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1. Introduction

Survey sampling models assume the existence of a finite popu-
lation U={u1,. . .,uN}, where the units are perfectly identifiable, and a
sample s of size n � N is selected from U. Another assumption is
that the variable of interest Y is measured in each selected unit.
Unfortunately, in real life, surveys should deal with the existence
of some missing observations. The existence of non-response sug-
gests that the population U is divided into two strata: U1, where are
grouped the units that give a response at the first visit, and U2,
which contains the rest of the individuals. This is the so called ‘re-
sponse strata’ model and was the framework proposed by Hansen
and Hurwitz (1946), see text books as Arnab (2017), Singh (2003),
and Lohr (2010).

The behavior of estimators based on the use of subsampling
depends heavily on the used sub-sampling rule. Alternative sam-
pling rules to Hansen-Hurwitz’s rule have been proposed; see for
example Srinath (1971) and Bouza (1981).

The quality of the inquiries depends of the rate of responses. A
question is how many non-respondents should be subsampled for
having a good response rate. If sufficient information is available
from prior rounds or other sources, the decision can be made on
the basis of the experience of the sampler who analyzes the
response rate, design effect, costs etc. The role of non-response in
the accuracy of estimation is still generating discussions among
statisticians, see an enlightening discussion in Särndal and
Lundquist (2014). In a seminal paper Hansen and Hurwitz (1946)
suggested subsampling non-respondents for alleviating the effect
of having missing data.

Many sampling models consider increasing the survey’s preci-
sion by utilizing information on an auxiliary variable. That is the
case of ratio, regression and product estimators Singh and Kumar
(2009) developed a general class of estimators for the population
mean of the interest variable Y, by using information on two aux-
iliary variables, when missing observations are present. The class
includes some well-known estimators.

In this paper we consider the case in which we have missing
information on the interest variable but is available the information
on the auxiliary variables in the sample, as well as their population
means. Singh and Kumar (2009) considered the subsampling rule
proposed by Hansen and Hurwitz (1946). This paper extends their
results studying the effect of using the rules of Srinath (1971) and
Bouza (1981), when dealingwith estimators of the class. The behav-
ior the estimators in the class is analyzed in terms of accuracy and
cost for each rule. The approximate errors are given.

Section 2 presents the basic issues on the nonresponse proce-
dures. Section 3 is devoted to analyzing the statistical properties
of the estimators. In this section are developed comparisons, of
the effects of using the three sub-sampling rules in the variance
and cost function are developed. We presented also a numerical
study, using real life studies, where the rules are evaluated. Finally,
in Section 4 some concluding remarks are given.

2. The non-response problem

It is increasingly common to subsample non-respondents for
increasing the response rates at a reduced cost. The usual theory
of survey sampling is developed assuming that the finite popula-
tion U ¼ u1; � � � ;uNf g is composed by individuals that can be per-
fectly identified. Assume that a sample s of size n � N is selected
using simple random sampling with replacement (SRSWR). The
variable of interest Y is to be measured in each selected unit.
Real-life surveys should deal with the existence of missing obser-
vations. This fact establishes that the population is divided into
two strata:

U1 ¼ u 2 Uugives a response in the first v isitf g;

U2 ¼ u 2 U udoes not give a response in the first visitf g:
Then we may distinguish the strata parameters
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Nt

X
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X
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as well as the population ones

�Y ¼ 1
N

X
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Nt

X
ui2U

ðYi � �YÞ2; N ¼ N1 þ N2

There are three solutions to cope with this fact: to ignore the
non-respondents, to impute the missing values or to subsample
the non-respondents. Rarely, ignoring the non-responses is a good
solution, as Y may be related with having very different values, in
the units belonging to U2 with respect to U1. Imputation of the
missing data depends on having an adequate model of the non-
responses mechanism and reliable information for predicting Y
for each non-respondent. Subsampling the non-respondents is a
conservative solution. Theoretically, dealing with subsampling
the non-respondents stratum is a particular case of Double Sam-
pling (DS), see Bouza et al. (2011) for a motivating discussion on
the subject. It was proposed firstly by Hansen and Hurwitz
(1946). Its use increases the costs but provides the confidence of
estimating using information on U2 Deciding which subsampling
procedure is to be used is of practical importance, see Thompson
and Washington (2013), Torres van Grinsven et al. (2014),
Andridge and Thompson (2015) and Heffetz and Reeves (2016).
Then it makes sense analyzing the behavior of alternative sampling
rules to Hansen-Hurwitz’s rule. In the literature are reported the
rules of Srinath (1971) and Bouza (1981), as other rules for deter-
mining the sub sample size. They fix the size of the subsample to
be drawn from the set of non-respondents.

