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A B S T R A C T

This study aims to examine the early detection and treatment of conjunctivitis (eye infection) through
vaccination and recovery measures, both with and without medication. We develop an immune system-boosting
mathematical model and convert it to a fractionally ordered model using the ABC operator. Key properties,
such as the uniqueness and boundedness of the model, are investigated using Banach space. To assess the
stability of the newly developed 𝑆𝐸𝑉 𝐼𝑅𝑢𝑅𝑖 system and confirm the occurrence of flip bifurcation, we conduct
both qualitative and quantitative analyses. We calculate the basic reproductive number, 𝑅0, using an advanced
approach and analyze its impact across different sub-compartments. Sensitivity analysis is performed on each
parameter to understand the rate of change sensitivity. The Atangana–Toufik method is employed to solve
the system for various fractional values, providing a reliable bounded solution. Simulations are conducted
to observe the real behavior and effects of the conjunctivitis virus, showing that individuals with a strong
immune system can recover with or without medication. Finally, we determine the actual state of virus control
post-early detection, accounting for treated and untreated individuals due to the robust immune system and
precautionary measures.
1. Introduction

In the 13th century, Fibonacci introduced the famous Fibonacci
sequence to describe population growth, marking the beginning of
mathematics in biology. Later, Daniel Bernoulli used mathematical
concepts to explain microscopic organisms’ forms, and Johannes Reinke
coined the term ‘‘bio math’’ in 1901. Essentially, bio math involves the
theoretical study of mathematical models to understand the principles
underlying biological systems’ structure and function.

The last few decades have seen significant advancements in the
biological sciences, driven by technological progress. Mathematics has
consistently contributed to society, bringing substantial advancements
to the natural sciences. Similarly, biological research can be revo-
lutionized through mathematical models, which help unravel life’s
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complexities. Modern computer algebra systems have simplified solving
complex mathematical problems, enabling scientists to focus on under-
standing mathematical biology (Chou and Friedman, 2016; Yeargers
et al., 2013).

Recent years have seen increased attention to the mathematical
modeling of various biological, physical, and epibiological systems.
This attention is due to mathematical models’ ability to incorporate
complex elements. Scholars have particularly focused on mathematical
biology in areas such as infectious disease modeling, human anatomy
growth, and body fluid dynamics. Mathematical models have provided
frameworks to understand biological processes, determine threshold
parameters, clarify transmission dynamics, and suggest effective control
strategies for infectious diseases (Murray, 2003; Kyere et al., 2018).
vailable online 27 May 2024
018-3647/© 2024 The Authors. Published by Elsevier B.V. on behalf of King Sau
http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.jksus.2024.103273
Received 30 January 2024; Received in revised form 17 May 2024; Accepted 25 M
d University. This is an open access article under the CC BY-NC-ND license

ay 2024

https://www.sciencedirect.com
https://www.sciencedirect.com
mailto:owaiskulachi1997@gmail.com
mailto:aqeelahmad.740@gmail.com
mailto:evren.hincal@neu.edu.tr
mailto:ali.hasan@science.unideb.hu
mailto:farmanlink@gmail.com
mailto:kulachi114@gmail.com
https://doi.org/10.1016/j.jksus.2024.103273
https://doi.org/10.1016/j.jksus.2024.103273
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2024.103273&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of King Saud University - Science 36 (2024) 103273M.O. Kulachi et al.
Fig. 1. Conjunctivitis (Pink Eye) symptoms.
Conjunctivitis, or pink eye, is a highly contagious condition caused
by inflammation of the conjunctiva, triggered by bacterial, viral, or
allergic infections. Various forms of conjunctivitis, such as allergic
conjunctivitis, occur seasonally due to exposure to allergens like pollen,
dust mites, animal dander, and contact lenses (Center for Disease
Control (CDC), n.d.; Fehily et al., 2015). Transmission occurs through
contact with infected individuals or contaminated objects. Acute Hem-
orrhagic Conjunctivitis (ADC) is a specific viral type with an incubation
period of 1 to 3 days, presenting symptoms such as tearing, irritation,
photophobia, sore throat, lid swelling, and purulent discharges (Elliot,
1925).

Infectious conjunctivitis, including bacterial, viral, and ophthalmia
neonatorum, involves infection of the conjunctiva and sclera. Symp-
toms include itching, soreness, tearing, pus discharge, and light sensi-
tivity. Effective control measures include antibiotic eye drops, hygiene
practices, isolation, and allowing the disease to run its course, typically
lasting 2 to 3 weeks. Conjunctivitis is more prevalent in tropical re-
gions (Malu, 2014; Kimberlin, 2018). In Fig. 1, the physical symptoms
of eyes infected by the conjunctivitis virus are illustrated.

