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KEYWORDS Abstract In this paper, a new modification of the Bernstein polynomials method called Multistage

Multistage Bernstein poly- Bernstein polynomials (MB-polynomials) is applied to solve new topic, which is Fractional Order

nomials; Stiff Systems. The MB-polynomials is a simple reliable modification based on adapting standard
Fractional Order Stiff Bernstein polynomials method. The procedure of the method is explained briefly and supported
Systems with illustrative examples to demonstrate the validity of the method. The results of MB-

polynomials are compared with the traditional Bernstein polynomials method and several other
methods that solved stiff systems. The results attest to the efficiency of the proposed method.
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* Corresponding author. 1. Introduction

E-mail address: alshbool.mohammed(@gmail.com (M.H.T. Alshbool).
Peer review under responsibility of King Saud University. Fractional Order Stiff Systems have been employed to describe
a variety of systems such as biology, physiology, medicine,
hydraulics geology, and engineering. Fractional Order Stiff
Systems are considered a new topic due to their potential
applications especially in control processing. Stiff problems
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have been studied in many areas such as chemical engineering,
non linear mechanics, biochemistry, and life sciences. Hence,
the need for a reliable and efficient technique for the solution
of stiff systems of differential equations is of high importance.
Since 30 years, respected works have focused on the
development of more advanced and efficient methods for stiff
problems. BDF is a formula that is based on backward differ-
entiation, and many modifications introduced by different
authors are extended backward differentiation. First modifica-
tion is (EBDF) formula introduced in Cash (1980). The
MEBDF (modified EBDF) (Cash, 1983) and MF-MEBDF
(matrix free MEBDF) (Hosseini and Hojjati, 1999), are mod-
ification methods of (BDF) formula used to solve stiff systems
of ordinary differential equations. A-EBDF is also a modifica-
tion of (BDF) applied to solve stiff systems of ordinary differ-
ential equations (Hojjati et al., 2004). Haar wavelets are used
for linear and nonlinear stiff system of ordinary differential
equations (Hsiao, 2004; Hsiao and Wang, 2001). Adomian
decomposition method is applied on stiff problems (Saad
Mahmood et al.,, 2005). Furthermore, modification of
Homotopy perturbation methods which is called Rational
Homotopy perturbation method (RHPM) is used to obtain
an analytic approximation of stiff systems of ordinary differen-
tial equations (Biazar et al., 2015).

One of the important analytic methods for solving linear
and nonlinear equations is Bernstein polynomials (B-
polynomials). Bernstein operational matrix of differentiation
proposed by Bhatti and Bracken (2007) used Bernstein polyno-
mial basis to solve differential equation. Bernstein operational
matrix for solving Lane-Emden type equations (Pandey and
Kumar, 2012). operational matrices of Bernstein polynomials
and their applications to solve Bessel differential equation
(Yousefi and Behroozifar, 2010). Bernstein polynomials to
solve fractional riccati type differential equations (Yuzbasi,
2013). Bernstein series solution of linear second-order partial
differential equations with mixed conditions(Isik et al.,
2012). Recently, Yiming et al. (2014) used Bernstein polynomi-
als to find Numerical solution for the variable order linear
cable equation. Approximate solutions of singular differential
equations with estimation error by using Bernstein polynomi-
als (Alshbool et al., 2015).

The interpolation polynomial used in (B-polynomials)
method is a good approximation to the function y(x), and
for large n. Bernstein polynomials (B-polynomials) have many
useful properties. The procedure takes advantage of the
continuity and unity partition properties of the basis set of
B-polynomials over an interval [0,R]. This provides greater
flexibility to impose boundary conditions at the end points
of the interval. It also ensures that the sum at any point x
of all B-polynomials is unity. For this reason we choose
(B-polynomials) method.

In this paper, we present a new modification of Bernstein
polynomials called Multistage Bernstein polynomials
(MB-polynomials). The proposed method minimizes the error
of the result of Fractional and ordinary Order Stiff Systems
which is solved by standard Bernstein polynomials method.
Moreover, the solution provided by MB-polynomials is valid
in larger x than standard B-polynomials. The results of
MB-polynomials are compared with B-polynomials,
A-EBDFs methods, HPM and RHPM, and we show that
MB-polynomials obtains more accurate result.

