / f(u)du) o (16)

where Py is constant. With taking transformation
X1+ ix, = e%e% (17)

Eq. (12) reduces to
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82 (‘3 ~ ﬂl(lﬂ ).
au al/zl f()z .:0 (18) AO Po2

Ay = =), (30)
These equations have been given in Khater et al. (2000). Ay = *([1;26‘2);
4. Applications of the G'/G-expansion method where & = x| — ¢x,, 4, o, [ are constants. Therefore, substitut-

In this section, we will investigate the (G’) -expansion method
for solving specific forms of f(u).

4.1. Liouville equation

We first consider Liouville equation and the following equa-
tion will be special case of equation (18). Let us assume f{u)
has the form (Dungey, 1953; Low, 1975):

flu) =~ Age ™0 (19)

2
where Ay and o~ are constants. Hence

AR 4\ -
P(y,z) = (P0+ T 2)67 (20)

Inserting Eq. (19) into Eq. (18) we obtain

Y24/ Ay = Poe 2 () 1)
where V2 = do_ + (;)—: Let us set

A z )

N =7 +w(y,z) (22)

where L is a constant. Then Eq. (21) becomes

W _ 12 2 72w (7 +l'77%)z (23)
Let us identify / by
2 2 1
A (24)

And inserting Eq. (24) into Eq. (23) we obtain a Liouville type
equation

by + b, — L =0 (25)
In order to apply the %, we use the wave transformation
¢ = x| — ¢x, and change Eq. (25) into the form

1+ =o*Pe™? (26)
we next use the transformation

v=e¢% (27)
we obtain

(1+ AW — (1+A)(V) 4 202P8* =0 (28)

with balancing according to step (1) we get n = 2, therefore the
solution of (28) can be expressed by polynomial in % as follows:

/ N 2
V(&) = 4o + Al%"‘ Ay (%) (29)

Substituting Eq. (29) along with (5) into (28) and setting the
coefficients of all powers of % to zero, we obtain a system of
nonlinear algebraic equations for A,, A;, A,. Solving the
resulting system with the help of Mathematica, we have the
following sets of solutions:

ing (30) into (29), we have

substituting the general solution (6) into (31), according to Eq.
(5), we obtain two types of travelling wave solutions of (28) as
follows:

where 4> — 4y > 0, we obtain the general hyperbolic func-
tion solutions of (28)

N ) 2
- (2 —4p)(1+) | [ercoshYE=He 4 o) sinh VA4 e ]
vile) == 2,2 Vo Voo -
Fo Qcosh%“”fﬁ-c,sinh‘z—%“é
(32)

where ¢; and ¢, are arbitrary constants, and ¢ = x; — ¢ x,.
In particular, if we choose ¢,7#0,¢? < ¢Z, then the solution
(32) gives the solitary wave solution:

2 /T a5
(2 =41+ ) sech’ ( : 2_ u ¢+ fo)

Po?

Vl(é) =

(33)

where tanh &, = ¢, and when J? — 4u < 0, the general trigono-
metric function solutions of (28) will be:

A — 221+ 2 clcos”“ 2 f 5 sin V4“ 2 £
o +1
2
Fo? ¢y cos YA o sin Y i /6

n (&)=~

(34)

where ¢; and ¢, are arbitrary constants, and ¢ = x; — cx,.
In particular, if we choose ¢,7#0, ¢ < ¢2, then the solution
Eq. (28) gives the solitary wave solution:

G-t (m

n(¢) = 2y 3 q’+él> (35)

where tan &, = ﬁ—;, when 4% — 4y > 0 using with transformation
v =e2"we get:
h=7

1e)= 3

) ) 2
| E =) [ [a coshYE—#¢ 1oy sinh V2 ¢ .
Fo? ¢, cosh Y22 ’12274" &+ ¢y sinh Y2 "2274”5

where ¢; and ¢, are arbitrary constants, and ¢ = x; — cx».
In particular, if we choose ¢,7#0, ¢? < ¢3, then the solution
(36) gives the solitary wave solution:

o —1
$i(S) =
2 =41+ \/;2
Fo?
(37)
where tanh &, = o when 4> — 4p < 0 using with transforma-

tion v = ¢~ 2% we get:
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2
 In 7(4ufiz)(l+c2) clcosH" 2 & —cysin VA“ 2 14 +1
12062 V4 y 2y \/4}L 72