Fractional calculus is widely used in scientific disciplines, especially
physics and engineering. Fractional order models are preferred over tra-
ditional integer order models for their ability to account for genetic and
memory aspects of systems (Ahmad et al., 2024; Alsaud et al., 2024).
Examples include fractional models for lung cancer and coronavirus,
demonstrating the influence of fractional-order derivatives on disease
transmission. The COVID-19 pandemic highlighted the need for such
models due to social and economic disruptions (Tomar and Chadha,
2023; Chadha et al., 2023). The Generalized Damped Forced Korteweg–
de Vries (GDFKdV) equation and the Damped Forced Korteweg–de
Vries (DFKdV) equation have also been used to study nonlinear wave
propagation and reaction dynamics (Tomar et al., 2023). Models of
some diseases can be studied in certain environments such as fuzzy
environment to employ fuzzy parameters accounts for the variability
in parameter values among individuals within the population (Dayan
et al., 2023).

Conjunctivitis often manifests during the rainy season when humid
conditions favor the virus’s spread, particularly in tropical regions like
Thailand Ghazali et al. (2003), Chansaenroj et al. (2015). Isolating
infected individuals and granting sick leave for home isolation can
accelerate recovery and reduce infectious interactions. The American
Academy of Pediatrics recommends student isolation to prevent rapid
transmission in schools (Chowell et al., 2006). Mathematical models
2

of conjunctivitis have been developed to enhance understanding, with
notable contributions from Suksawat and Naowarat (2014), Unyong
and Naowarat (2014), Sangthongjeen et al. (2015), Alalhareth et al.
(2023).

1.1. Basic definitions

Definition 1.1. Atangana–Baleanu’s fractional-order derivative in the
Liouville–Caputo sense (ABC) is defined by Atangana and Baleanu
(2016)

𝐴𝐵𝐶
0 𝐷𝜉

𝑡 {𝑔(𝑡)} =
𝐴𝐵(𝜉)
𝑛 − 𝜉 ∫

𝑡

𝜉

𝑑𝑛

𝑑𝑤
𝑔(𝑤)𝐸𝜉

[

−𝜉
(𝑡 −𝑤)𝜉

𝑛 − 𝜉

]

𝑑𝑤, 𝑛 − 1 < 𝜉 < 𝑛, (1)

where 𝐸𝜉 represents the Mittag-Leffler function, 𝐴𝐵(𝜉) represents a
normalization function, and 𝐴𝐵(0) = 𝐴𝐵(1) = 1.

Definition 1.2. The Laplace transform of Eq. (1) is given by:

[𝐴𝐵𝐶0 𝐷𝜉
𝑡 𝑔(𝑡)]𝑠 =

𝐴𝐵(𝜉)
1 − 𝜉

𝑠𝜉𝐿[𝑔(𝑡)](𝑠) − 𝑠𝜉−1𝑔(0)
𝑠𝜉 + 𝜉

1−𝜉

.

Definition 1.3. The Sumudu transform (ST) of Eq. (1) is given by:

𝑆𝑇 {𝐴𝐵𝐶0 𝐷𝜉
𝑡 𝑔(𝑡)}𝑠 =

𝐵(𝜉)
1 − 𝜉

(

𝜉𝛤 (𝜉 + 1)𝐸𝜉

(

− 1
1 − 𝜉

𝜈𝜉
))

.

Definition 1.4. The fractional integral of order 𝜉 for the Atangana–
Baleanu function 𝑔(𝑡) is given by:

𝐴𝐵𝐶
0 𝐼𝜉𝑡 [𝑔(𝑡)] =

1 − (𝜉)
𝐵 − 𝜉

𝑔(𝑡) +
(𝜉)

𝐵(𝜉)𝛤 (𝜉) ∫

𝑡

𝜉
𝑔(𝑠)(𝑡 − 𝑠)𝜉−1𝑑𝑠.

2. Formulation of SEVI𝑹𝒖 𝑹𝒊 model

Conjunctivitis as a bacterial disease with pink eyes is discussed
in Sangsawang et al. (2012), along with its medication. We formu-
late a mathematical model for the conjunctivitis virus by introducing
recovered individuals without medication. This new model, denoted
SEVI𝑅𝑢𝑅𝑖, includes the following compartments: susceptible (S), ex-
posed (E), vaccinated (V), infected (I), recovered without medication
(𝑅𝑢), and recovered with treatment (𝑅𝑖). The key parameters in our
model are:

• 𝑛: total population,
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Fig. 2. The flowchart of the model formulation.
• 𝛽𝑛: birth rate,
• 𝜇𝑛: death rate,
• 𝛽: transmission rate of Acute Hemorrhagic Conjunctivitis,
• 𝜙: vaccination rate for uninfected individuals,
• 𝜅: incubation rate for Acute Hemorrhagic Conjunctivitis,
• 𝛼: recovery rate with treatment,
• 𝛾: recovery rate without medication,
• 𝜌: recovery rate without medication,
• 𝜎: rate at which individuals become susceptible again.

The flowchart for the newly developed model SEVI𝑅𝑢 𝑅𝑖 is given in
Fig. 2.