Let us present a general algorithm for implementing one of the
subsampling procedures.

2.1. Subsampling algorithm

Step 1. Select a sample s from U using simple random sampling
with replacement (SRSWR).

Step 2. Evaluate Y among the subsample of the respondents
s1 � s, determine yi; i 2 s1; jjs1jj ¼ n1f g and compute

�y1 ¼
Pn1

i¼1yi
n1

ð2:1Þ

Step 3. Determine s2 ¼ ui 2 s2 ¼ s� s1f g; s2 ¼ n2

Step 4. Fix n�
2 ¼ hn2; h � 1

Step 5. Select using SRSWR a sub-sample s�2� s2 of size n�
2

Step 6. Evaluate Y among the units in s�2 and compute

�y�2 ¼
Pn�2

i¼1yi
n�
2

ð2:2Þ

Step 7. Compute the estimate of �Y

�y� ¼ w1�y1 þw2�y�2; wj ¼ nj

n
; j ¼ 1;2 ð2:3Þ

As s1 is a subsample of U1, (2.1) is an unbiased estimator of the
mean of the response stratum, that is E �y1 sjð Þ ¼ �Y1. The subsample
selected from the non-respondents provides (2.2) which is a condi-
tionally unbiased estimator of �y2 because E �y�2; sj

� � ¼ �y2:Therefore,

as s2 � U2; EEðy��
2 sj Þ ¼ �Y2. The usual analysis of the behavior of

(2.3) is based on studying the expression

�y� ¼ w1�y1 þw2�y�2 ¼ ðw1�y1 þw2�y2Þ þw2 �y�2 � �y2
� �

; ð2:4Þ

The first term is the sample mean of s, hence
EEðw1�y1 þw2�y2Þ ¼ �Y ;We have that E �y�2 � �y2 sj� � ¼ 0: Therefore, �y�

is an unbiased estimator of the population mean.
We have that the expected variance of the first term is

E Vðw1�y1 þw2�y2Þ sjð Þð Þ ¼ r2
Y

n
ð2:5Þ
The conditional variance of the second term is given by

V w2 �y�2 � �y2
� �

sj� � ¼ w2
2 r

2
2Y

1
hn2

� 1
n2

� �
¼ n2 1� hð Þ

hn2 r2
2Y

Note that n2 is a Binomial random variable, hence

E V w2 �y�2 � �y2
� �

sj� �� � ¼ W2 1� hð Þ
hn

r2
2Y

Due to the independence the expectation of the cross product is
zero and is deduced the well-known expression

EV �y� sjð Þ ¼ r2
Y

n
þW2 1� hð Þ

hn
r2

2Y :

The value of h determines the value of the second term in the
expected error. The subsampling rules deal with determining h.
The existing particular rules fix the value of h. They are:

Hansen and Hurwitz (1946): h ¼ 1
K ;K � 1

Srinath (1971): h ¼ n22
Hnþn2

;H � 0

Bouza (1981): h ¼ w2n2

The rules of Hansen-Hurwitz and Srinath depend on the
decision of the sampler for fixing h. Bouza’s rule is determined as
proportional to the proportion of non-responses. Hence, it is a ran-
domized rule and fixing the sub-sampling size does not depend on
the expertise of the sampler.

Having auxiliary information X the use of ratio estimators is
commonly used. Under nonresponse we have the knowledge of
the population mean of X, �X, and are computed the estimators:

�x� ¼ w1�x1 þw2�x�2; �x ¼ w1�x1 þw2�x2

s�2x ¼ 1
n� 1

Xn1
i¼1

x2i þ
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n�
2

Xn�2
j¼1

x2j � n�x��x

 !

s�xy ¼
1

n� 1

Xn1
i¼1

xiyi þ
n2

n�
2

Xn�2
j¼1

xjyj � n�y��x

 !

