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A B S T R A C T   

The quantification and prediction of particulate matter (PM) concentrations in the air are essential due to their 
negative impacts on human health and the environment. This study quantified PM concentrations and associated 
health effects at four natural gas-based power plants in Bangladesh. The measurement of PM2.5 and PM10 using 
the respirable dust samplers APS-113NL and APS-113BL, respectively from the year of 2015 to 2021 revealed 
that the concentration of both types of particles fluctuated over the years. The highest recorded levels of particles 
were in 2019, with PM2.5 at 126 µg/m3 and PM10 at 283 µg/m3 and the lowest recorded levels of particles were in 
2017, with PM2.5 at 76.3 µg/m3 and PM10 at 203.3 µg/m3. In 2021, PM2.5 and PM10 concentrations were 88.5 
and 225 µg/m3, respectively, lower than in the past two years. Statistical modeling assessed atmospheric con
taminants analyzed time series data, and projected air quality. ARIMA, ETS, and ANN modeling methods have 
been used to predict the monthly average of PM2.5 and PM10 concentrations. RMSE, MAPE, MASE, and MAE have 
been utilized for model orders, time series analysis, and forecasting validation. There is a significant variation 
between the forecasting models and forecasts for average PM2.5 and PM10 concentrations in natural gas-fired 
power plants from 2022 to 2024. This study also conducted a face-to-face interview with over 100 employees 
using a structured questionnaire to assess the health effects they are facing due to poor air quality in the power 
generation complex and found that 2 and 13 % of employees had respiratory and skin issues, respectively. 
Nonetheless, regular health checks, air filtration, and renewable energy consumption may benefit residents and 
the environment.   

1. Introduction 

Industrial, social, and economic progress requires access to 

electricity, and fossil fuel resources play a major role in the production 
of electricity long into the 21st century, but their emissions also have a 
significant negative impact on human health (Markandya and 
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Wilkinson, 2007). In 2013, the world used 532.9 × 1018 J equivalent of 
fossil fuel energy, and in 2018, world energy consumption increased 
remarkably. In 2020, global energy demand was significantly higher 
(654 × 1018 J) compared to 2000 (428 × 1018 J). Similarly, the pro
jected energy requirement in 2035 will almost double (812 × 1018 J) 
that of 2008 (Rashid and Joardder, 2022). Global power consumption is 
predicted to double by 2050 (Holechek et al., 2022; Sokulski et al., 
2022). During COVID-19, electricity generation from coal, natural gas, 
and other facilities declined by up to 35, 25, and 20 percent, respec
tively, while the percentage of renewable energy climbed by up to 9 % 
(Ghenai and Bettayeb, 2021) at the same time studies also observed 
reductions in PM emissions ranging from 30 % to 50 % in countries like 
China, India, and the United States (Vultaggio et al., 2020). The impact 
on PM emissions varied depending on the specific fuel-switching prac
tices and emission control technologies employed. Some studies showed 
slight reductions in PM from gas plants, while others observed little 
change (Gu et al., 2021). Regardless, the global decrease in PM during 
lockdowns led to significant air quality improvements (Vultaggio et al., 
2020). 

By Oct 2019, Bangladesh’s power grid was booming with 22,562 
MW capacity (including captive and renewable energy) (Islam et al., 
2021; PSMP, 2016). Access to electricity in Bangladesh is growing 
rapidly, with almost 95 % of the population having access to electricity, 
and a total of 3,493 MW of electricity generating capacity was added to 
the national grid during the 2018–19 fiscal year. This brought the total 
generating capacity up to 18,961 MW, and the yearly increment of 
generation capacity was 18.86 %. Bangladesh Power Development 
Board (BPDB) contributed 2,563 MW (including IPPs and power import) 
of electricity from this new capacity addition. (Islam and Khan, 2017) 
The majority of electricity in Bangladesh is generated from fossil fuel 
combustion, heavy fuel oil combustion (3 %), burning of natural gas 
(62.9 %) and coal (5 %), and 3.3 % from renewable sources (Anam and 
Husnain-Al-Bustam, 2011). Bangladesh has the ambition to become a 
high-income country by 2041, and energy and power infrastructure 
development pursue quantity and quality to realize long-term economic 
expansion (PSMP, 2016). It is a big challenge for Bangladesh due to the 
high electricity demand of the population of 158.9 million (BBS et al., 
2017). In addition, electricity generation from fossil fuel sources has 
proven to be a significant source of air pollution, including in 
Bangladesh (Rahman et al., 2024). Bangladesh is a developing country 
facing the worst air pollution issues due to massive development work 
and industrial activities (Begum et al., 2014a; Shahriar et al., 2020). 
Human exploitation of resources, fossil fuel burning, and development 
activities cause greenhouse gas (GHG) emissions, particulate matter 
(PM) intrusion, and environmental degradation (Ghosh, 2002). Many 
pollutants, such as Carbon Dioxide (CO2), Nitrous oxide (N2O), PM2.5, 
and PM10 in the air are emitted from different sources like the power 
generation sector and pollute the environment (Bai et al., 2018). 