The developed model, derived from the flowchart and the general-
ized constructed hypothesis mentioned above, is as follows:

Using the Atangana–Baleanu (ABC) fractional operator, the model
becomes

𝐴𝐵𝐶
0 𝐷𝜉

𝑡 𝑆(𝑡) = 𝑛𝛽𝑛 + 𝜎𝑅𝑢 − 𝛽𝐼𝑆 − 𝜇𝑛𝑆,
𝐴𝐵𝐶
0 𝐷𝜉

𝑡𝐸(𝑡) = 𝛽𝐼𝑆 − 𝜙𝐸 − 𝜇𝑛𝐸,
𝐴𝐵𝐶
0 𝐷𝜉

𝑡 𝑉 (𝑡) = 𝜙𝐸 − 𝜅𝑉 − 𝜇𝑛𝑉 ,
𝐴𝐵𝐶
0 𝐷𝜉

𝑡 𝐼(𝑡) = 𝜅𝑉 − (𝛼 + 𝛾 + 𝜌 + 𝜇𝑛)𝐼, (2)
𝐴𝐵𝐶
0 𝐷𝜉

𝑡𝑅𝑢(𝑡) = 𝜌𝐼 − (𝜎 + 𝜇𝑛)𝑅𝑢,
𝐴𝐵𝐶
0 𝐷𝜉

𝑡𝑅𝑖(𝑡) = (𝛼 + 𝛾)𝐼 − 𝜇𝑛𝑅𝑖.

Here, 𝐴𝐵𝐶
0 𝐷𝜉

𝑡 represents ABC derivatives, where 0 < 𝜉 ≤ 1. The
initial conditions associated with this model are:

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝑉 (0) = 𝑉 0, 𝐼(0) = 𝐼0, 𝑅𝑢(0) = 𝑅0
𝑢 , 𝑅𝑖(0) = 𝑅0

𝑖 .

The parameters and their values involved in developed mathematical
model are given in Table 1.

We employ the Sumudu transform on Eq. (2) and, after restructuring
the system and applying the inverse Sumudu transform, we obtain:

𝑆𝑘+1(𝑡) = 𝑆𝑘(0) + 𝑆𝑇 −1

{

1−𝜉

𝐵(𝜉)𝜉𝛤 (𝜉+1)𝐸𝜉

(

− 1
1−𝜉 𝑤

𝜉
) × 𝑆𝑇

[

𝑛𝛽𝑛 + 𝜎𝑅𝑢 − 𝛽𝐼𝑆 − 𝜇𝑛𝑆
]

,

𝐸𝑘+1(𝑡) = 𝐸𝑘(0) + 𝑆𝑇 −1

{

1−𝜉

𝐵(𝜉)𝜉𝛤 (𝜉+1)𝐸𝜉

(

− 1
1−𝜉 𝑤

𝜉
) × 𝑆𝑇

[

𝛽𝐼𝑆 − 𝜙𝐸 − 𝜇𝑛𝐸
]

,

𝑉𝑘+1(𝑡) = 𝑉𝑘(0) + 𝑆𝑇 −1

{

1−𝜉

𝐵(𝜉)𝜉𝛤 (𝜉+1)𝐸
(

− 1 𝑤𝜉
) × 𝑆𝑇

[

𝜙𝐸 − 𝜅𝑉 − 𝜇𝑛𝑉
]

,

3

𝜉 1−𝜉
𝐼𝑘+1(𝑡) = 𝐼𝑘(0) + 𝑆𝑇 −1

{

1−𝜉

𝐵(𝜉)𝜉𝛤 (𝜉+1)𝐸𝜉

(

− 1
1−𝜉 𝑤

𝜉
) × 𝑆𝑇

[

𝜅𝑉 − (𝛼 + 𝛾 + 𝜌 + 𝜇𝑛)𝐼
]

,

(3)

𝑅𝑢𝑘+1(𝑡) = 𝑅𝑢𝑘(0) + 𝑆𝑇 −1

{

1−𝜉

𝐵(𝜉)𝜉𝛤 (𝜉+1)𝐸𝜉

(

− 1
1−𝜉 𝑤

𝜉
) × 𝑆𝑇

[

𝜌𝐼 − (𝜎 + 𝜇𝑛)𝑅𝑢

]

,

𝑅𝑖𝑘+1(𝑡) = 𝑅𝑖𝑘(0) + 𝑆𝑇 −1

{

1−𝜉

𝐵(𝜉)𝜉𝛤 (𝜉+1)𝐸𝜉

(

− 1
1−𝜉 𝑤

𝜉
) × 𝑆𝑇

[

(𝛼 + 𝛾)𝐼 − 𝜇𝑛𝑅𝑖

]

.

The resultant solution of (3) is given as

𝑆(𝑡) = lim
𝑘→∞

𝑆𝑘(𝑡), 𝐸(𝑡) = lim
𝑘→∞

𝐸𝑘(𝑡), 𝑉 (𝑡) = lim
𝑘→∞

𝑉𝑘(𝑡),

𝐼 (𝑡) = lim
𝑘→∞

𝐼𝑘(𝑡), 𝑅𝑢 (𝑡) = lim
𝑘→∞

𝑅𝑢𝑘 (𝑡), 𝑅𝑖 (𝑡) = lim
𝑘→∞

𝑅𝑖𝑘(𝑡).