The rest of this paper is organized as follows: In Section 2,
we present some definitions and properties of fractional calcu-
lus. In Section 3, some basic definitions of Fractional Order
Stiff Systems are provided. In Section 4, we describe the
standard B-polynomials and the MB-polynomials. Section 5,
presents numerical comparisons with several methods which
indicate that the MB-polynomials method is a simple, yet
powerful method to give the approximate solutions for
Fractional Order Stiff Systems. Finally we summarize our
work in Section 6 and suggest some recommendations for
future work.

2. Preliminaries and notations

In this section, we give some definitions and properties of frac-
tional calculus according to Diethelm et al. (2005).

Definition 2.1. A real function f{x), x > 0, is said to be in the
space C,, u € R, if there exists a real number p > pu, such that

f(x) = xfi(x), where f;(x) € C(0,00), and it is said to be in

the space C), if and only if W e Cy, n€N.

Definition 2.2. The Riemann-Liouville fractional integral
operator (J*) of order o > 0, of a function fe C,, u > —1,
is defined as

110 =15 [ =9 ot @>0)
PR = 113), )

where I'(a) is well-known gamma function. Some of the prop-
erties of the operator J*, which we will need here, are as fol-
lows: For fe C,, p = —1, o, > 0and y > —1:

L JJPf(x) = TP £ (x),
2. AP f(x) = BT f(x),

v T+ +y
3.0 = F(O(‘AF"/‘FI) .

Definition 2.3. The fractional derivative (D*) of f{r), in the
Caputo sense is defined as

D) = s [ =9 s %)

I'(n—o
forn—1l<a<n neN, x>0, feC,.

The following are two basic properties of the Caputo frac-
tional derivative (Diethelm et al., 2005):

1. Let fe€C", neN. Than D*f, 0 < o < n is well defined
and D*f € C_,.
2. Letn—1<a<n, nENandfeCZ, 1= —1. Then

n—1 xk
(D) = A1)~ S 100 5 )
k=0 :

For the Caputo derivative we have

D¢ =0 (c constant), (4)
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{0, for fe Ny and f< o],

%x’”ﬂ for BENy and B = [«] or B> |al.
©)

We note that the approximate solutions will be found by using
the Caputo fractional derivative and its properties in this study.

3. Fractional Order Stiff Systems

We consider a stiff system of FDEs:

Dy 15,0150, 90) = &) (6)
Subject to the initial conditions

yi(xo0) = B (7

where f§; are constants, (j=1,2,...n).
First, we write system (6) in the form

Dayj+f_}(x7ylvy27"'7yn)_gj(x):0 (8)

Subject to the initial conditions (7). We will next present
the solution approaches for (6) based on the standard
B-polynomials and MB-polynomials separately.

4. Solution by Bernstein polynomials (B-polynomials)

The Bernstein polynomials of degree m are defined by
m

Bi.m(x): ( .)xi(l_x)M7i7 i:0717~-~7m7

1

where the binomial coefficient is

There are m + 1 nth-degree Bernstein polynomials. For math-
ematical convenience, we usually set B;,, =0, if i < 0 or i > m.

In general, we approximate any function y,(x) with the first
(m + 1) Bernstein polynomials as

y/‘(x) = ZC;’J‘BLM(X) = C]Td)(x)7 ] = 172 e nv (9)
i=0
where
¢(X) = [BO,m(x)7 Bl.m(x)7 s 7Bm.m(x)]T~
P(x) = AX, (10)
where
1
dy a ay,
by b b, *
A= ] , X=X (11)
kO kl kn n
X
Forj=1

1) = e Bunlx) = CTo(x),
i=0

where

ClT = [01.0701.1, cee 7Cl.m}~

Forj=2
1) = eaBin(x) = Clo(),
=0

where

C} = [02,0702.17 S >C2.mL

Forj=n
m
Va(x) = Z(;cm.,-B,;m(x) = Cl(),
where i
Cg = [Cn05Cn1s- - -+ Cam)-

The fractional derivatives of the vector ¢(x) can be expressed
as

T _ prp(), (12)

where D* is the (m+ 1) x (m+ 1) operational matrix of
derivative given as

D* = AQ¥ A", (13)
where
0000
75 ay ay
10
by b by
A= , ¥=10 1 0 0},
ko k k,
o 001 0
0 0 0 0 (14)
T(a+1
0 o0 0
T(20+1)
Q= 0 0 r<y.++1) 0
[(na+1)
0 0 0 [((n—1)o+1)

