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Abstract In this work, we established abundant travelling wave solutions for nonlinear coupled

evolution equation. This method was used to construct solitons and travelling wave solutions of

nonlinear coupled evolution equation. The tanh–coth method combined with the Riccati equation

presents a wider applicability for handling nonlinear wave equations.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The investigation of the travelling wave solutions for nonlinear

partial differential equations plays an important role in the
study of nonlinear physical phenomena. Nonlinear wave phe-
nomena appear in various scientific and engineering field, such

as fluid mechanics, plasma physics, optical fibers, biology, solid
state physics, chemical kinematics, chemical physics and geo-
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chemistry. Nonlinear wave phenomena of dispersion, dissipa-
tion, diffusion, reaction and convection are very important in
nonlinear wave equations. New exact solutions may help to find

new phenomena. In recent years, a variety of powerful methods
such as inverse scattering method (Ablowitz and Segur, 1981;
Vakhnenko et al., 2003), the tanh–sech method (Malfliet,

1992; Malfliet and Hereman, 1996; Wazwaz, 2004a), extended
tanh method (El-Wakil and Abdou, 2007; Fan, 2000), sine–co-
sine method (Wazwaz, 2004b; Bekir, 2008), homogeneous bal-
ance method (Fan and Zhang, 1998), Exp-function method

(Bekir and Boz, 2008; He and Wu, 2006), and the G0

G

� �
-expan-

sion method (Wang et al., 2008; Bekir, 2008) were used to de-
velop nonlinear dispersive and dissipative problems.

The pioneer work of Malfliet (1992), Malfliet and Hereman
(1996) introduced the powerful tanh method for a reliable
treatment of the nonlinear wave equations. The useful tanh

method is widely used by many such as in (Wazwaz, 2004a,
2005, 2006) and by the references therein. Later, the tanh–coth
method, developed by Wazwaz (2007a), is a direct and effec-

tive algebraic method for handling nonlinear equations.
Various extensions of the method were developed as well in
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Wazzan (2009a,b) and systematically studied in Gómez and

Salas (2008a,b).
Our first interest in the present work is in implementing the

tanh–coth method combined with Riccati equation method to
stress its power in handling nonlinear equations, so that one

can apply it to models of various types of nonlinearity. The
next interest is in determining the exact travelling wave solu-
tions for (2 + 1)-dimensional breaking soliton equations.

Searching for exact solutions of nonlinear problems has at-
tracted a considerable amount of research work where com-
puter symbolic systems facilitate the computational work.

(2 + 1)-Dimensional breaking soliton equations (Hirota
and Ohta, 1991):

ut þ auxxy þ 4auvx þ 4auxv ¼ 0;

uy ¼ vx;
ð1Þ

where a is a known constant. Eq. (1) describes the (2 + 1)-
dimensional interaction of a Riemann wave propagating along

the y-axis with a long wave along the x-axis. In the past years,
many authors have studied Eq. (1). For instance, Zhang has
successfully extended the generalized auxiliary equation meth-

od to the (2 + 1)-dimensional breaking soliton equations in
Zhang (2007)). Some soliton-like solutions were obtained by
the generalized expansion method of Riccati equation in

Cheng and Li (2003). Recently, a class of periodic wave solu-
tions were obtained by the mapping method in Peng (2005).
Two classes of new exact solutions were obtained by the singu-
lar manifold method in Peng and Krishna (2005). Very re-

cently, Jacobi elliptic function solutions and their degenerate
solutions are obtained by a generalized extended F-expansion
method in Ren et al. (2006).