The ratio estimator in this case is given by

�y�ratio ¼
�y�

�x�
�X:

The regression estimator is

�yreg ¼ �y� þ b�
yx

�X � �x�
� �

; b�
yx ¼

s�xy
s�2x

In the next section we will consider the estimation problems.

3. The estimation problem

3.1. The class of estimators of Singh-Kumar

Singh and Kumar (2009) developed a class of estimators for �Y
when auxiliary information on two variables X and Z is available
and non-responses are present. The sampling design analyzed
was a DS one. They derived expressions of the mean squared error
(MSE) for the estimators of the proposed class. Take

�Q� ¼
XN
j¼1

Qj

N
; q

� ¼
Xn
j¼1

qj

n
; �qt ¼

Xnt
j¼1

qj

nt
; �q�

2 ¼
Xn�2
j¼1

qj

n�
2
;

Q ¼ X;Y ; Z; q ¼ x; y; z; t ¼ 1;2

Consider that we deal with missing information in the variable
of interest (item non-response). Hence, we have responses in x and
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z when a unit belongs to s. Following the model, we are going to
estimate the mean of Y using (2.4). We may compute

�g ¼ w1�g1 þw2�g2; g ¼ x; z:

Take a as a fixed scalar. The estimators of this class are charac-
terized by the general formula

�ya ¼ �y� þ b� �X � �x
� �� � �Z

�Z þ a �z� �zð Þ

b� ¼ s�xy
s2x

; s�xy ¼
Xn1þn�2

i¼1

xi � �xð Þ yi � �y�ð Þ
n1 þ n�

2 � 1
; s2x ¼

Xn1þn�2

i¼1

xi � �xð Þ2
n1 þ n�

2 � 1

It is considered that we know Q
�
; Q ¼ X; Z.

Let us use a Taylor Series development for (2.4). Take

�y� ¼ �y 1þ ey
� �

; �g ¼ �G 1þ eg
� �

; g ¼ x; z s�xy ¼ rxy 1þ exy
� �

; s2x

¼ r2
x 1þ e2xð Þ

For accepting the validity of the development in Taylor Series is
necessary that aezj j < 1 and e2xj j < 1 hold.

From the results of Singh and Kumar (2009) we may write

ya ¼
�Y 1þ ey
� �� �Xex

rxy 1þexyð Þ
r2
x 1þe2xð Þ

1� aez
¼ �Y

1þ ey � bRxyex 1þexyð Þ
1þe2xð Þ

1þ aezð Þ

2
4

3
5 ð3:1Þ

where b ¼ rxy

r2
x
;Rxy ¼ �X

�Y. Using the corresponding development for

expanding (3.1) we have that

�ya ¼ �Y
1þ ey � bRxyex 1þexyð Þ

1þe2xð Þ
1þ aezð Þ

2
4

3
5 ð3:2Þ

The approximation of the expectation, variances and covari-
ances of the errors are developed considering that the terms of
order larger than 2 are negligible. Then we may write:

E etqe
h
u

� 	
¼

V1q if q ¼ u; q ¼ x; z; t ¼ h ¼ 1
V2qu if q ¼ x; y and q–u ¼ x; y; z; t ¼ h ¼ 1
V3 if q ¼ y andu ¼ xy

V4 if q ¼ s2x and u ¼ x

8>>><
>>>:

ð3:3Þ

where

V1q ¼
C2
q

n
;C2

q ¼ r2
q

Q
�
2
;q ¼ x; y; z

V2qu ¼ qquCqCu;qqu ¼ rqu

rqru
;

V3 ¼ Nl21

N � 2ð Þn�Xrxy
;

l21 ¼
XN
i¼1

xi � �X
� �

yi � �Y
� �2
N

;

V4 ¼ Nl30

N � 2ð Þn�Xr2
x

; l30 ¼
XN
i¼1

xi � �X
� �3

N
;

Let us look for the approximate bias and variance of the estima-
tor. Considering again that the terms of order larger than 2 are neg-
ligible, we have the expansion

�ya � �Y ffi �Y ey þ bRxyex aez � 1ð Þ þ aez aez � ey � 1
� �þ bRxyex ex � exy

� �� �
Its expectation is equal to
Bias �yað Þ ¼ E �ya � �Y
� � ffi �Y abRxyV2xy þ a2V1z þ aV2zy þ bRxyV1x