By means of the operational matrix of derivative (Yousefi and
Behroozifar, 2010), we approximate g(x) as

() =Glp(x), j=1,....n, (15)

where the vector G/T= [g/-ro(x),...,g/,m(x)]T, by applying
(9), (12) and (15) on the system (8), we have the residual
R(x) as

CiD*p(x) +/1(x, Cl b(x), C3(x),..., C(x)) = Gi$(x) =0

(16)

Cy D" p(x) +f3(x, €1 p(x), Cy (x), ..., Cb(x)) — Gyp(x) = 0

CyD*§(x) + /£, (x, Clp(x), Cp(x),...,Crp(x)) — G, p(x) =0

with the initial conditions

Cio(xo) = fi. Cd(xo) =Py-ons Crd(xo) = B, (17)
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To solve the system (16), we have to find collocation points
Xo, X1, - .., X, which will be substituted in (16), then we will
have (m — 1) equations, with initial condition in (17). Now
we have (m) equations where the unknowns are ¢;, which can
be solved by using Newton’s iterative method. To find the col-
location points xq, X1, .. ., X,,, follow as

BO.m (X) - B()m—l (x) 0

B],m (X) - Bl,m—l (x) 0
=1 (18)

Bm—l,m(-x) - Bm—l‘m—l (X) 0

The points presented from (18) are called the collocation
points (Xg, X1, ..., Xp)-

Therefore, according to B-polynomials, the m-term approx-
imations for the solutions of (6) can be expressed as

71(%) = Clg(x), 1(x) = C(x),....3,(x) = Cu(x),
(19)

4.1. Solution by Multistage Bernstein polynomials
( M B-polynomials)

The approximate solution (19) is generally, as will be shown in
the numerical of the paper, not valid for large x. For this rea-
son, we present this method (MB-polynomials) which is a sim-
ple way of ensuring validity of the approximation for large x to
treat (19) as an algorithm for approximating the solutions of
(6) in a sequence of intervals.

Choosing the initial approximation as

Yio(x) =3 (x") = B (20)
J’2,o(x) =) = ﬁ;

yn.()(x) :yn(x*) = [)):7

where x* is the left end point of each interval.

Now, we solve (6) for the unknowns y,,(x), (j=1,2,...,n,
k=1,2,...), by applying the collocation method in (18). In
order to carry out the iteration in every subinterval of equal
length Ax, [0,x7), [x1,%2), [%2,X3)...[Xk_1,Xk), We need
to know the values of the following:

Vno(X) = 2,(x7). (21)

A simple way for obtaining the necessary value (21) could be
conducted by means of the previous m-term approximation
of the preceding subinterval given by (19), that is

71(x) =Cio("), yi(x) =Crp(x"),....0,(x) =Crp(x").  (22)

To get more accurate and efficient result, we have to pay atten-
tion on collocation points for each subinterval; so that, we sub-
divide the interval and arrange the stages of the method as

yT,o(x) =y (x%), yﬁo(\) =1(x7), ...

e Stage 1. Apply the method on the intervals [0,x,), [x1,x2),
[x2,%3) ... [x%_1,1), the collocation points (xg,xi,...,X,)
which will be used are the points presented from (18).

e Stage 2. Apply the method on the intervals [1,x;), [x1,x2),

[x2,%3)...[%_1,2), but the -collocation points which

will be used are (xo+ 1,x;+1,...,x,+1).:

e Stage r. Apply the method on the intervals [r — 1,x), [x,
X2), [x2,x3)... [xk-1,7), where r =1,2..., and the colloca-
tion points which will be wused are (xo+ (r—1),
xi+(r=1),...,x,+ (—1)).

5. Numerical experiments

In this section, some numerical examples are given to illustrate
the properties and effectiveness of the method. We also com-
pare the approximate solution with some other numerical
solutions.