¢, COS &4 ¢y sin 4
(38)

where ¢; and ¢, are arbitrary constants, and & = x; — c¢x».
In particular, if we choose ¢,7#0, ¢? < ¢3, then the solution
(38) give the solitary wave solution:

—1
$,() ~—
2 2
‘in {W—p(w) (Wf Hl)
o

where tan ¢; = £
4.2. Sinh-Poisson equation
Secondly we consider sinh-Poisson equation which plays an

important role in the soliton model with BPS bound. Also, this
equation will be special case of Eq. (18). If we assume

) = =L () sint(g) (40)
As same as above we have
Gy + Py, = B sinh(e) (41)

where / = 2h. In order to apply the , we use the wave trans-
formation & = x; — cx, and change Eq (41) into the form

(1+¢)¢" = p*sinh(¢) (42)

we next use the transformation
— o?
y=-¢
{ . , (43)

we obtain
204+ AW =21+ A (V) =P —v) =0 (44)

with balancing according to step (1) we get n = 2, therefore the
solution of (44) can be expressed by polynomial in % as follow:

G G 2
(&) :A0+A15+A2 (E) (45)

Where G is the solution of (5) that was displayed in (6), as
same as the previous section, we obtain a system of nonlinear
algebraic equations for Ay, A4;, A,, ¢, A, u. By solving the
resulting system we obtain the following solution:

Ay =0,

Ay =402, (46)
TR

AZ - BZ )

where ¢ = x| — ¢xp, 4, f§ are constants.
Therefore, substituting (46) into (45), we have

substituting the general solution (6) into (47) according to Eq.
(5), we obtain two types of travelling wave solutions of (44) as
follows:

where /> — 4u > 0, we obtain the general hyperbolic function
solutions of (44):

(22 —4p)(1 4 ) [ ¢icosh \/;"sz«f + ¢y sinh Y5 2274“5
2 /5 /2
B ¢, cosh —/‘;4” &+ ¢ sinh Ve
(48)

Vl(f) =

where ¢; and ¢, are arbitrary constants, and ¢ = x| — cx,.
In particular, if we choose ¢,7#0, ¢? < ¢3, then the solution
(48) gives the solitary wave solution:

E4re) | (7”2 4 “+5>]2 (49)

ﬁz
where tanh &, = =, and when A% — 4u < 0, the general trigono-

metric function solutions of Eq. (44) will be:

Vl(f) =

2 2 2
@ (4u— )1+ ) [ercos YA g — ¢y sin VI ¢
Va = >
B czcosv"f—i-clsm”’;’g

(50)

where ¢; and ¢, are arbitrary constants and &= x; — cxo.
In particular, if we choose ¢,7#0, c < c , then the solution
(50) gives the solitary wave solution:

2

o (Bu-2)1+¢ Vau— 7

@) =D fan (s )| o0
where tan ¢; = <., when J? — 4p > 0 using with transformation

= ¢
v = e" we get:

%) N 2

b =In (2 —4p)(1+¢) (e cosh Yo e 4 ¢, sinh Vg

1 - 2 /5 /2

B Iy cosh#f + sinh%““é

(52)

where ¢; and ¢, are arbitrary constants, and ¢ = x; — ¢x,.
In particular, if we choose ¢,7#0, ¢? < ¢, then the solution
(52) gives the solitary wave solution:

2

| e) (tanh (x/;z i 50))“

ﬂz
(53)
where tanh &, = Z—;, when 4> — 4 < 0 using with transforma-
tion v = ¢® we get:
- 2
5(&) —tn | G0+ [con e casin g
2 - 2 / / 2
B cz cochJrcl sin 4’;7/‘ 14
(54)

where ¢; and ¢, are arbitrary constants, and ¢ = x; — c¢x».
In particular, if we choose ¢,7#0, ¢? < ¢3, then the solution
(54) gives the solitary wave solution:
2
(4u— 11+ \/4y
5 f + &)

(&) =1n tan

(55)

where tan &, = <.

