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The p-quantile residual life function summarizes the lifetime data in a useful and simple concept and in
units of time. For uncensored data or when the upper tail of the observations is not censored, this func-
tion can be estimated by applying the well-known Kaplan-Meier survival estimator. But, when research
terminates in heavy right-censored lifetime data which is the case of many biomedical and survival stud-
ies, the p-quantile residual life function is not estimable in this way. In this paper, we propose a novel
semi-parametric estimator of the p-quantile residual life function in such cases. It combines the nonpara-
metric Kaplan-Meier survival estimator with an approximated tail model motivated by the extreme value
theory. The proposed estimator has been examined by a simulation study and applied to a lifetime data
set in the sequel.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In many fields such as epidemiology, biology, medicine, and
survival analysis, the researcher’s interest is on time to event data,
e.g., the survival time of a creature or time of tumor recurrence.
The most familiar measure for induction and analyzing such data
is the survival function, which for every time t � 0 computes the
probability of the event to occur beyond time t. The p-quantile
residual life (p-QRL) function, 0 < p < 1, is another relevant measure
in this context providing an intuitive meaning. For example, in the
case p = 0.5, we have a median residual life which at time t cap-
tures the remaining time that half of the survived population at t
will experience the event. This fact that unlike the survival
function, the p-QRL is expressed in the time units by which the
observations are measured makes its interpretation easier.
Besides, in reliability analysis, the p-QRL measure is quite useful
for describing the lifetime of manufactured devices. For instance, it
is very likely for some devices to fail in the early stages of their
work. It is the case especially when the failure rate has a bathtub
shape. Then we can consider a burn-in time t₀ that every produced
device should pass before releasing to field operation. We can find
such t₀ that maximizes the p-QRL function. For more details, we
refer to Conboy et al. (2020).

Sometimes, time events may be invisible due to some censoring
mechanism which cannot be naturally avoided. During the study,
some items may be lost to follow-up before experiencing the event
or reaching the end-time of the study. They are said to be right-
censored. However, items passing the end-time of the study are
referred to be Type I censored.

Given a right-censored data set, the survival function can be
estimated using Kaplan-Meier (KM) estimator proposed by
Kaplan and Meier (1958). The KM survival plot, which summarizes
the possibly censored data graphically, has been vastly used in the
aforementioned areas. On the other hand, taking account of right
censoring, many authors focused on the problem of estimating
the p-QRL function. Among them, we refer to Jeong et al. (2008),
Franco-Pereira and de Uña-Álvarez (2013), Jeong and Fine (2013),
Lin et al. (2015), Zhang et al. (2015), and Lin et al. (2016).

One drawback in right-censored data corresponds to the case
that the upper tail and especially last observations are censored.
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In this case, the KM survival estimator does not vanish to zero in the
support tail. Thus, the inverse of the survival function at small val-
ueswill not be estimable by the KM estimator. Therefore, we cannot
estimate the p-QRL function especially at large values (cf. Franco-
Pereira and de Uña-Álvarez (2013)). The results of many types of
research consist of highly censored data sets in whichmajor of their
large observations are censored. For such data sets, we may not
estimate the p-QRL function, namely, qp(t), (for example, the med-
ian residual life) even at rather small ts. Therefore, our idea is to
provide an approach to estimate the p-QRL function for all t values.

In this paper,wepropose anewsemi-parametricmethod for esti-
mating the p-QRL function that overcomes the problem of dealing
with high censored lifetimes. It applies the KM estimator of the sur-
vival function in a proper threshold time u, and the generalized Par-
eto distribution (GPD) as an approximated tailmodel (Coles (2001)).
The approximation of the tail model is motivated by the results of
the extreme value theory, refer to Castillo et al. (2005) and Coles
(2001). Then, theuncensoredobservations in the tail (whichwe sup-
pose to be greater than the threshold u) are used to provide themax-
imum likelihood estimation of the model parameters.

The paper has been organized as follows. Section 2 provides
preliminaries and states the problem. In Section 3, the new estima-
tor of the p-QRL function has been proposed. The attributes of this
estimator are investigated through a simulation study in Section 4.
In Section 5, the results of a research investigation of the effect of
some treatments on the colon recurrence time are considered.
Then the first quartile residual life (0.25-QRL) and the median
residual life functions are estimated. Finally, a conclusion is drawn
in Section 6.