Theorem 2.1. Consider a Banach space (𝑌 , ‖ ⋅‖) and let𝑀 be a self-map
of 𝑌 satisfying

‖𝑀𝑦 −𝑀𝑟‖ ≤ 𝜉‖𝑦 − 𝑟‖, ∀𝑦, 𝑟 ∈ 𝑌 , (4)

where 0 ≤ 𝜉 < 1. Assume that 𝑀 is Picard 𝑀-stable.
For Eq. (3), we obtain

1 − 𝜉

𝐵(𝜉)𝜉𝛤 (𝜉 + 1)𝐸𝜉

(

− 1
1−𝜉𝑤

𝜉
) .

The above expression shows the Lagrange multiplier.

Proof. Self-map 𝑀 is defined on Eq. (3). Using norm properties and
the triangle inequality, we get

‖𝑀[𝑠𝑘(𝑡)] −𝑀[𝑆𝑗 (𝑡)]‖ ≤ ‖𝑠𝑘(𝑡) − 𝑆𝑗 (𝑡)‖ + 𝑆𝑇 −1

{

1 − 𝜉

𝐵(𝜉)𝜉𝛤 (𝜉 + 1)𝐸𝜉

(

− 1
1−𝜉

𝑤𝜉
)

×𝑆𝑇
[

𝑛𝛽𝑛 + 𝜎(𝑅𝑢𝑘 (𝑡) − 𝑅𝑢𝑗 (𝑡))− 𝛽(𝐼𝑘(𝑡) −𝐼𝑗 (𝑡))(𝑆𝑘(𝑡) − 𝑆𝑗 (𝑡))

−𝜇𝑛(𝑆𝑘(𝑡) − 𝑆𝑗 (𝑡))
]

}

.

Similarly, we get analogous results for ‖𝑀[𝑒𝑘(𝑡)]−𝑀[𝐸𝑗 (𝑡)]‖, ‖𝑀[𝑣𝑘(𝑡)]−
𝑀[𝑉𝑗 (𝑡)]‖, ‖𝑀[𝑖𝑘(𝑡)]−𝑀[𝐼𝑗 (𝑡)]‖, ‖𝑀[𝑟𝑢𝑘 (𝑡)]−𝑀[𝑅𝑢𝑗 (𝑡)]‖, and ‖𝑀[𝑟𝑖𝑘 (𝑡)]−
𝑀[𝑅𝑖𝑗 (𝑡)]‖.

𝑀 fulfills the conditions of Theorem 2.1. Therefore, 𝑀 must be
Picard 𝑀-stable.

Theorem 2.2. The iteration approach is used to find a unique singular
solution to Eq. (2).
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Table 1
Description of parameters.

Parameter Representation Estimated values References

𝑛 Describes the whole population 1 Sangsawang et al. (2012)
𝛽𝑛 Represents the birth rate 0.00004215 Sangsawang et al. (2012)
𝜎 Rate at which individuals become susceptible 0.005 Assumed
𝛽 Transmission rate for Acute Hemorrhagic Conjunctivitis 0.004 Sangsawang et al. (2012)
𝜇𝑛 Represents the death rate 0.00004215 Sangsawang et al. (2012)
𝜙 Rate of vaccination for uninfected individuals 0.3 Assumed
𝜅 Characterizes for Acute Hemorrhagic Conjunctivitis as incubation rate 0.04 Sangsawang et al. (2012)
𝛼 Incidence rate for recovered with treatment measures 0.08 Sangsawang et al. (2012)
𝛾 Incidence rate for recovered individuals without medication 0.3 Sangsawang et al. (2012)
𝜌 Recovery rate without medication 0.0000008 Assumed
𝐽

𝐾

|

e
(

𝑅

3

s
c
d

s
r
t
i

4

e
t

Proof. Consider the Hilbert space 𝑀 = 𝑃 2((𝑣, 𝑢)×(0, 𝑟)
)

. In this context,
𝑀 denotes the set of measurable functions, 𝑃 represents the projection
operator, and

(

(𝑣, 𝑢) × (0, 𝑟)
)

is the Cartesian product of the intervals
(𝑣, 𝑢) and (0, 𝑟).

ℎ ∶ (𝑣, 𝑢) × [0, 𝑇 ] → R, ∬ 𝑔ℎ 𝑑𝑔 𝑑ℎ < ∞.

Certain operators are taken into account:

𝜉 = (0, 0, 0, 0, 0, 0) , 𝜉 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑛𝛽𝑛 + 𝜎𝑅𝑢 − 𝛽𝐼𝑆 − 𝜇𝑛𝑆,
𝛽𝐼𝑆 − 𝜙𝐸 − 𝜇𝑛𝐸,
𝜙𝐸 − 𝜅𝑉 − 𝜇𝑛𝑉 ,
𝜅𝑉 − (𝛼 + 𝛾 + 𝜌 + 𝜇𝑛)𝐼,
𝜌𝐼 − (𝜎 + 𝜇𝑛)𝑅𝑢,
(𝛼 + 𝛾)𝐼 − 𝜇𝑛𝑅𝑖.