2. The tanh–coth method

Wazwaz has summarized for using tanh–coth method. A PDE

Pðu; ut; ux; uy; uxx; utt; uyy; uxxx; . . .Þ ¼ 0: ð2Þ

can be converted to on ODE

QðU;U0;U00;U000; . . .Þ ¼ 0: ð3Þ

upon using a wave variable n ¼ xþ y� bt. Eq. (3) is inte-

grated as long as all terms contain derivatives where integra-
tion constants are considered zeros. Introducing a new
independent variable

Y ¼ tanhðnÞ or Y ¼ cothðnÞ n ¼ xþ y� bt; ð4Þ

leads to change of derivatives:

d

dn
¼ ð1� Y2Þ d

dY

d2

dn2
¼ ð1� Y2Þ �2Y d

dY
þ 1� Y2
� � d2

dY2

� �
d3

dn3
¼ ð1� Y2Þ 6Y2 � 2

� � d

dY
� 6Y 1� Y2

� � d2

dY2

�

þ 1� Y2
� �2 d3

dY3

�
ð5Þ

The tanh–coth method (Wazwaz, 2007a,b) admits the use
of the finite expansion

UðnÞ ¼ SðYÞ ¼
Xm
k¼0

akY
k þ

Xm
k¼1

bkY
�k; ð6Þ
wherem is a positive integer, for this method, that will be deter-

mined. Expansion (6) reduces to the standard tanh method
(Malfliet, 1992) for bk ¼ 0; 1 6 k 6 m. The parameter m is usu-
ally obtained, as stated before, by balancing the linear terms of

the highest order in the resulting equation with the highest
order nonlinear terms. Ifm is not an integer, then a transforma-
tion formula should be used to overcome this difficulty. Substi-
tuting (6) into the ODE results is an algebraic system of

equations in powers of Y that will lead to the determination
of the parameters ak ðk ¼ 0; . . . ;mÞ; bk ðk ¼ 1; . . . ;mÞ and b.

The function Y satisfies the Riccati equation

Y0 ¼ Aþ BYþ CY2; ð7Þ

where A;B and C are constants (Wazwaz, 2007c), and

Y0 ¼ dYðnÞ
dn

; n ¼ xþ y� bt: ð8Þ
3. The Riccati equation and its special solutions

The Riccati equation

Y0 ¼ Aþ BYþ CY2; ð9Þ

has specific solutions for B ¼ 0 given in Wang et al. (2006) by

A ¼ 1

2
;C ¼ � 1

2
; Y1 ¼ tanh

n
2
; coth

n
2
;

A ¼ 1

2
;C ¼ 1

2
; Y2 ¼ tan n� sec n; tan

n
2
;� cot

n
2
;

A ¼ 1;C ¼ �1; Y4 ¼ tanh n; coth n;

A ¼ 1;C ¼ 1; Y5 ¼ tan n;� cot n;

A ¼ 1;C ¼ �4; Y7 ¼
1

2
tanh 2n;

1

2
coth 2n;

A ¼ 1;C ¼ 4; Y8 ¼
1

2
tan 2n;� 1

2
cot 2n:

ð10Þ

Other values for Y can be derived for other arbitrary values
for A and C. To show the efficiency of the method described in
the previous part, we present some example.

4. Travelling wave solutions of the (2 + 1)-dimensional breaking

soliton equations

We consider the (2 + 1)-dimensional breaking soliton Eqs. (1).
Using the wave variable n ¼ xþ y� bt and proceeding as be-

fore we find

� bu0 þ au000 þ 4auv0 þ 4au0v ¼ 0;

u0 ¼ v0:
ð11Þ

Integrating the second equation in the system and neglecting
the constants of integration, we find

u ¼ v: ð12Þ

Substituting (12) into the first equation of the system and inte-
grating, we find

�cuþ 4au2 þ au00 ¼ 0: ð13Þ

Balancing u00 with u2 in (13) gives

mþ 2 ¼ 2m; ð14Þ

so that

m ¼ 2: ð15Þ
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The tanh–coth method admits the use of the finite

expansion

UðnÞ ¼ SðYÞ ¼ a0 þ a1Y
2 þ b1

Y2
: ð16Þ

By substituting Eq. (16) in Eq. (13), collecting the coeffi-
cients of Yi ði ¼ 0; . . . ; 8Þ and setting it to zero, we obtain

the system

6aa1C
2 þ 4aa21 ¼ 0;