� �
Note that only ey is affected by the existence of missing obser-

vations. Squaring both terms and calculating the variance is
obtained

E �ya � �Y
� �2

sj
h i

ffi 1
n
r2

y 1� q2
xy

� 	
þ aRyz aRyz � 2A

� �
r2

z þw2r2
2y

h i
¼ V �ya sj½ 	

ð3:5Þ
Ryz ¼
�Y
�Z
; A ¼ ryz

r2
z
� ryx

r2
x

rxz

r2
z

The value of a determines a particular member of the class. An
optimal estimator may be determined looking for the minimiza-
tion of (3.5) by determining its optimum value. T is given by

a0 ¼ A
Ryz

which depends of unknown population parameters, see Singh and
Kumar (2009) for a detailed discussion on the members of this class.

3.2. A comparison of estimators

It is well known that to the first degree of approximation of the
Taylor Series the conditional variances are

Vð�y�ratio sÞj ffi 1
n

r2
y þ r2

xR R� 2Byx
� �þ n�

2

n
r2

2y

� �

For the regression estimator the conditional variance is

Vð�yreg sÞj ffi 1
n

r2
y 1� q2

xy

� 	
þ n�

2

n
r2

2y

� �

Noting that

V �y� sjð Þ ¼ r2
Y

n
þ n�

2

n2 r
2
2Y

we have that if a0 ¼ A
Ryz

is known

G �y�ratio; �ya0
� � ¼ Vð�y�ratio sÞj � V �ya0 sj

� � ¼ 1
n

A� Ryz
� �2r2

z

G �y�reg ; �ya0
� 	

¼ Vð�y
�

reg
sÞj � V �ya0 sj

� � ¼ A2r2
z

n

G �y�; �ya0
� � ¼ V �y�jsð Þ � V �ya0 sj

� � ¼ 1
n

A2r2
z þ q2

xyr
2
y

� 	
Hence �ya0 is better than the other estimators. Singh and Kumar

(2011) pointed out that, even if a0 is unknown, �ya is to be preferred,
if the sampler evaluates for which feasible values of a it behaves
better.

An evaluation of the magnitude of the gain in accuracy due to
the use of �ya0 was developed using real life data.

We developed the numerical analysis using population data
obtained in three studies. A brief description of them is the
following

Problem 1. 793 factories contaminate a source of water. They
were inspected and was obtained

X = percent of samples with an index superior to the permitted
level.

The historical report of this percent was also known
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Z = historical percent of samples with an index superior to the
permitted level.

The managers improved the collection of solid contaminants
and a sample an reported

Y = percent of samples reported with an index superior to the
permitted level.

N2 = 104 factories did not send the report. They were visited
and Y was obtained.

The parameters of interest are

�X ¼ 24;7r2
x ¼ 31;4; �Z� ¼ 10;3 r2

z ¼ 9;34; �Y ¼ 18;7 r2
y ¼ 7;78

ryz ¼ �7;96; ryx ¼ 10;20; rxz ¼ 19;62; Ryz ¼ 1;82; A ¼ �1;19

Problem 2. 120 persons with VIH were included in an experi-
ment with a new drug. The levels of hemoglobin were one of the
measurements made to them. The variables involved were

X = measurement of hemoglobin before starting with the
treatment.
Z = first measurement of hemoglobin after starting with the
treatment.
Y = measurement of hemoglobin 6 months after starting with
the treatment.

N2 = 51 patients did not visit the hospital. They were visited and
Y was obtained.

The parameters of interest are

�X ¼ 6;60 r2
x ¼ 1;43; �Z� ¼ 9;90 r2

z ¼ 2;21; �Y ¼ 8;06 r2
y ¼ 3;08

ryz ¼ 0;64; ryx ¼ 1;01; rxz ¼ 0;82; Ryz ¼ 0;81; A ¼ 0;03

Problem 3. 1840 farmers increased the area of their farms. The
interest was to evaluate the tax to be pay. The variables involved
were

X = initial area of the farms in hectares
Z = Actual area of the farms in hectares.
Y = Harvested area in hectares.

N2 = 176 farmers did not return eth form of the tax to be pay
patients. They were visited and Y was obtained.