We demonstrate that the inner product of
(

𝑇 (𝑆𝑎11(𝑡) − 𝑆𝑎12(𝑡), 𝐸𝑏21(𝑡) − 𝐸𝑏22(𝑡), 𝑉𝑓61(𝑡) − 𝑉𝑓62(𝑡), 𝐼𝑐31(𝑡)

− 𝐼𝑐32(𝑡), 𝑅𝑢𝑑41(𝑡) − 𝑅𝑢𝑑42(𝑡), 𝑅𝑖𝑒51(𝑡) − 𝑅𝑖𝑒52(𝑡)), (𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝜈5)
)

.

involving (𝑆𝑎11(𝑡) − 𝑆𝑎12(𝑡), 𝐸𝑏21(𝑡) − 𝐸𝑏22(𝑡), 𝑉𝑓61(𝑡) − 𝑉𝑓62(𝑡), 𝐼𝑐31(𝑡) −
𝐼𝑐32(𝑡), 𝑅𝑢𝑑41(𝑡) − 𝑅𝑢𝑑42(𝑡), 𝑅𝑖𝑒51(𝑡) − 𝑅𝑖𝑒52(𝑡)) are the system’s unique
solutions.

Considering the inner function and the norm, for large numbers
𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, and 𝑒6, both solutions converge to the exact solution.
Using topological notions, we derive five small positive parameters
(𝜀𝑒1 , 𝜀𝑒2 , 𝜀𝑒3 , 𝜀𝑒4 , 𝜀𝑒5 , 𝜀𝑒6 ) such that

‖𝜈1‖, ‖𝜈2‖, ‖𝜈3‖, ‖𝜈4‖, ‖𝜈5‖, ‖𝜈6‖ ≠ 0;

‖𝑆𝑎11(𝑡) − 𝑆𝑎12(𝑡)‖, ‖𝐸𝑏21(𝑡) − 𝐸𝑏22(𝑡)‖, ‖𝑉𝑓61(𝑡) − 𝑉𝑓62(𝑡)‖,

‖𝐼𝑐31(𝑡) − 𝐼𝑐32(𝑡)‖, ‖𝑅𝑢𝑑41(𝑡) − 𝑅𝑢𝑑42(𝑡)‖, ‖𝑅𝑖𝑒51(𝑡) − 𝑅𝑖𝑒52(𝑡)‖ → 0;

𝑆𝑎11(𝑡) = 𝑆𝑎12(𝑡), 𝐸𝑏21(𝑡) = 𝐸𝑏22(𝑡), 𝑉𝑓61(𝑡) = 𝑉𝑓62(𝑡),

𝐼𝑐31(𝑡) = 𝐼𝑐32(𝑡), 𝑅𝑢𝑑41(𝑡) = 𝑅𝑢𝑑42(𝑡), 𝑅𝑖𝑒51(𝑡) = 𝑅𝑖𝑒52(𝑡).

This completes the proof of uniqueness.

3. Analysis of equilibrium points and reproductive number

In this section, we conduct a comprehensive analysis of equilibrium
points. To determine these points, it is necessary to set the left-hand
side of the system (2) to zero. The equilibrium point corresponding to
the absence of disease in this model is:

𝐷1(𝑆,𝐸, 𝑉 , 𝐼, 𝑅𝑢, 𝑅𝑖) =
(

𝑛𝛽𝑛
𝜇𝑛

, 0, 0, 0, 0, 0
)

.

Furthermore, the equilibrium point associated with the endemic
state, after substituting the parameter values given in Table 1 and using
Mathematica for simplification, is given by:

𝐷2(𝑆∗, 𝐸∗, 𝑉 ∗, 𝐼∗, 𝑅∗
𝑢 , 𝑅

∗
𝑖 )
4

= (95.1242, 0.127117, 0.952377, 0.100239, 0.0000159042, 903.696). (
3.1. Reproduction number and its analysis

The Jacobian matrices 𝐹 and 𝑉 are analyzed at the disease-free
equilibrium point 𝐷1. In these matrices, the element at position (𝑖, 𝑗)
of matrix 𝐹 denotes the rate at which a virus-infected individual in
compartment 𝑗 spreads to compartment 𝑖, while the element at (𝑖, 𝑗) in
matrix 𝑉 indicates the progression of the disease within compartment 𝑖.
To compute the reproduction number, the spectral radius of the matrix
𝐹𝑉 −1 at the disease-free equilibrium point is evaluated. This matrix,
known as the Next Generation Matrix, is given by:

𝐽0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇𝑛 0 0 − 𝛽𝑛𝛽𝑛
𝜇𝑛

𝜎 0

0 −(𝜇𝑛 + 𝜙) 0 𝛽𝑛𝛽𝑛
𝜇𝑛

0 0
0 𝜙 −(𝜇𝑛 + 𝜅) 0 0 0
0 0 𝜅 −(𝜇𝑛 + 𝛼 + 𝛾 + 𝜌) 0 0
0 0 0 𝜌 −(𝜇𝑛 + 𝜎) 0
0 0 0 𝛼 + 𝛾 0 −𝜇𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

0 = 𝐹 − 𝑉 .

We use Eq. (1) to derive the vectors 𝐹 and 𝑉 in our model.
The resultant matrix 𝐾 is given by

= 𝐹𝑉 −1.