10aa1BC ¼ 0;

8aa0a1 þ 8aa1ACþ 4aa1B
2 � ba1 ¼ 0;

6aa1AB ¼ 0;

8aa1b1 þ 4aa20 � ba0 þ 2ab1C
2 þ 2aa1A

2 ¼ 0;

6ab1BC ¼ 0;

4ab1B
2 þ 8aa0b1 þ 8ab1AC� bb1 ¼ 0;

10ab1AB ¼ 0;

4ab21 þ 6ab1A
2 ¼ 0:

ð17Þ

Solving this system by Maple gives B ¼ 0 and the following
six sets of solutions:

(i) The first set:

a0 ¼ �
3

2
AC; a1 ¼ 0; b1 ¼ �

3

2
A2; b ¼ �4ACa: ð18Þ

(ii) The second set:

a0 ¼ �
1

2
AC; a1 ¼ 0; b1 ¼ �

3

2
A2; b ¼ 4ACa: ð19Þ

(iii) The third set:

a0 ¼ �
3

2
AC; a1 ¼ �

3

2
C2; b1 ¼ 0; b ¼ �4ACa: ð20Þ

(iv) The fourth set:

a0 ¼ �
1

2
AC; a1 ¼ �

3

2
C2; b1 ¼ 0; b ¼ 4ACa: ð21Þ

(v) The fifth set:

a0 ¼ AC; a1 ¼ �
3

2
C2; b1 ¼ �

3

2
A2; b ¼ 16ACa: ð22Þ

(vi) The sixth set:

a0 ¼ �3AC; a1 ¼ �
3

2
C2; b1 ¼ �

3

2
A2; b ¼ �16ACa:

ð23Þ

This in turn gives the following general set of solutions

uI ¼ �
3

2
AC� 3

2
A2Y�2ðnÞ; b ¼ �4ACa; ð24Þ

uII ¼ �
1

2
AC� 3

2
A2Y�2ðnÞ; b ¼ 4ACa; ð25Þ

uIII ¼ �
3

2
AC� 3

2
C2Y2ðnÞ; b ¼ �4ACa; ð26Þ

uIV ¼ �
1

2
AC� 3

2
C2Y2ðnÞ; b ¼ 4ACa; ð27Þ

uV ¼ AC� 3

2
C2Y2ðnÞ � 3

2
A2Y�2ðnÞ; b ¼ 16ACa; ð28Þ

uVI ¼ �3AC�
3

2
C2Y2ðnÞ � 3

2
A2Y�2ðnÞ; b ¼ �16ACa; ð29Þ
where A and C are arbitrary constants and Y takes many trig-

onometric and hyperbolic functions as shown in (10).
Case I: We first consider uIðx; tÞ. We use the first result of