€2
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5. Travelling waves

In this section the travelling wave solution of the regular Liou-
ville equation as well as the sinh-Gordon equation will be ob-
tained. This study is split into the following two subsections.

These travelling wave solutions are going to be very useful
in various situations and circumstances. For example, in the
context of plasma Physics, these travelling waves very easily
study the behaviour of the weakly nonlinear ion acoustic
waves in the presence of an uniform magnetic field. Thus, these
solutions will be extremely useful for problems that are related
to nonlinear quantum ion-acoustic waves in magnetized plas-
ma containing cold ions and hot isothermal electrons.

5.1. Liouville equation

The form of the Liouville equation that will be studied in this
section is given by Wazwaz (2009)
9 — kzq,\"x + aezq =0 (56)

Occasionally, this is referred to as the hyperbolic Liouville
equation. The travelling wave assumption that is going to be
made is given by

4, 1) = glx — ) (57)
where g(s) is the wave profile and v is the velocity of the wave
and

s=x—vt (58)
Substituting the hypothesis given by Eq. (50) into Eq. (49)
yields

¢+ ﬁe%’ =0 (59)

Now, multiplying both sides of (52) by g’ and integrating yields
, a

() = 5z (1= e¥) (60)

and on separating variables this leads to

B

Eq. (54) integrates to
tanh ™' (V1 — e%) =

which yields, after simplification,

ﬁ(x —vi) (62)

q(x, 1) = % In(sech[B(x — vt)]) (63)
where

B:¢;§; (64)

In order for the travelling wave to exist, it is necessary that the
constraint condition given by

a(? —k*) >0 (65)
must hold, that follows from Eq. (57).

5.2. Sinh-Gordon equation

In this subsection, the travelling wave hypothesis will be applied
to solve the hyperbolic version of the sinh-Poisson equation that

is also known as the sinh-Gordon equation. The equation of
study is therefore going to be (Wazwaz, 2009)

Gy = K¢y — bsinhg =0 (66)

The starting hypothesis stays the same as in Eq. (50), which
when substituted into Eq. (59) gives after simplification

2b
N2
(&) =——
Now, separation of variables imply

dg 25 /
= ds 68
/\/1—|—coshg v — k2 ! (68)

which integrates to

4tan”! (e%) = y/vzszkz(x — i) (69)

Simplification leads to the travelling wave solution as

q(x,t) = 21n(sech[B(x — vt)]) (70)

2 (14 coshg) (67)

where

1 b
A e 7

Similarly, the constraint condition is given by
(¥ — k) >0 (72)
that follows from Eq. (64).

6. Concluding remarks

This study shows that the (£)-expansion method is quite effi-
cient and practically well suited for use in finding exact solutions
for the Liouville and sinh-Poisson equations. The reliability of
the method and the reduction in the size of computational do-
main give this method a wider applicability. In this paper, the
(%)-expansion method has been successfully used to obtain
some exact travelling wave solutions for the Liouville and
sinh-Poisson equations. These exact solutions include the
hyperbolic function solutions and trigonometric function solu-
tions. When the parameters are taken as special values, the sol-
itary wave solutions are derived from the hyperbolic function
solutions. Finally, the travelling wave solutions of the hyper-
bolic Liouville equation, or the regular Liouville equation as

well as the sinh-Gordon equation are also obtained.

References

Aslan, 1., 2010. A note on the (%)—expansion method again. Applied
Mathematics and Computation 217 (2), 937-938.

Dungey, J.W., 1953. A family of solutions of the magneto-hydrostatic
problem in a conducting atmosphere in a gravitational field.
Monthly Notices of the Royal Astronomical Society 113, 180-187.