2. Preliminaries: Non-parametric estimation of p-QRL

Let the random variable T which represents the lifetime of an
object follows the survival function S tð Þ ¼ P T > tð Þ. The p-QRL
function is defined as

qp tð Þ ¼ S�1 pS tð Þð Þ � t; t � 0; ð1Þ

where S�1 að Þ ¼ inf x : S xð Þ � af g is the inverse function of S and
p ¼ 1� p. Let Ti, i ¼ 1;2; � � � ;n stand for n independent realizations
of T and are right-censored by random variable Ci, i.e., Ti will be
observable if Ti � Ci. Let Xi ¼ min Ti;Cif g and di ¼ I Ti � Cið Þ. We
count the number of items failed up to or at time t by

N tð Þ ¼
Xn
i¼1

Ni tð Þ;

where Ni tð Þ ¼ I Xi � t;ð di ¼ 1Þ and the number of items at risk at t by

Y tð Þ ¼
Xn
i¼1

Yi tð Þ;

where Yi tð Þ ¼ I Xi � tð Þ. Then the KM estimator of the survival func-
tion is given by

bS tð Þ ¼
Y
s�t

1� DN sð Þ
Y sð Þ

 !
; t � 0;

where DN sð Þ ¼ N sð Þ � N s�ð Þwhich represents the number of fail-
ures at time s. When P Xi � tð Þ ¼ pi tð Þ ¼ p tð Þ we have

E bS tð Þ � S tð Þ
� �

� 1� S tð Þð Þ 1� p tð Þð Þn;

which shows that the KM estimator is asymptotically unbiased and
has a sharper slope for earlier times and/or in the case of greater
censoring variable. See Fleming and Harrington (1991) for more
details. We can estimate the p-QRL function by
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bqp tð Þ ¼ bS�1 pbS tð Þ
� �

� t; t � X�; ð2Þ

where X� be the largest uncensored observation and bS is the KM
survival function estimator. It is asymptotically consistent and
under proper normalization converges in distribution to a zero-
mean normal process. For more information, refer to Franco-
Pereira and de Uña-Álvarez (2013).

When the last observation has not been censored, the estimator
2ð Þ is well-defined for all t � X�. Otherwise, it is not defined for all

values t > t� where t� stands for bS�1 1
p
bS X�ð Þ

� �
. When t > t�,

pbS tð Þ < bS X�ð Þ that is pbS tð Þ falls below the computable range of the
inverse of KM survival function. Fig. 1 explains the issue graphically.

3. Semi-parametric estimation of p-QRL

This section aims to propose a semi-parametric estimator of
qp tð Þ for t > t�. Note that if 0 < p2 < p0 < p1 < 1, then

S�1 p2ð Þ ¼ uþ S�1
u p2=p1ð Þ; ð3Þ

where S uð Þ ¼ p1 and Su tð Þ ¼ P T � u > tð j T > uÞ shows the survival
of the remaining lifetime given survival to time u. Moreover, let u
be properly given and p2 be pS tð Þ, then we estimate p1 and p2 by

the KM estimate bS uð Þ and pbS tð Þ. So, to estimate S�1 p2ð Þ it is suffi-
cient to estimate the survival function S�1

u . In the following, we will
argue that when u is sufficiently large, Su can be approximated by
the GPD. This approximation is motivated by an asymptotic result
concerning the weak convergence of the sample maximum to the
generalized extreme value distribution (GEV). Therefore, our pro-
posed estimation of qp(t) combines the nonparametric KM estima-
tion of the survival function u with the maximum likelihood
estimation of the GPD model.

Consider an arbitrary sequence of i.i.d. random variables T1,
T2,. . . following the same distribution of T and let Mn be maximum
of the first n elements of this sequence. Let there exist sequences
an > 0 and bn of constants such that the normalized random
sequence an Mn � bnð Þ converges weakly to non-degenerate distri-
bution G. Then, G accommodates GEV

G xð Þ ¼ exp � 1þ n
x� l
r

� �h i�1
n

� �
; ð4Þ

with the support x : 1þ n x�l
r

� �
> 0

� 	
where n, l 2 R and r > 0. This

result ensures that for some sufficiently large but fixed n, the
approximation

Fn
T

x
an

þ bn


 �
� G xð Þ;

where G is given in 4ð Þ and FT is the distribution function of the life-
time T. So Fn