The characteristic equation is

𝐾 − 𝛬𝐼| = 0.

Solving this determinant, we obtain the eigenvalues 𝛬. The principal
igenvalue from this characteristic equation is the reproduction number
𝑅0), which is given by:

0 =
𝑛𝛽𝜅𝜙𝛽𝑛

𝜇𝑛(𝛼 + 𝛾 + 𝜌 + 𝜇𝑛)(𝜅 + 𝜇𝑛)(𝜙 + 𝜇𝑛)
.

.2. Sensitivity analysis

Sensitivity analysis determines how different factors affect a model’s
tability, especially with ambiguous data. It helps identify critical pro-
ess factors. The sensitivity of 𝑅0 is examined by computing the partial
erivatives of the threshold with respect to relevant parameters.

The value of 𝑅0 is sensitive to changes in parameters. Our analysis
hows that 𝜇𝑛, 𝛼, 𝜌, 𝛾, and 𝑛, 𝛽𝑛, 𝜅, 𝛽, 𝜙 show contraction and expansion,
espectively. For effective infection control, prevention is advised over
reatment. These indices help identify essential factors in defining the
nfection’s propagation capacity, as depicted in Fig. 3.

. Flip bifurcation analysis

From Ngoma et al. (2022), we observe that none of the eigenvalues
qual 1 or -1, indicating that our model (2) may exhibit bifurcation if
he constants are taken as:

𝑛, 𝛽 , 𝜎, 𝛽, 𝜇 , 𝜙, 𝜅, 𝛼, 𝛾, 𝜌).
𝑛 𝑛
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Fig. 3. Reproductive number behavior for the newly developed system under different parameter effects.
T
c

(

his is given by:

|

𝐸
(

𝑛𝛽𝑛
𝜇𝑛

,0,0,0,0,0
) =

{

(𝑛, 𝛽𝑛, 𝜎, 𝛽, 𝜇𝑛, 𝜙, 𝜅, 𝛼, 𝛾, 𝜌) ∶ 𝜇𝑛 = 0
}

.

e need to prove that bifurcation does not exist at
(

𝑛𝛽𝑛
𝜇𝑛

, 0, 0, 0, 0, 0
)

,

f the constants are taken as:

𝑛, 𝛽𝑛, 𝜎, 𝛽, 𝜇𝑛, 𝜙, 𝜅, 𝛼, 𝛾, 𝜌) ∈ ϝ|
𝐸
(

𝑛𝛽𝑛
𝜇𝑛

,0,0,0,0,0
).

heorem 4.1. Our model (2) does not have flip bifurcation at
(

𝑛𝛽𝑛
𝜇𝑛

, 0, 0, 0, 0, 0
)

,

f the constants are taken as:

𝑛, 𝛽𝑛, 𝜎, 𝛽, 𝜇𝑛, 𝜙, 𝜅, 𝛼, 𝛾, 𝜌) ∈ ϝ|
𝐸
(

𝑛𝛽𝑛
𝜇𝑛

,0,0,0,0,0
).

roof. Our model in Eq. (2) is invariant with respect to 𝐸, 𝑉 , 𝐼, 𝑅𝑢
nd 𝑅𝑖 = 0. To verify the bifurcation existence, we take 𝐸, 𝑉 , 𝐼, 𝑅𝑢 and
𝑖 = 0. As a result:

(𝑡) = ℎ𝑛𝛽𝑛 + (1 − ℎ𝜇𝑛)𝑆(𝑡). (5)

pplying Eq. (5), we get:

(𝑆(𝑡)) = ℎ𝑛𝛽𝑛 + (1 − ℎ𝜇𝑛)𝑆(𝑡). (6)

ow, if 𝜇𝑛 = 0, 𝑆(𝑡) = 𝑛𝛽𝑛
𝜇𝑛

. Applying Eq. (6), we get:

𝜕𝑓 (𝑆(𝑡))
𝜕𝑆(𝑡)

|

|

|𝜇𝑛=0,𝑆(𝑡)=
𝑛𝛽𝑛
𝜇𝑛

= 1. (7)

aking the partial derivative of 𝑓 (𝑆(𝑡)) with respect to 𝜇𝑛, and applying
he values for 𝑆(𝑡) and 𝜇𝑛, we get − ℎ𝑛𝛽𝑛

𝜇𝑛
≠ 0. Then, applying the second

partial derivative on Eq. (7), we get:

𝜕2𝑓 (𝑆(𝑡))
= 0. (8)
5

𝜕𝑆2(𝑡) w
his shows that our model in Eq. (2) does not exhibit bifurcation if the
onstants are taken as follows:

𝑛, 𝛽𝑛, 𝜎, 𝛽, 𝜇𝑛, 𝜙, 𝜅, 𝛼, 𝛾, 𝜌) ∈ ϝ|
𝐸
(

𝑛𝛽𝑛
𝜇𝑛

,0,0,0,0,0
).

Using a combination of immune system impacts and therapy, we
investigate a newly designed conjunctivitis virus model. The population
is affected in a complex, time-dependent way; the interaction between
conjunctivitis and this system is continuous.