Example 1. Consider the stiff system of FDE.
{Da}’l(x) = —y1(x) +95,(x), (23)
D7y, (x) = —pi(x) = 97p,(x)

with the initial conditions y,;(0) =1, »,(0) =1, 0 <a< 1.

The exact solution when o = 1 is
X) =L (95¢72 — 48¢90%

{ym )= ) o

1
4
1) = & (48675 — &),

According to the B-polynomials method in Section 4,
after that, we apply our modification MB-polynomials on
this example, with m=9,j=1,2, k=6, r=5 and
0<a<l.

We can approximate solution of the system as

yi(x) =~ ch.,-B,-_M(x) =Clo(x), (25)
ya(x) =~ Zcz.fo.m(x) =G o(x) (26)

with the initial condition

Ci¢(0)=1, Cy¢(0)=1. (27)
By (12), we define the derivative of (25) as

D'y, (x) = CTD"(x),  Dylx) = CID" (). (28)
By substituting (25) and (28) in (23), we obtain

{ CID*p(x) = —Cld(x) +95CT p(x),

T T T (29)
G, Du(p(x) =-C, (x) — 97C, ¢(x),

the residual R(x) for the system of Eq. (23) can be written
as
R, (x) = CTD*$(x) + Clp(x) — 95CT (), 0
R, () = CTD*$(x) + CT(x) + 9TCTp(x).

To find the unknowns ¢;, we have to find the collocation points
by (18) and substitute it in (30), we report the collocation
points value as

.X():l, X]:O.l...Xg:().S (31)

with initial conditions in (27), then we have m equations where
the unknowns are ¢;, which can be solved by using Newton’s
iterative method and maple programming.

Hence, the solution to the stiff system (23) is:
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Table 1 Comparisons between B-polynomials solutions and
MB-polynomials solutions for system (23), with m =9 and
o = 0.90.

X ¥; B-polynomials MB-polynomials
0.0 3] 1 1
[y2 1 1
1.0 il 0.32031 0.32965
[¥2] 0.00673 0.00262
2.0 1l 8935.894 0.11470
[¥s] 8935.794 0.00082
3.0 il 7.882e +05 0.04028
[35] 7.882¢+05 0.00023
4.0 [y1l 1.394e + 07 0.02554
[¥s] 1.394e+07 0.00013
5.0 il 1.163e+ 08 0.01308
[32] 1.163e+ 08 0.00008
n(x) = Cig(x) (32)
7(x) = Cr (). (33)

To carry out the iterations on every subinterval of equal length
Ax, we need to know the values of the following initial
conditions:

(X)) =B, »m(x) =5, (34)

where x* is the left end point of each interval, we can obtain
these values by following the MB-polynomials method as given
in Section 4.1. The collocation points which will be used, as we
present it in Section 4.1, can be arranged in stages as follows

e Stage 1. On the intervals [0,x,), [x;,x2), [x2,x3)...[%_1,1),
the collocation points (xo = 1, x; =0.1...x3 = 0.8) which
were obtained from (18).

e Stage 2. On the intervals [1,x)), [x,x2), [x2,%3)...[%_1,2),
but the collocation points which will be wused are

()C() = 2, X1 = 1.1 o X113 = 18)

o Stage 5. On the intervals [S,xl), [xl,xg), [)Cz,X}) . [xk,l, 6)
The collocation points which will be used are (xo =5,
X1 = 5.1.. X3 = 58)

Table 3 Comparisons between B-polynomials solutions and
MB-polynomials solutions for system (35), with m =9 and
o = 0.90.

X Vi B-polynomials MB-polynomials
1.0 1] 0.3070 0.3070
2] 0.2918 0.2918
[yl 0.3115 0.3115
2.0 Iy 406.229 0.2024
[y 4112.052 0.1950
|3 4111.652 0.2047
3.0 | 2.13¢+4 0.1401
[y, 3.745¢+5 0.1352
3] 3.745¢+5 0.1416
4.0 1] 2.57e+5 0.0993
[y 6.71e+6 0.0959
3] 6.71e+6 0.1004
5.0 1] 1.55¢+6 0.0669
|2 5.63¢+7 0.0655
|5 5.63¢+7 0.0673

In Table 1 we present the numerical solutions which are
applied by the 9-term B-polynomials and the 9-term MB-
polynomials, with o =0.90 and the step-length is 2 =0.2.
Evidently, the classical B-polynomials solutions are not valid
for a long time. The MB-polynomials overcomes this lack of
the B-polynomials. In Table 2 we listed the error of the com-
puted solution obtained by the MB-polynomials and com-
pared it with that given by HPM, RHPM and standard
Bernstein polynomials method B-polynomials. To evaluate
the approximation values of the solution at a given x, with
o =1, m = 14 and step-length is 7 = 0.2.