T shows the distribution function of the largest order
statistics of i.i.d. sample of lifetimes with size n. Note that bn which
centralizes growing maximum increases with n and makes the
whole expression x

an
þ bn to be larger than some threshold u. By tak-

ing t ¼ x
an
þ bn we have

FT tð Þ � G
1
n an t � bnð Þð Þ; t � u:

On the other hand, the max-stability property of the GEV model

states that G
1
n an t � bnð Þð Þ equals with G a0

n t � b
0
n

� �� �
. Thus, for t � u,

FT tð Þ belongs to this family too, notationally, FT tð Þ ¼ G tð Þ, t � u. In
the light of the preceding discussion, we can approximate Su tð Þ for
some threshold u by:

Su tð Þ ¼ S t þ uð Þ
S uð Þ � G t þ uð Þ

G uð Þ ¼
1� exp � 1þ n uþt�l

r

� �� 
�1
n

n o
1� exp � 1þ n x�l

r

� �� 
�1
n

n o :



Fig. 1. This illustrative plot shows that when large observations have been censored the QRL function qp (t) is not estimable for t > t� by the inverse of the KM survival
function. Here, p� and p0 equal to 1

p
bS(X�) and bS(X�) respectively.

M. Kayid and A.M. Abouammoh Journal of King Saud University – Science 32 (2020) 3470–3475
Since u is sufficiently large, we have

1� exp � 1þ n uþt�l
r

� �� 
�1
n

n o
1� exp � 1þ n x�l

r

� �� 
�1
n

n o � 1þ n uþt�l
r

� �� 
�1
n

1þ n x�l
r

� �� 
�1
n

:

Then, by simplifying the right side of this approximation, it fol-
lows that

Su tð Þ � 1þ nt
r�

� ��1
n

;1þ nt
r� � 0; t � 0; ð5Þ

where r� ¼ rþ n u� lð Þ. This relation shows that Su tð Þ approxi-
mately follows a GPD for sufficiently large u. Depending on the
shape parameter n, three distinct cases can be described by this
model.

� n < 0: light tail with finite upper bound � ru
n .

� n ¼ 0: exponential tail.
� n > 0: heavy tail.

When n > 1
s, the sth moment of GPD is infinite. So, when we are

confident of finite mean and/or variance it may be useful to restrict
the parameter space by 0 < n � 1 and=or 0:5. However, such
restriction is not recommended in a neat semi-parametric frame-
work. For GDP 5ð Þ, the inverse of the survival function equals with

S�1
u pð Þ ¼ r�

n
p�n � 1
� �

;0 < p < 1: ð6Þ

To implement the method for censored data, let Ti, C
0
i and T� be

true survival time, random right censoring time, and a constant
time presenting end of the study, respectively. Taking

Ci ¼ min C
0
i; T

�
� �

, we observe Xi ¼ min Ti;Cið Þ and di ¼ I Ti � Cið Þ.
To estimate qp tð Þ for t > t�, we suggest the following steps.

� At first we should select a proper value for uwhich is a trade-off
between the accuracy of the tail model approximation and the
share of the observations available for estimating the model
parameters. Large values of u improve the approximation of
the model but limit the volume of the observations for estima-
tion of the parameters. Yet, there is not any standard approach
for finding an optimum value for u. Nevertheless, it seems that
the 80 percent quantile of the observed (uncensored) times be a
proper value for threshold u. That is 20 percent of observed and
uncensored events lie between u and T� (see Alvarez-Iglesias
et al. (2015) for a similar discussion).
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� Construct new sample xi ¼ ti � u for all censored or uncensored
observations ti grater than u and let k denote the count of them.
Applying this data set, we obtain the maximum likelihood esti-
mation of the parameters of GPDmodel 5ð Þ. The likelihood func-
tion is

L n;r�ð Þ ¼
Y
i¼1

1
r� 1þ nxi

r�


 ��1
n�1

 !di Yk
i¼1

1þ nxi
r�


 ��1
n

 !1�di

;

where di equals 1 for uncensored items and zero for censored ones.

We can find the maximum likelihood estimation bn and br� by max-
imizing this expression numerically.