However, advancements in energy market policies, such as cap-and- 
trade programs, offer promising solutions for emissions reduction from 
gas-fired power plants. These programs can contribute significantly and 
have been shown to improve social welfare (Dimitriadis et al., 2023). It 
is also well known that energy is crucial for poverty reduction, economic 
growth, and infrastructure development. However, the pollution caused 
by electricity generation, particularly GHGs and PM, poses significant 
challenges. These pollutants have adverse effects on living organisms 
and contribute to air pollution worldwide (Cellura et al., 2018; Ibe et al., 
2020; Shin et al., 2022a). PM10 and PM2.5 are so minutes that they can be 
inhaled, penetrate the lungs, and cause serious health problems like 
asthma, pneumonia, lung disorder, etc. (Begum et al., 2014b; Woodward 
et al., 2014). It is also a major cause of early death and illness around the 
world. A study on the Global Burden of Disease found that in 2019, 
outdoor air pollution was responsible for an estimated 6.67 million 
premature deaths (Cheng et al., 2007). PM emissions from fossil fuel- 
fired power plants are linked to fuel combustion, engine operation, 
maintenance process, and running hours and, therefore, can be related 

to the amount of generated energy (Abdul Jameel et al., 2016). Globally, 
approximately 60 % of electricity is generated from burning fossil fuels, 
mostly coal and natural gas, and contributes to atmospheric pollution, 
which poses a threat to health (Al-Amin and Sahabuddin, 2023). 
Exposure pathways for air pollutants include inhalation of dust and 
gases and ingesting contaminated food and water (Qu et al., 2012). The 
PM was chosen as a focus due to its known harmful effects on human 
health and the environment. In addition, forecasts of PM concentrations 
in power complexes are necessary to plan for health concerns. 

Auto-Regressive Integrated Moving Average (ARIMA), Error Trend 
Seasonal (ETS), and Artificial Neural Network (ANN) models each offer 
specific advantages depending on the desired forecast horizon and data 
complexity (Kim et al., 2022). ARIMA excels in capturing temporal de
pendencies for short-term predictions, while ETS efficiently handles 
trends and seasonality for medium-term needs (Thabani et al., 2019). 
ANN boasts flexibility and potential for superior accuracy in capturing 
intricate relationships for long-term forecasts but requires large datasets 
and significant computational resources (Eǧrioǧlu et al., 2008; 
Radojević et al., 2013). Choosing the most suitable model depends on 
data availability, interpretability needs, and computational resources. 
Comparing model performance and considering hybrid approaches 
utilizing the strengths of each can be beneficial (Kim et al., 2022). This 
study aims to forecast PM2.5 and PM10 concentrations in power gener
ation complexes in Bangladesh to assess their potential health impacts. 
By employing time series analysis methods like ARIMA, ETS, and ANN, 
we aim to develop accurate forecasts. These forecasts will be crucial for 
regulatory planning to control PM emissions and protect public health in 
Bangladesh. 

2. Materials and methods 

2.1. Study area 

This study was carried out over four natural gas-based power plants 
situated in four different districts in Bangladesh. For air sampling, one 
representative location was chosen from each of the power plants 
located at Tangail (24◦19′ N and 89◦55′ E), Chittagong (22◦17′ N and 
91◦46′ E), Feni (23◦1′ N and 91◦22′ E), and Narshingdi (23◦55′ N and 
90◦41′ E) districts (Fig. 1). These areas are home to several industries, 
including natural gas-fired power plants and manufacturing facilities, 
which contribute to atmospheric pollution. According to BBS 2020, the 
population density of these regions is 1500, 32008, 2200, and 1056 km2, 
with many residents working in these industries. The study area is 
located in a region with a temperate climate and experiences seasonal 
variations in weather conditions (Chowdhury et al., 2022). 