Example 2. Consider another stiff system of FDE.

D%y, = =20y, — 0.25y, — 19.75y5,
D"y, =20y, — 20.25y, + 0.25y;, (35)
D%y, =20y, — 19.75y, — 0.25y,

with the initial conditions y,(0) =1, »,(0) =0, y5(0) = —1.

The theoretical solution when o =1 is

Table 2 Absolute error on [0, 5] for system (23), with m = 14 and o = 1.

X Vi HPM (Biazar et al., 2015) RHPM (Biazar et al., 2015) B-polynomials MB-polynomials
0.0 Y1 0.0000e + 00 0.0000e + 00 0.0000e + 00 0.0000e + 00
Vs 0.0000e + 00 0.0000e + 00 0.0000e + 00 0.0000e + 00
1.0 » 3.7309e—05 8.7089e—07 1.5045e—02 2.3163e—09
Vs 1.5358e—03 3.9449¢—05 1.5045e—02 2.3331e—09
2.0 Y 4.5307e—04 8.1898e—07 1.2735e+ 09 5.4795e—08
Vs 1.4548e—02 3.1085e—07 1.2735e+ 09 5.4614e—08
3.0 7 1.1801e—03 7.7735¢—07 2.2043e+ 12 1.8224e—07
Vs 2.7451e—02 1.3643e—05 2.2043¢+12 2.0729e—09
4.0 Y 1.6779¢e—03 1.3902e—06 2.6717e+ 14 9.1267e—06
Vs 2.4065¢—02 1.8229¢—05 2.6717e+ 14 6.9711e—07
5.0 i 1.7258e—03 1.9343e—06 9.3587¢+ 15 3.4942e—04
Vs 9.1965¢—03 1.0232e—05 9.3587e+ 15 2.0905e—05
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Table 4 Absolute error on [0, 10] for system (35), with m = 14
and o = 1.

X Vi A-EBDF (Hojjati et al., 2004) MB-polynomials
1.0 i 0.38e—07 0.38e—7
V) 0.39¢e—07 0.35e—7
V3 0.38e—07 0.35e—7
5.0 i 0.14e—08 0.18e—13
V) 0.14e—08 0.18e—13
V3 0.14e—08 0.18e—13
10.0 i 0.22e—09 0.15¢e—14
V) 0.22e—09 0.15e—14
V3 0.22e—09 0.15¢e—14
1 .
n=s (e7*° + e (cos(20x) + sin(20x))),
1 .
v=5 (e7*° — e (cos(20x) — sin(20x))),
1 .
n=-3 (67" + ¢ 72" (cos(20x) — sin(20x))).

In Table 3 we present the numerical solutions which are
applied by the 9-term B-polynomials and the 9-term MB-
polynomials, with o =0.90 and the step-length is & =0.2.
Evidently, the classical B-polynomials solutions are not valid
for a long time. MB-polynomials method solves this problem
and solutions are valid for large x. In Table 4 we listed the
error of the computed solution obtained by the MB-
polynomials and compared it with B-polynomials and A-
EBDF (Hojjati et al., 2004). To evaluate the approximation
values of the solution at a given x, the step-length is 2 = 0.2,
withm=14, j=1,2,3, k=6 and r = 10.

6. Conclusions

In this paper, the MB-polynomials is considered a simple
modification of the standard B-polynomials. We applied
MB-polynomials to solve Fractional Order Stiff Systems.
Comparison between MB-polynomials and other several
methods as B-polynomials, A-EBDF, HPM and RHBM
indicates that MB-polynomials can solve stiff problems more
accurately with less iterations, also MB-polynomials is
considered valid in large x than standard B-polynomials. The
subjects of our future works can be exemplified by applying
MB-polynomials for solving different systems, like Chaotic
Fractional Order Systems and Lorenz system.