The parameters of interest are

�X ¼ 23;35 r2
x ¼ 60;46; �Z� ¼ 34;86 r2

z ¼ 88;75; �Y ¼ 26;72 r2
y

¼ 49;33

ryz ¼ 15;58; ryx ¼ �22;67; rxz ¼ 46;93; Ryz ¼ 0;77; A ¼ 0;02

The resulting Gains in accuracy obtained are presented in
Table 1.
Table 1
Gains in accuracy in 3 real life problems to the use of �ya0 .

Problem G �y�ratio; �ya0

� �
G �y�reg ; �ya0

� 	
G �y�; �ya0

� �
1 84,06 13,16 16,47
2 1,34 0,20 0,91
3 49,92 0,04 0,41
Table 1 suggests that the improvements in accuracy due to the
use of �ya0 are very large when compared with �y�ratio. The error is
decreased a little in the studies of VIH patients and farmers for
the other estimators.

3.3. A comparison of the subsampling rules performance

From the above discussion is clear that the preference for a cer-
tain subsampling rule does not affect in the comparison of the esti-
mators. Note that the effect of using a certain rule is important
when we calculate the expected variance. Then we are interested
in evaluating the behavior of the expectations under each rule.

That is to compare the different expectations of E w2 1�hð Þ
hn

h i
.

The use of Hansen-Hurwitz’s rule, HH, fixes that h = 1/K, K � 1.
Then its use yields that

E
w2 1� hð Þ

hn


 �
¼ W2 K � 1ð Þ

n
; ð3:6Þ

When we use the rule of Srinath (1971), S, we have that

h ¼ n2

Hnþ n2

Doing some calculus is derived that 1�h
h ¼ Hn

n2
. Substituting in the

conditional variance, we have

E V w2 �y�2 � �y2
� �

sj� �� � ¼ E
Hw2r2

2Y

nn2

� �
ffi H

n
r2

2Y ð3:7Þ

Comparing this term with (3.5), we should prefer HH to S
whenever

W2 K � 1ð Þ
n

� H
n

That is if K � HþW2
W2

¼ H
W2

þ 1:

A similar analysis of the use of the rule of Bouza (1981) needs of
considering the new structure. Due to the randomness of hwe have
that the conditional variance is

V w2 �y�2 � �y2
� �

sj� � ¼ 1� n2=nð Þ
n

r2
2Y ¼ n1

n2 r
2
2Y

Its expectation is

E V w2 �y�2 � �y2
� �

sj� �� � ¼ W1

n
r2

2Y ð3:8Þ

Note that HH is to be preferred to B when

W2 K � 1ð Þ
n

� W1

n

That is if K � W1
W2

þ 1 ¼ 1
W2

as W1
W2

� 0 and K � 1 we may fix a value

of K that satisfies this relationship.
Comparing S and B we have that the former generates a smaller

coefficient if is satisfied the inequality

H � W1

This relationship suggests that we S may be preferred if is used
values of H smaller than 1.

Considering the costs, we may use the cost function

C ¼ c0 þ c1nþ c2n�
2

Its expectation depends of the subsampling rule. The results are

EðCHHÞ ¼ c0 þ c1nþ c2nW2

K
ð3:9Þ

Accepting that E n2 � n�
2

� �t ffi 0, t > 2, a development in Taylor
Series allows deriving that



Table 3
Selected Values of the lower bound H

W2
þ 1 for accepting that HH is less variable

than S.

H

W2 0,1 0,3 0,5 0,7 1

0,1 2 4,00 6,00 8,00 11,00
0,15 1,67 3,00 4,33 5,67 7,67
0,2 1,50 2,5 3,5 4,50 6,00
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EðCSÞ ffi c0 þ c1nþ c2nW2

H þW2
ð3:10Þ

We have that for B

EðCBÞ ¼ c0 þ c1nþ c2ðnW2
2 þW1W2Þ ð3:11Þ

In terms of the expected costs, we may look for the preference
of the rules. We have:

HH-SifK > H þW2
Table 4
Selected Values of the lower bound for accepting that HH or S are
less variable than B.

1 + W1/W2 W1

W2

0,1 10 0,90
0,15 6,67 0,85
0,2 5,00 0,80

Table 5
Selected Values of the upper bound H þW2 for accepting that HH is less costly than S.