(18). We then apply the related Y functions for this choice of

A and C.
Using the first case in (10) where A ¼ 1

2
and C ¼ � 1

2
gives

the solution

u1 ¼ �
3

8
csch2 n

2

� �
and v1 ¼ �

3

8
csch2 n

2

� �
; ð30Þ

and soliton solution

u2 ¼
3

8
sech2 n

2

� �
and v2 ¼

3

8
sech2 n

2

� �
; ð31Þ

where b ¼ a.
For A ¼ 1

2
and C ¼ 1

2
we find b ¼ �a, and we therefore ob-

tain the solution

u3 ¼ �
3

8
csc2ðnÞ and v3 ¼ �

3

8
csc2ðnÞ; ð32Þ

and the soliton solution

u4 ¼ �
3

8
sec2ðnÞ and v4 ¼ �

3

8
sec2ðnÞ; ð33Þ

u5 ¼ �
3

8
1þ 1

ðtan n� sec nÞ2
Þ

" #
: ð34Þ

For A ¼ 1 and C ¼ �1 we find b ¼ 4a, and we therefore
obtain the solution

u6 ¼ �
3

2
csch2ðnÞ and v6 ¼ �

3

2
csch2ðnÞ; ð35Þ

and the soliton solution

u7 ¼
3

2
sech2ðnÞ and v7 ¼

3

2
sech2ðnÞ: ð36Þ

For A ¼ 1 and C ¼ 1 we find b ¼ �4a, and we therefore
obtain the solutions

u8 ¼ �
3

2
csc2ðnÞ and v8 ¼ �

3

2
csc2ðnÞ; ð37Þ

u9 ¼ �
3

2
sec2ðnÞ and v9 ¼ �

3

2
sec2ðnÞ: ð38Þ

For A ¼ 1 and C ¼ �4 we find b ¼ 16a, and we therefore ob-
tain the solution

u10 ¼
3

8
½16� coth2ð2nÞ� and v10 ¼

3

8
½16� coth2ð2nÞ�; ð39Þ

and the soliton solution

u11 ¼
3

8
½16� tanh2ð2nÞ� and v11 ¼

3

8
½16� tanh2ð2nÞ�:

ð40Þ

For A ¼ 1 and C ¼ 4 we find b ¼ �16a, and we therefore ob-
tain the solutions

u12 ¼�
3

8
½16þ cot2ð2nÞ� and v12 ¼�

3

8
½16þ cot2ð2nÞ�; ð41Þ

u13 ¼�
3

8
½16þ tan2ð2nÞ� and v13 ¼�

3

8
½16þ tan2ð2nÞ�: ð42Þ
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Case II: We first consider uIIðx; tÞ. We use the second result

of (19). Using the first case in (10) where A ¼ 1
2
and C ¼ � 1

2

gives the solution

u14 ¼
1

8
1� 3coth2 n

2

� �� �
and v14 ¼

1

8
1� 3coth2 n

2

� �� �
;

ð43Þ

and the soliton solution

u15 ¼
1

8
1� 3tanh2 n

2

� �� �
and v15 ¼

1

8
1� 3tanh2 n

2

� �� �
;