The linearization technique is used to achieve the stability and
boundedness of the model equations in Fig. 4. From the bifurcation di-
agrams, we infer that the model’s behavior rises with control input and
falls with extraction. The combination of medication and no medication
creates a stable state for the conjunctivitis virus (pink eye) model. Fig. 4
supports our theoretical conclusions with time-stable graphs based on
the parametric values.

5. Solutions by advanced numerical approach

We use an advanced numerical approach with a non-local, non-
singular kernel for fractional differential equations to find reliable
solutions. The system is given by:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐴𝐵𝐶
0 𝐷𝑆(𝑡) = 𝑓1(𝑡, 𝑆(𝑡), 𝐺(𝑡)),
𝐴𝐵𝐶
0 𝐷𝐸(𝑡) = 𝑓2(𝑡, 𝑆(𝑡), 𝐺(𝑡)),
𝐴𝐵𝐶
0 𝐷𝑉 (𝑡) = 𝑓3(𝑡, 𝑆(𝑡), 𝐺(𝑡)),
𝐴𝐵𝐶
0 𝐷𝐼(𝑡) = 𝑓4(𝑡, 𝑆(𝑡), 𝐺(𝑡)),
𝐴𝐵𝐶
0 𝐷𝑅𝑢(𝑡) = 𝑓5(𝑡, 𝑆(𝑡), 𝐺(𝑡)),
𝐴𝐵𝐶
0 𝐷𝑅𝑖(𝑡) = 𝑓6(𝑡, 𝑆(𝑡), 𝐺(𝑡)),
where 𝐺(𝑡) = (𝐸(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅𝑢(𝑡), 𝑅𝑖(𝑡)).
𝑆0 = 𝑆0, 𝐸0 = 𝐸0, 𝑉 0 = 𝑉0, 𝐼0 = 𝐼0, 𝑅0

𝑢 = 𝑅𝑢0, 𝑅
0
𝑖 = 𝑅𝑖0.

(9)

These equations can be converted to fractional integral equations using
fractional calculus:

𝑆(𝑡) − 𝑆(0) =
(1 − 𝜉)
𝐴𝐵𝐶(𝜉)

𝑓1(𝑡, 𝑆(𝑡), 𝐺(𝑡))

+
𝜉

𝐴𝐵𝐶(𝜉)𝛤 (𝜉) ∫

𝑡

0
𝑓1(𝜎, 𝑆(𝜎), 𝐺(𝜎))(𝑡 − 𝜎)𝜉−1𝑑𝜎,

here 𝐺(𝜎) = (𝐸(𝜎), 𝑉 (𝜎), 𝐼(𝜎), 𝑅 (𝜎), 𝑅 (𝜎)).
𝑢 𝑖
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Fig. 4. Bifurcation analysis of continuous dynamics.

Fig. 5. Using ABC operator at different fractional values.
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Similarly, we get expressions for 𝐸(𝑡) −𝐸(0), 𝑉 (𝑡) −𝑉 (0), 𝐼(𝑡) − 𝐼(0),
𝑅𝑢(𝑡) − 𝑅𝑢(0), and 𝑅𝑖(𝑡) − 𝑅𝑖(0).

Let 𝑡 = 𝑡𝑛+1 for 𝑛 = 0, 1, 2,…. The equations are reformulated as:

𝑆(𝑡𝑛+1) − 𝑆(0) =
(1 − 𝜉)
𝐴𝐵𝐶(𝜉)

𝑓1(𝑡𝑛, 𝑆(𝑡𝑛), 𝐺(𝑡𝑛))

+
𝜉

𝐴𝐵𝐶(𝜉)𝛤 (𝜉)

𝑛
∑

𝑘=0
∫

𝑡𝑘+1

𝑡𝑘
𝑓1(𝜎, 𝑆(𝜎), 𝐺(𝜎))(𝑡𝑛+1 − 𝜎)𝜉−1𝑑𝜎,

(10)

where 𝐺(𝑡𝑛) = (𝐸(𝑡𝑛), 𝑉 (𝑡𝑛), 𝐼(𝑡𝑛), 𝑅𝑢(𝑡𝑛), 𝑅𝑖(𝑡𝑛)).
Similarly, we get expressions for 𝐸(𝑡𝑛+1) − 𝐸(0), 𝑉 (𝑡𝑛+1) − 𝑉 (0),

𝐼(𝑡𝑛+1) − 𝐼(0), 𝑅𝑢(𝑡𝑛+1) − 𝑅𝑢(0), and 𝑅𝑖(𝑡𝑛+1) − 𝑅𝑖(0).
Using two-step Lagrange polynomial interpolation within the inter-

val [𝑡𝑘, 𝑡𝑘+1], we can simplify Eq. (10) to:

𝑆𝑛+1 = 𝑆0 +
(1 − 𝜉)
𝐴𝐵𝐶(𝜉)

𝑓1(𝑡𝑛, 𝑆(𝑡𝑛), 𝐺(𝑡𝑛))

+
𝜉

𝐴𝐵𝐶(𝜉)𝛤 (𝜉)