H

W2 0,1 0,3 0,5 0,7 1

0,10 0,20 0,40 0,60 0,80 1,10
0,15 0,35 0,45 0,65 0,85 1,15
0,20 0,30 0,60 0,70 0,90 1,20

Table 6
Selected Values of the upper bounds of K and H for accepting that HH and S are less
costly than B.

HH S
nW2

nW2
2þW1W2

n 1�W2
2ð Þ�W1

nW2þW1W2

W2/n 50 250 500 50 250 500

0,10 8,47 6,53 9,82 82,37 64,36 95,48
0,15 6,05 6,38 6,45 39,36 41,54 41,97
0,20 4,63 4,92 4,96 22,18 23,53 23,82
HH-BifK >
nW2

nW2
2 þW1W2

A comparison with S yields the preference rule,

S-B if H >
n 1�W2

2

� 	
�W1

nW2 þW1W2

It is easily derived that none of the rules may be more accurate
and cheaper with respect to any of the other two simultaneously.

We used the results reported with four populations in the paper
of Azeem and Hanif (2017) for establishing adequate values of the
parameters of the subsampling rules. In the next table we have
that N is the total number of units in the population questioned,
N1 the number of units responding the survey questions, N2 the
number of units which do not respond, r2

y is the population vari-

ance of Y and r2
y is the variance of Y for non-respondents part of

the population (Table 2).
Note that for the populations 1 and 2 the variance of non-

respondents is similar to the overall variance. Populations 3 and
4, have a considerably larger variance of the non-respondent strata
than the population variance. We will use the weights observed in
the inquiries of the different non-respondent stratum, W2 ¼ N2

N .
We fixed a set of values of H in Table 3 for comparing HH with S

in terms of their accuracy.
Note that for H = 0,1 fixing a value of K, for which HH is to be

preferred, implies using large subsample sizes. An increase in the
non-respondent’s stratum determine also the need of using larger
values of the sub sample size for preferring HH’s rule.

Table 4 illustrates that for small subsampling sizes HH may
have a better accuracy than the rule of Bouza. S will have the same
behavior for relatively small values of H.

The analysis of the costs is presented in the next 2 tables.
We prefer using HH by using K > H þW2. Analyzing Table 4 we

have that in the population analyzed the relation holds for K > 1,20,
which may be easily satisfied in practice.

The analysis of the costs associated with B needs to take into
account the sample size. We consider the commonly used sam-
pling fractions 0,01, 0,05 and 0,1 for illustrating. Note that the
results in the Table 5 suggest that the sub sampling rule HH will
have smaller expected costs than B if K > 9,82. The subsample
parameter H should be very large for preferring S to B in terms
of costs (Table 6).
Table 2
Population Data.

Population N N1 N2 r2
Y r2

2Y

1 5000 4500 500 102.007 99.99174
1 5000 4250 750 102.007 100.8224
1 5000 4000 1000 102.007 103.2349
2 5000 4500 500 97.1206 94.5457
2 5000 4250 750 97.1206 98.2761
2 5000 4000 1000 97.1206 96.0935
4. Conclusions

Non-responses are present in the practice of survey research.
Deciding to sub sample the non-respondents poses the need of
deciding which will be the size of the sub-sample. The sampler
must select a sub-sampling rule and fix a value of K or H or using
instead a randomized rule. We developed a study of this problem
when dealing with the class of estimators proposed by Singh and
Kumar (2009).

Evaluating the preference of one of the rules may be performed
by analyzing the effect of them in the corresponding expected
Population N N1 N2 r2
Y r2

2Y

3 5000 4500 500 101.2633 5000
3 5000 4250 750 101.2633 5000
3 5000 4000 1000 101.2633 5000
3 5000 4500 500 25.441 5000
4 5000 4250 750 25.441 5000
4 5000 4000 1000 25.441 5000
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variance or cost. The numerical study developed in Section 3 illus-
trated how a simple procedure allows deciding on the convenience
of using one of the rules. The evaluation of the subsampling rules
does not necessarily conveys to preferring one of them both in
terms of accuracy and cost.

This study may be extended to other estimation procedures, as
the product of a ratio and regression estimators proposed by Singh
and Kumar (2011).
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