ð44Þ

where b ¼ �a.
For A ¼ 1

2
and C ¼ 1

2
we find b ¼ a, and we therefore obtain

the solutions

u16 ¼ �
1

8
½1þ 3cot2ðnÞ� and v16 ¼ �

1

8
½1þ 3cot2ðnÞ�; ð45Þ

u17 ¼ �
1

8
½1þ 3 tan2ðnÞ� and v17 ¼ �

1

8
½1þ 3 tan2ðnÞ�; ð46Þ

u18 ¼ �
1

8
1þ 3

ðtan n� sec nÞ2
Þ

" #

and v18 ¼ �
1

8
1þ 3

ðtan n� sec nÞ2
Þ

" #
: ð47Þ

For A ¼ 1 and C ¼ �1 we find b ¼ �4a, and we therefore
obtain the solution

u19 ¼
1

2
½1� 3coth2ðnÞ� and v19 ¼

1

2
½1� 3coth2ðnÞ�; ð48Þ

and the soliton solution

u20 ¼
1

2
½1� 3tanh2ðnÞ� and v20 ¼

1

2
½1� 3tanh2ðnÞ�: ð49Þ

For A ¼ 1 and C ¼ 1 we find b ¼ 4a, and we therefore obtain
the solutions

u21 ¼ �
1

2
½1þ 3cot2ðnÞ� and v21 ¼ �

1

2
½1þ 3cot2ðnÞ�; ð50Þ

u22 ¼ �
1

2
½1þ 3 tan2ðnÞ� and v22 ¼ �

1

2
½1þ 3 tan2ðnÞ�: ð51Þ

For A ¼ 1 and C ¼ �4 we find b ¼ �16a, and we therefore
obtain the solution

u23 ¼ 2� 3

8
coth2ð2nÞ and v23 ¼ 2� 3

8
coth2ð2nÞ; ð52Þ

and the soliton solution

u24 ¼ 2� 3

8
tanh2ð2nÞ and v24 ¼ 2� 3

8
tanh2ð2nÞ: ð53Þ

For A ¼ 1 and C ¼ 4 we find b ¼ 16a, and we therefore obtain
the solutions

u25 ¼ �2�
3

8
cot2ð2nÞ and v25 ¼ �2�

3

8
cot2ð2nÞ; ð54Þ

u26 ¼ �2�
3

8
tan2ð2nÞ and v26 ¼ �2�

3

8
tan2ð2nÞ: ð55Þ

Case III: We next consider uIIIðx; tÞ. We use the third result

of (20). Using the first case in (10) where A ¼ 1
2
and C ¼ � 1

2

gives the solutions u1; u2 and v1; v2.
For A ¼ 1
2
and C ¼ 1

2
we find b ¼ �a, and we therefore ob-

tain the solutions u3; u4; u5; v3; v4 and v5.
For A ¼ 1 and C ¼ �1 we find b ¼ 4a, and we therefore

obtain the solutions u6; u7; v6 and v7.
For A ¼ 1 and C ¼ 1 we find b ¼ �4a, and we therefore

obtain the solutions u8; u9; v8 and v9.
For A ¼ 1 and C ¼ �4 we find b ¼ 16a, and we therefore

obtain the soliton solution

u27 ¼ 6sech2ð2nÞ and v27 ¼ 6sech2ð2nÞ; ð56Þ

and the solution

u28 ¼ �6csch2ð2nÞ and v28 ¼ �6csch2ð2nÞ: ð57Þ

For A ¼ 1 and C ¼ 4 we find b ¼ �16a, and we therefore ob-

tain the solutions

u29 ¼ �6 sec2ð2nÞ and v29 ¼ �6 sec2ð2nÞ; ð58Þ
u30 ¼ �6csc2ð2nÞ and v30 ¼ �6csc2ð2nÞ: ð59Þ

Case IV: We next consider uIVðx; tÞ. We use the fourth re-
sult of (21). Using the first case in (10) where A ¼ 1

2
and

C ¼ � 1
2
gives the solutions u14; u15; v14 and v15.

For A ¼ 1
2
and C ¼ 1

2
we find b ¼ a, and we therefore obtain

the solutions u16; u17; u18; v16; v17 and v18.
For A ¼ 1 and C ¼ �1 we find b ¼ �4a, and we therefore

obtain the solutions u19; u20; v19 and v20.

For A ¼ 1 and C ¼ 1 we find b ¼ 4a, and we therefore ob-
tain the solutions u21; u22; v21 and v22.

For A ¼ 1 and C ¼ �4 we find b ¼ 16a, and we therefore

obtain the soliton solution

u31 ¼ 2½1� 3tanh2ð2nÞ� and v31 ¼ 2½1� 3tanh2ð2nÞ�; ð60Þ

and the solution

u32 ¼ 2½1� 3coth2ð2nÞ� and v32 ¼ 2½1� 3coth2ð2nÞ�: ð61Þ

For A ¼ 1 and C ¼ 4 we find b ¼ �16a, and we therefore ob-
tain the solutions

u33 ¼ �2½1þ 3 tan2ð2nÞ� and v33 ¼ �2½1þ 3 tan2ð2nÞ�; ð62Þ
u34 ¼ �2½1þ 3cot2ð2nÞ� and v34 ¼ �2½1þ 3cot2ð2nÞ�: ð63Þ

Case V: We next consider uVðx; tÞ. We use the fifth result of
(22). Using the first case in (10) where A ¼ 1