References

Alshbool, M.H.T., Bataineh, A.S., Hashim, I., Isik, O., 2015.
Approximate solutions of singular differential equations with
estimation error by using Bernstein polynomials. Int. J. Pure
Appl. Math. 100, 109-125.

Bhatti, M.I., Bracken, P., 2007. Solutions of differential equations in a
Bernstein polynomial basis. Comput. Appl. Math. 205, 272-280.

Biazar, J., Ali, M., Salehi, F., 2015. Rational Homotopy perturbation
method for solving stiff systems of ordinary differential equations.
Appl. Math. Model. 39 (3-4), 1291-1299.

Cash, J.R., 1980. On the integration of stiff system of ODEs using
extended backward differentiation formula. Numer. Math. 34,
235-246.

Cash, J.R., 1983. The integration of stiff initial value problems in
ODEs using modified extended backward differentiation formula.
Comput. Math. Appl. 9, 645-657.

Diethelm, K., Ford, N.J., Freed, A.D., 2005. Algorithms for the
fractional calculus: a selection of numerical methods. Comput.
Methods Appl. Mech. Eng. 194, 743-773.

Hojjati, G., Rahimi, M.Y., Hosseini, S.M., 2004. A-EBDF: an od for
numerical solution of stiff system of ODEs. Math. Comput. Simul.
66, 33-41.

Hosseini, S.M., Hojjati, G., 1999. Matrix-free MEBDF method for
numerical solution of system of ODEs. Math. Comput. Model. 29,
67-77.

Hsiao, C.H., 2004. Haar Wavelet approach to linear stiff system.
Math. Comput. Simul. 64, 561-567.

Hsiao, C.H., Wang, W.J., 2001. Haar Wavelet approach to nonlinear
stiff systems. Math. Comput. Simul. 57, 347-353.

Isik, O., Sezer, M., Guney, Z., 2012. Bernstein series solution of linear
second-order partial differential equations with mixed conditions.
Math. Method Appl. Sci. http://dx.doi.org/10.1002/mma.2817.

Pandey, K., Kumar, N., 2012. Solution of Lane-Emden type equations
using Bernstein operational matrix of differentiation. New Astron.
17, 303-308.

Saad Mahmood, A., Casasus, L., AL-Hayani, W., 2005. The decom-
position method for stiff systems of ordinary differential equations.
Appl. Math. Comput. 167, 964-975.

Yiming, C., Liging, L., Baofeng, L., Yannan, S., 2014. Numerical
solution for the variable order linear cable equation with Bernstein
polynomials. Appl. Math. Comput. 238, 329-341.

Yousefi, S.A., Behroozifar, M., 2010. Operational matrices of
Bernstein polynomials and their applications. Int. J. Syst. Sci. 41,
709-716.

Yousefi, S.A., Behroozifar, M., 2010. Operational matrices of
Bernstein polynomials and their applications. Int. J. Syst. Sci. 41,
709-716.

Yuzbasi, S., 2013. Numerical solution of fractional Riccati type
differential equations by means of the Bernstein polynomials. Appl.
Math. Comput. 219, 6328-6343.


http://refhub.elsevier.com/S1018-3647(15)00062-2/h0005
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0005
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0005
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0005
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0010
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0010
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0015
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0015
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0015
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0020
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0020
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0020
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0025
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0025
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0025
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0030
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0030
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0030
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0035
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0035
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0035
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0040
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0040
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0040
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0045
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0045
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0050
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0050
http://dx.doi.org/10.1002/mma.2817
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0060
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0060
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0060
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0065
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0065
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0065
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0070
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0070
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0070
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0075
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0075
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0075
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0080
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0080
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0080
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0085
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0085
http://refhub.elsevier.com/S1018-3647(15)00062-2/h0085

	Multistage Bernstein polynomials for the solutions of the Fractional Order Stiff Systems
	1 Introduction
	2 Preliminaries and notations
	3 Fractional Order Stiff Systems
	4 Solution by Bernstein polynomials (B-polynomials)
	4.1 Solution by Multistage Bernstein polynomials (MB-polynomials)

	5 Numerical experiments
	6 Conclusions
	References