2.2. Data collection and analysis 

The study utilized two main data sets about Particulate Matter (PM) 
and employee health surveys. Data regarding PM2.5 and PM10 were 
collected month-wise from January 2015 to December 2021 using 
respirable dust samplers APS-113NL for PM2.5 and APS-113BL for PM10 
from the ambient air near selected engine-based natural gas-fired power 
plants. 

In developing our machine learning models for PM2.5 and PM10 
concentration forecasting, we utilized this collected historical data from 
2015 to 2021. To ensure model development and evaluation, we 
employed a training–testing split. Data from 2015 to 2019 (roughly 
71.43 % of the total data) served as the training set, where the models 
learned the patterns within the historical information. The remaining 
data from 2020 to 2021 (approximately 28.57 %) functioned as the 
testing set, allowing an unbiased assessment of the model’s generaliz
ability and ability to predict unseen data. Finally, after training and 
evaluation, we leveraged the models to forecast PM2.5 and PM10 con
centrations for the years 2022, 2023, and 2024. To list employee health 
problems, face-to-face interviews were conducted using a representative 
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and structured questionnaire about health issues among the randomly 
selected 100 employees who have been working in the electricity gen
eration plant for over two years. The analysis methods of this study are 
entirely based on the information extracted from four natural gas-fired 
power plants (72 MW Chittagong, 22 MW Feni, 22 MW Narshingdi, 
and 22 MW Tangail). Air Quality Index (AQI) values and PM2.5 and PM10 
were collected from the previous documents of each power plant. The 
AQI value was processed to determine PM2.5 and PM10 values following 
equations (1) and (2), respectively, and the breakpoint Table (Table 1), 
all prescribed by environmental protection agencies (EPAs) (Cheng 
et al., 2007). 

IPM2.5 =
{(

Ihigh − Ilow
)
/
(
Chigh − Clow

) }
× (AQI − Clow)+ Ilow (1)  

IPM10 =
{(

Ihigh − Ilow
)
/
(
Chigh − Clow

) }
× (AQI − Clow)+ Ilow (2)  

where IPM2.5 = Particulate Matter 2.5 Emission (µg/m3), IPM10 = Par
ticulate Matter 10 Emission (µg/m3), Ihigh = Index breakpoint corre
sponding to Chigh, Ilow = Index breakpoint corresponding to Clow, Chigh =

The concentration breakpoint ≥ C, Clow = The concentration breakpoint 
≤ C. 

To assess health hazards due to PM, the forecasted values were 
compared with the EPA’s breakpoint AQI value. Finally, data were 
recorded and analyzed using Rstudio and Microsoft Excel, and a study 
area map was prepared using ArcGIS software. ARIMA, ETS, and ANN 
models were used to analyze and forecast PM2.5 and PM10 concentra
tions in specific power generation plants. The analysis involved in this 
article has run on the R-4.0.5 workstation. This study prepared its R 
routines that suited the procedure adopted. Natural gas power plant data 
from 2015 to 2021 were analyzed using ARIMA, ETS, and ANN models 
for time series analysis and forecasting. While the ARIMA model is 
generally considered computationally efficient compared to some other 
time series forecasting methods, the actual computation time can vary 
depending on factors like data size and model complexity (p, d, q 
values). In larger datasets or with more complex models, computation 
time may increase (Hyndman and Khandakar, 2008). 

2.3. Auto-Regressive Integrated Moving average (ARIMA) 

Box Jenkins was used to analyze the data and forecast emissions in 
this study. Time series can be stationary or non-stationary, and this 
technique fits neatly into the category of the linear model. Box-Jenkins 
methods are helpful in forecasting because they include Autoregressive 
(AR) models, integrated (I) models, and Moving Average (MA) models. 
The Box-Jenkins methodology requires four steps to obtain the model: 
data preparation, model selection, estimation, and forecasting. A model 
is then employed as a prediction tool. After data collection, we first 
determined whether the data were part of a stationary or non-stationary 
time series. To identify these data, we used the augmented Dickey-Fuller 
(ADF) test. The differencing methodology may be used to make a time 
series stationary if it does not exhibit covariance stationary. The ARIMA 
(p, d, q) model is created by applying the ARMA (p, q) model to sta
tionary differenced time series, where d is the order of differencing. We 

Fig. 1. Natural gas-fired power plant locations selected for data collection.  