2
and C ¼ � 1

2
gives

the solution

u35 ¼ v35 ¼ �
1

8
2þ 3tanh2 n

2

� �
þ 3coth2 n

2

� �� �
; ð64Þ

where b ¼ �4a.
For A ¼ 1

2
and C ¼ 1

2
we find b ¼ 4a, and we therefore ob-

tain the solutions

u36 ¼ v36 ¼
1

8
2� 3 tan2 n

2

� �
� 3cot2

n
2

� �� �
; ð65Þ

u37 ¼ v37 ¼
1

8
½2� 3ðtan n� sec nÞ2 � 3ðtan n� sec nÞ�2�; ð66Þ

For A ¼ 1 and C ¼ �1 we find b ¼ �16a, and we therefore

obtain the solution

u38 ¼ v38 ¼ �
1

2
½2þ 3tanh2ðnÞ þ 3coth2ðnÞ�: ð67Þ

For A ¼ 1 and C ¼ 1 we find b ¼ 16a, and we therefore obtain

the solution

u39 ¼ v39 ¼
1

2
½2� 3 tan2ðnÞ � 3cot2ðnÞ�: ð68Þ
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For A ¼ 1 and C ¼ �4 we find b ¼ �64a, and we therefore

obtain the solution

u40 ¼ v40 ¼ �4� 6tanh2ð2nÞ � 3

8
coth2ð2nÞ; ð69Þ

For A ¼ 1 and C ¼ 4 we find b ¼ 64a, and we therefore obtain
the solution

u41 ¼ v41 ¼ 4� 6 tan2ð2nÞ � 3

8
cot2ð2nÞ; ð70Þ

Case VI: We next consider uVIðx; tÞ. We use the sixth result
of (23). Using the first case in (10) where A ¼ 1

2
and C ¼ � 1

2

gives the solution

u42 ¼ v42 ¼
3

8
1� tanh2 n

2

� �
� coth2 n

2

� �� �
; ð71Þ

where b ¼ 4a.
For A ¼ 1

2
and C ¼ 1

2
we find b ¼ �4a, and we therefore ob-

tain the solutions

u43 ¼ v43 ¼ �
3

8
1þ tan2 n

2

� �
þ cot2

n
2

� �� �
; ð72Þ

u44 ¼ v44 ¼ �
3

8
½1þ ðtan n� sec nÞ2 þ ðtan n� sec nÞ�2�; ð73Þ

For A ¼ 1 and C ¼ �1 we find b ¼ 16a, and we therefore ob-

tain the solution

u45 ¼ v45 ¼
3

2
½2� tanh2ðnÞ � coth2ðnÞ�: ð74Þ

For A ¼ 1 and C ¼ 1 we find b ¼ �16a, and we therefore ob-

tain the solution

u46 ¼ v46 ¼ �
3

2
½2þ tan2ðnÞ þ cot2ðnÞ�: ð75Þ

For A ¼ 1 and C ¼ �4 we find b ¼ 64a, and we therefore ob-
tain the solution

u47 ¼ v47 ¼ 12� 6tanh2ð2nÞ � 3

8
coth2ð2nÞ�: ð76Þ

For A ¼ 1 and C ¼ 4 we find b ¼ �64a, and we therefore ob-

tain the solution

u48 ¼ v48 ¼ �12� 6 tan2ð2nÞ � 3

8
cot2ð2nÞ�: ð77Þ

Comparing some of our results with Zhang’s (2007), Cheng
and Li’s (2003) and Peng’s (2005) results, it can be seen that the

results are the same. Some of these results are in agreement
with the results reported by others in the literature, and new
results are formally developed in this work.
5. Conclusion

The tanh–coth method combined with the Riccati equation
was successfully used to establish solitary wave solutions.
Many well known nonlinear wave equations were handled by
this method. The performance of the this method is reliable

and effective and gives more solutions. The applied method
will be used in further works to establish more entirely new
solutions for other kinds of nonlinear wave equations. The

availability of computer systems like Mathematicaor Maple
facilitates the tedious algebraic calculations. The method
which we have proposed in this letter is also a standard, direct
and computerizable method, which allows us to solve compli-

cated and tedious algebraic calculation.
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