Heyvaerts, J., Larsy, J.M., Schatzman, M., Witomsky, P., 1982.
Blowing up of two dimensional magnetohydrostatic equilibria by
an increase of electric current or pressure. Astronomy and
Astrophysics 111 (1), 104-112.

Jafari, H., Salehpour, E., Kadkhoda, N., in press. Application of %
expansion method to nonlinear Lienard equation. Indian Journal
of Science and Technology.

Khater, A.H., 1989. Analytical solutions for some nonlinear two-
dimensional magnetostatic equilibria. Astrophysics and Space
Science 162, 151-157.



62

H. Jafari et al.

Khater, A.H., Callebaut, D.K., Ibrahim, R.S., 1997. Backlund transfor-
mations and Painlev analysis, exact solutions for the nonlinear isother-
mal magnetostatic atmospheres. Physics of Plasmas 4, 2853-2864.

Khater, A.H., Callebaut, D.K., El-Kalawy, O.H., 2000. Backlund
transformations and exact solutions for a nonlinear elliptic
equation modelling isothermal magentostatic atmosphere. IMA
Journal of Applied Mathematics 65, 97-108.

Khater, A.H., Callebaut, D.K., Kamel, E.S., 2008. Nonlinear periodic
solutions for isothermal magnetostatic atmospheres. Physics of
Plasmas 15, 122903.

Kudryashov, N.A., 1988. Exact soliton solutions of the generalized
evolution equation of wave dynamics. Applied Mathematics and
Mechanics 52 (3), 361-365.

Kudryashov, N.A., 1990. Exact solutions of the generalized Kuram-
oto—Sivashinsky equation. Physics Letters A 147, 287-291.

Kudryashov, N.A., 1991. On types nonlinear nonintegrable differential
equations with exact solutions. Physics Letters A 155, 269-275.

Kudryashov, N.A., 2010a. Meromorphic solutions of nonlinear
ordinary differential equations. Communications in Nonlinear
Science and Numerical Simulation 15 (10), 2778-2790.

Kudryashov, N.A., 2010b. A note on the G'/G-expansion method.
Applied Mathematics and Computation 217 (4), 1755-1758.

Lerche, 1., Low, B.C., 1980. On the equilibrium of a cylindrical plasma
supported horizontally by magnetic fields in uniform gravity. Solar
Physics 67, 229-243.

Li, X., Wang, M., 2009. The (&)-expansion method and traveling
wave solutions for a higher-order nonlinear Schrodinger equation.
Applied Mathematics and Computation 208, 440-445.

Low, B.C., 1975. Nonisothermal magnetostatic equilibria in a uniform
gravity field. I. Mathematical formulation. Astrophysical Journal
197, 251.

Low, B.C., 1977. Evolving force-free magnetic fields. I, the
development of the pre flare stage. Astrophysical Journal 212,
234-242.

Low, B.C., 1982. Nonlinear force-free magnetic fields. Reviews of
Geophysics 20, 145-159.

Webb, G.M., 1988. Isothermal magnetostatic atmospheres. II —
similarity solutions with current proportional to the magnetic
potential cubed. Astrophysical Journal 327, 933-949.

Webb, G.M., Zank, G.P., 1990. Application of the sine-Poisson
equation in solar magnetostatics. Solar Physics 127, 229-
252.

Wang, M., Li, X., Zhang, J., 2008. The (%)-expansion method
and traveling wave and solutions of nonlinear evolution
equations in mathematical physics. Physics Letters A 372,
417-423.

Wazwaz, A.M., 2009. Partial Differential Equations and Solitary
Waves Theory. Springer-Verlag.

Zwingmann, W., 1987. Theoretical study of onset conditions for solar
eruptive processes. Solar Physics 111, 309-331.



	The G'/G-expansion method for solutions of evolu
	1 Introduction
	2 Basic idea of G'/G-expansion method
	3 Basic equations
	4 Applications of the G'/G-expansion method
	4.1 Liouville equation
	4.2 Sinh-Poisson equation

	5 Travelling waves
	5.1 Liouville equation
	5.2 Sinh-Gordon equation

	6 Concluding remarks
	References