Table 1 
Air quality index (AQI) and breakpoint prescribed by environmental protection 
agencies.  

AQI Level of health concern PM2.5 (µg/m3) PM10 (µg/m3) 

0–50 Good 0–15.4 0–54 
51–100 Moderate 15.5–40.4 55–154 
101–150 Unhealthy for sensitive group 40.5–65.4 155–254 
151–200 Unhealthy 65.5–150.4 255–354 
201–300 Very unhealthy 150.5–250.4 355–424 
301–400 Hazardous 250.5–350.4 425–504 
401–500 Very hazardous 350.5–500.4 505–604  
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used the ADF test after the difference, which reveals the stationary time 
series. One approach for identifying trends in the data is the autocor
relation function. The autocorrelation function informs users of the 
correlation between points separated by different time lags. Given a 
sample Y0, Y1…, YT-1 of T observations, we define the sample auto
correlation function to be the sequence of values, 

rτ = Cτ/C0, τ = 0, 1, ...,T − 1 (3) 

The partial autocorrelation function (PACF) in time series analysis 
provides the partial correlation of a time series with its own lagged 
values while controlling for the importance of the time series at all 
shorter lags. The sample partial autocorrelation Pτ at lag τ is simply the 
correlation between the two sets of residuals obtained from regressing 
the elements Yt and Yt − τ on the set of intervening values Y1, Y2, …, Yt- 
τ + 1. The Akaike information criterion (AIC) compares statistical model 
quality. The “best” model will be characterized by which doesn’t fit 
either too well or too poorly. AIC is usually calculated with the software. 
The basic formula is defined as follows. 

AIC = − 2(log − likelihood)+2K (4) 

Log-likelihood is a method for measuring the model’s fit, where K is 
the total parameter count (model variables plus intercept). The bigger 
the number, the better the fit. This is usually obtained from statistical 
output. In statistics, the Bayesian Information Criterion (BIC) may be a 
criterion for model selection among a finite set of models; the model 
with rock-bottom BIC is preferred. It is based partly on the likelihood 
function, and it is closely associated with the AIC. The solution proposed 
by BIC and AIC is to include a penalty term for the number of parameters 
in the model. 

2.4. Forecasting with error Trend seasonal (ETS) model 

ETS point forecasting is obtained from the models by iterating the 
equations for 

t = T + 1,…,T + h and setting all εt = 0 for t > T (5)  

Therefore, 

yT+1|T = ℓT+ bT (6)  

Similarly, 

yT+ 2 = (ℓT + 1 + bT + 1)(1 + εT + 2)

= [(ℓT + bT)(1 + αεT + 1) + bT + β(ℓT + bT)εT

+ 1 ](1 + εT + 2) (7)  

Therefore, 

yT+2|T = ℓT+2bT (8) 

These forecasts are identical to the estimates from the model ETS as 
well as Holt’s linear method (A, A, N). As a result, the point forecasts 
obtained using the technique and the two models that form its founda
tion are the same (assuming that the same parameter values are used). 
ETS point forecasts are equivalent to the forecast distributions’ medians. 
The forecast distributions are normal for models with only additive 
components, so the medians and means are equal. The point forecasts 
and the standards of the forecast distributions will not be the same for 
ETS models with multiplicative errors or with multiplicative seasonality. 

2.4.1. ETS model prediction intervals 
ETS models can generate prediction intervals, but additive and 

multiplicative models have different prediction intervals. A prediction 
interval for the majority of ETS models is written as 

yT + h|T ± cσh (9)  

Where forecasting method (A, N, A), c depends on the coverage proba
bility, and σ2

h is the forecast variance. 