𝑛
∑

𝑘=0

(

𝑓1(𝑡𝑘, 𝑆𝑘, 𝐺𝑘)
ℎ ∫

𝑡𝑘+1

𝑡𝑘
(𝜎 − 𝑡𝑘−1)(𝑡𝑛+1 − 𝜎)𝜉−1𝑑𝜎

−
𝑓1(𝑡𝑘−1, 𝑆𝑘−1, 𝐺𝑘−1)

ℎ ∫

𝑡𝑘+1

𝑡𝑘
(𝜎 − 𝑡𝑘)(𝑡𝑛+1 − 𝜎)𝜉−1𝑑𝜎

)

, (11)

where 𝐺(𝑡𝑘) = (𝐸(𝑡𝑘), 𝑉 (𝑡𝑘), 𝐼(𝑡𝑘), 𝑅𝑢(𝑡𝑘), 𝑅𝑖(𝑡𝑘)) and 𝐺(𝑡𝑘−1) = (𝐸(𝑡𝑘−1),
𝑉 (𝑡𝑘−1), 𝐼(𝑡𝑘−1), 𝑅𝑢(𝑡𝑘−1), 𝑅𝑖(𝑡𝑘−1)).

Similarly, we get expressions for 𝐸𝑛+1, 𝑉𝑛+1, 𝐼𝑛+1, 𝑅𝑢𝑛+1 , and 𝑅𝑖𝑛+1 .
After integrating the terms, we replace them in Eq. (11) to get:

𝑆𝑛+1 = 𝑆0 +
(1 − 𝜉)
𝐴𝐵𝐶(𝜉)

𝑓1(𝑡𝑛, 𝑆(𝑡𝑛), 𝐺(𝑡𝑛))

+
𝜉

𝐴𝐵𝐶(𝜉)

𝑛
∑

𝑘=0

(

ℎ𝜉𝑓1(𝑆𝑘, 𝐺𝑘)
𝛤 (𝜉 + 2)

(

(𝑛 + 1 − 𝑘)𝜉 (𝑛 − 𝑘 + 2 + 𝜉)

− (𝑛 − 𝑘)𝜉 (𝑛 − 𝑘 + 2 + 2𝜉)
)

−
ℎ𝜉𝑓1(𝑡𝑘−1, 𝑆𝑘−1, 𝐺𝑘−1)

𝛤 (𝜉 + 2)
((𝑛 + 1 − 𝑘)𝜉+1 − (𝑛 − 𝑘)𝜉 (𝑛 − 𝑘 + 1 + 𝜉))

)

,

Similarly, we get expressions for 𝐸𝑛+1, 𝑉𝑛+1, 𝐼𝑛+1, 𝑅𝑢𝑛+1 , and 𝑅𝑖𝑛+1 .

. Simulation explanation

Theoretical results are obtained and examined using advanced ap-
roaches. Through simulations, the newly developed system is ana-
yzed. The conjunctivitis model provides intriguing results using non-
nteger parametric values. Lowering fractional values yields reliable
esults for 𝑆(𝑡), 𝐸(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅𝑢(𝑡), and 𝑅𝑖(𝑡), as shown in Fig. 5.

Sub-figures (a) and (f) illustrate the dynamics of susceptible 𝑆(𝑡)
and recovered with treatment 𝑅𝑖(𝑡), respectively. Both compartments
increase rapidly and then stabilize. Sub-figures (b), (c), (d), and (e)
show the dynamics of exposed 𝐸(𝑡), vaccinated 𝑉 (𝑡), infected 𝐼(𝑡),
and recovered without treatment 𝑅𝑢(𝑡). Each compartment declines
dramatically before stabilizing.

Sub-figures (c), (d), and (e) demonstrate a significant drop in infec-
tions due to combined vaccination and treatment strategies. Recovery
with and without medication increases as fractional values decrease, as
seen in the sub-figures (e) and (f).

These findings suggest future research directions for preventing the
spread of conjunctivitis. The Atangana–Toufik method yields superior
results for all sub-compartments at fractional derivatives compared
to conventional derivatives. Reducing fractional values improves the
accuracy and reliability of solutions across all compartments.

7. Conclusion

In this article, we formulated a fractional order conjunctivitis virus
model, incorporating vaccination and recovery measures with and
7

without medication. Using the Atangana–Toufik technique, we ana-
lyzed the model to produce reliable results. We recommend vacci-
nations and immune-boosting measures to prevent the spread of the
virus, promoting a disease-free environment. The model examines the
global impact of conjunctivitis with and without treatment and uses
bifurcation analysis to ensure stability. Our findings confirm that the
model does not exhibit flip bifurcation, and the unique and bounded
solutions are validated using Banach space results. Calculating the
reproductive number 𝑅0 is crucial for understanding epidemic poten-
tial. Sensitivity analysis highlights the most significant factors affecting
disease transmission. MATLAB simulations illustrate the dynamics of
conjunctivitis control, demonstrating that combined measures vaccina-
tion and hand hygiene can control the virus without medication. These
findings support future research in early detection and understanding
the virus’s behavior and spread.
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