� Now, in the light of Relations 3ð Þ and 6ð Þ, we propose the
estimator

bqp tð Þ ¼ uþ bS�1

u
pbS tð ÞbS uð Þ

 !
� t

¼ uþ br�bn pbS tð ÞbS uð Þ

 !�bn
� 1

0B@
1CA� t; t� � t � t nð Þ; ð7Þ

where bS refers to KM estimator of S and br� and bn show the maxi-
mum likelihood estimations.

Variance (bias) of this estimator is comprised of variation (bias)

due u, and bS�1

u pbS tð Þ=bS uð Þ
� �

along with their covariance and seems

to be more complicated than to be expressed by a closed expres-
sion. In the case of the heavy tail of the true lifetime model which

causes that bn > 0, it’s variance increases with t. Fortunately, we can
use the bootstrap method to estimate its bias and variance and in
turn approximate confidence intervals. However, simulation stud-
ies heuristically imply that bias and variance reduce strongly by
sample size.

4. Simulation study

To design a simulation framework, we consider gamma, log-
normal, and Weibull models along with four censoring schemas.
Both right censoring and Type I censoring have been taken in
account. Once the model and the censoring scheme determined,
r ¼ 100 replicates of samples of sizes n ¼ 500 and 1000 have been
drawn and censored. Then for two values p ¼ 0:5 (corresponding to
the median residual life function) and p ¼ 0:75 the proposed esti-
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mator bqp tð Þ has been computed by each of r replicates. For each

replicates the bias is computed by the difference bqp tð Þ � qp tð Þ.
We report their mean and standard deviation as bias and sd in
Tables 1–3. In addition,Mbqp that shows the mean of the estimation

values bqp tð Þ has been entered in the tables.
To provide censored random samples, some proper combina-

tions of right censoring and Type I censoring have been selected.
Let a1 and a2 represent the proportions of Type I censoring and
random right censoring respectively. The simulation process starts
withdrawing a sample of size n from the true model that is
the distribution of T following survival function S. We take
the distribution of the right censoring random variable C to be
uniform on the interval 0;Mð Þ. Moreover, according to type I
censoring, the observations will be censored if they are
greater than T�. For fixed values a1 and a2, we should compute M
and T� through the equations P C < min T; T�f gð Þ ¼ a2 and
P T� < T < Cf g [ T� < C < Tf gð Þ ¼ a1. It is straightforward to show
that these equations can be simplified to the system equations

S T�ð Þ M � T�ð Þ ¼ Ma1;R T�

0
S xð Þdx ¼ Ma2;

8<:
which can be solved in terms of M and T� by standard numerical
methods. Then, we can pursue the procedure according to the bel-
low steps.

� Generate a random sample t1; t2; � � � ; tn from the true model
with the survival function S.

� Generate a random sample c1; c2; � � � ; cn of uniform 0;Mð Þ as ran-
dom censoring times.
Table 1
Simulation results for the log-normal (1, 0.5).

n p (0.1,0.3)

500 Mbqp
2.5821

0.75 bias 0.5342
sd 1.9196
Mbqp

1.2076

0.50 bias 0.1893
sd 0.5883

1000 Mbqp
2.2879

0.75 bias 0.2397
sd 1.4182
Mbqp

1.0744

0.50 bias 0.0562
sd 0.3949

Table 2
Simulation results for the gamma (0.9, 2).

n p (0.1, 0.3)

500 Mbqp
0.5533

0.75 bias 0.1305
sd 0.3290
Mbqp

0.2460

0.50 bias 0.0364
sd 0.1427

1000 Mbqp
0.5003

0.75 bias 0.0773
sd 0.2793
Mbqp

0.2212

0.50 bias 0.0114
sd 0.0657
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� Compute the observable data xi ¼ min ti; ci; T
�f g and

di ¼ I ti � ci; ti � T�ð Þ for i ¼ 1;2; � � � ;n.
� Repeat steps 1 to 3 r times.
� Let t0j be the maximum observed (uncensored) lifetime of the
sample in the jth replication, j ¼ 1;2; � � � ; r. Then, take t0 to be
the mean of t0j. Of course, t0 is suitable for applying in the sim-

ulation, since it is expected that bS�1 pbS t0ð Þ
� �

will not be com-

puted by the KM estimator bS.
� For each replication, compute bqp t0ð Þ introduced by 7ð Þ.

Results of simulations have been gathered in Tables 1–3. All
tables agree on the fact that the bias and sd values show a strong
reduction from p ¼ 0:75 to 0:5.
5. Applications

Moertel et al (1995) reported a data set related to one trial for
investigation of the effectiveness of Fluorouracil (5-FU) and Leva-
misole (Lev) in reducing the recurrence rate of stage B/C colon can-
cer. The trial involves three treatments for Observation (Obs),
Levamisole (Lev), and Levamisole plus 5-FU (Lev + 5-FU). Under
right censoring, for every person, both events of recurrence of can-
cer and death have been recorded. We focus on the recurrence
times which near 50 percent of them have been censored. For each
of the three treatments and the overall data, the KM survival func-
tion has been drawn in Fig. 2, which reveals high censoring rates.

We are interested in the estimation of the first QRL function and
the median residual life function respectively corresponding to
p ¼ 0:25 and 0:5. As before, let t� stand for the minimum of t values
where the QRL can not be computed directly by inverting the KM
(0.2, 0.2) (0.2, 0.1) (0.1, 0.05)

3.7561 2.6533 2.3134

1.7089 0.6085 0.2380
4.2724 2.4804 2.6121
1.2915 1.1338 1.1159

0.2644 0.1124 0.0619
0.9855 0.5585 0.3956
2.2565 2.3828 2.0106

0.2049 0.3381 �0.0652
1.4428 2.0186 0.7124
1.1491 1.0932 0.9911

0.0222 0.0718 �0.0337
0.4405 0.3540 0.2237

(0.2, 0.2) (0.2, 0.1) (0.1, 0.05)

0.5014 0.4852 0.4907

0.0832 0.0631 0.0586
0.3003 0.2453 0.2078
0.2494 0.2369 0.2276

0.0426 0.0276 0.0126
0.1129 0.0778 0.0809
0.4807 0.4664 0.4528

0.0624 0.0438 0.0204
0.1903 0.1600 0.1349
0.2128 0.2197 0.2334

0.0059 0.0103 0.0183
0.0609 0.0604 0.0608



Table 3
Simulation results for the Weibull (1.2, 3).

n p (0.1,0.3) (0.2,0.2) (0.2,0.1) (0.1,0.05)

500 Mbqp
5.3993 5.9644 4.5763 3.3337

0.75 bias 2.3480 2.8360 1.5028 0.4228
sd 7.5687 8.3373 5.9047 2.0737
Mbqp

1.8733 2.0957 1.8772 1.5307

0.50 bias 0.3073 0.4824 0.2973 0.0435
sd 1.1001 1.1999 0.9687 0.5527

1000 Mbqp
3.6093 3.9250 3.8343 3.1620

0.75 bias 0.5612 0.7976 0.7619 0.2489
sd 2.4968 3.4923 2.9527 1.0536
Mbqp

1.7904 1.9712 1.6409 1.5194

0.50 bias 0.2255 0.3588 0.0618 0.0333
sd 0.6970 0.9163 0.5111 0.3830

Fig. 2. The KM survival plot for three treatments and the overall data. Every
censored item is included by a+.

Fig. 3. The first quartile residual life function for three treatments and the overall
data.

Fig. 4. The median residual life function for three treatments and the overall data.
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survival function. Values of t� computed for these data sets have
been gathered in Table 4.

The first quartile residual life function and the median residual
life function have been plotted in Figs. 3 and 4; respectively. For
t < t� these functions have been estimated by 2ð Þ and have been
plotted by a thinner line.

These figures distinguish larger median residual life and first
quartile residual life functions for Lev + 5-FU treatment, which
are even noticeably above the QRL functions related to overall data.
However, for two treatments Obs and Lev, both of these QRL func-
tions are comparable and lie below the QRL functions of the overall
group.

6. Conclusion

The p-quantile residual life function summarizes the lifetime
data in a useful and simple concept and in units of time. For uncen-
Table 4
Values of t*.

Obs Lev Lev + 5-FU Overall

p 0.25
0.5

871
230

668
191

449
0

636
99

3474
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sored data or when the upper tails of the observations are not cen-
sored, this function can be estimated by applying the well-known
Kaplan-Meier survival estimator. However, when research termi-
nates in heavy right-censored lifetime data, which is the case of
many biomedical and survival studies, the p-quantile residual life
function is not estimable in this way. In the current investigation,
we proposed a novel semi-parametric estimator of the p-quantile
residual life function in such cases. The proposed estimator has
been examined by a simulation study and applied to a real lifetime
data set in the sequel.
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