σ2
h = σ2[1 + α2(h − 1) + γk(2α + γ)

]
(10)  

2.5. Forecasting with Artificial neural network (ANN) model 

ANN is a data processing system that takes inspiration from the 
human brain and uses a network of many tiny processors to process data. 
In these networks, a programmed data structure acts like a neuron. A 
training algorithm is used to train a network that connects all neurons. 
Artificial neurons have two inputs and outputs. There are two states for 
every neuron: training and acting. A neuron learns the appropriate 
outputs for a particular input during the training phase. When infor
mation is defined for the neuron in the active state, it produces the 
proper output based on the training. While the hidden layer in the ANN 
model for PM concentration forecasting doesn’t directly transmit raw 
data, it plays a vital role in uncovering complex patterns. It acts as a 
feature extractor, using non-linear activation functions to transform the 
lagged PM concentration values (input data) and identify underlying 
trends or relationships. This processed information represents a higher- 
level abstraction, capturing the essential features most relevant for 
prediction. The hidden layer then transmits this processed representa
tion, not the raw data itself, to the output layer. Finally, the output layer 
leverages this learned representation to make the final prediction of 
future PM concentrations. In essence, the hidden layer acts as a crucial 
bridge, transforming the raw data into a form that the output layer uses 
to generate accurate forecasts. 

This type of network is referred to as a multilayer feed-forward 
network, and it is characterized by the fact that each layer of nodes 
receives inputs from the layers that came before it. The inputs of the 
nodes in one layer come from the outputs of the nodes in the previous 
layer. Weighted linear combination combines each node’s inputs. A 
nonlinear function modifies the output result. 

If the inputs into hidden neuron j in Fig. 2 are combined linearly to 
give, 

Zj = bj+
∑4

i=1
Wi, jXi (11)  

This is then adjusted using a nonlinear function, such as a sigmoid in the 
hidden layer so that it can act as input for the following layer. This re
duces the impact of extreme input values, making the network some
what resilient to outliers. 

S(z) =
1

1 + e− z (12) 

The values of the parameters b1, b2, b3, and W1, 1,…, W4,3 are 
“learned” from the data. Limits are typically placed on the weight values 
to prevent them from becoming excessive. The value 0.1 is frequently 
used for the “decay parameter,” which is the parameter that controls the 

Fig. 2. An artificial neural network (ANN) with two inputs and one hidden 
layer with hidden neurons. 
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weight restrictions. The weights start with random values, and then 
those values are modified based on the data that has been observed. So, 
the predictions made by a neural network have a bit of a random 
element to them. The network is usually trained more than once using 
different random starting points, the results are averaged, and hidden 
layers and nodes are defined in advance. 

2.5.1. Neural network autoregression (NNAR) 
When using a neural network with time series data, the lag values of 

the time series are utilized as inputs. This study used lagged values in a 
linear autoregression model, called a neural network autoregression or 
NNAR model. This study considered feed-forward networks with one 
hidden layer and used the notation NNAR (p, k) to indicate there are p- 
lagged inputs and k nodes in the hidden layer. With seasonal data, 
including the most recent data from the same season as inputs is helpful, 
and the NNAR (p, P, k) model fits the function. If p and P are not given, a 
random value will be chosen for them. The default for non-seasonal time 
series is the optimum number of lags for a linear AR(p) model. P is set to 
1 by default for seasonal time series, and p is selected from the best linear 
model fit to the data with seasonal adjustments. If k is left unspecified, 
the default value is k = (p + P + 1)/2 (rounded to the nearest integer). 
When it comes to making predictions, the network is used iteratively. 
This study simply used the available historical inputs to forecast one 
step. The one-step prediction was used as input to predict two steps with 
the previous data. This procedure continues until all the needed pro
jections are calculated. 

2.5.2. Prediction intervals 
The foundation of neural networks is not a well-defined stochastic 

model; as a consequence, calculating prediction intervals for the 
resulting projections is difficult. However, through simulation, we have 
calculated prediction intervals where future sample pathways are pro
duced using bootstrapped residuals. The neural network fitted to the PM 
data can be written as 

yt = f(yt − 1)+ εt (13)  

where yt − 1 = (yt − 1, yt − 2,⋯., yt − 10)́  is a vector containing lagged 
values of the series, and f is a neural network with six hidden nodes in a 
single layer. The error series {εt} is assumed to be homoscedastic 
(maybe a normal distribution). The ability to simulate future sample 
paths of this model repeatedly by selecting a value at random for εt, 
either from a normal distribution or by resampling the historical values. 

So, if εT + 1 is a random draw from the distribution of errors at time 
T + 1, then yT + 1 = f(yT) + εT + 1 is one possible draw from the 
forecast distribution for yT + 1. 

Setting, yT + 1 = (yT + 1, yT, …, yT − 8)′, we can then repeat the 
process to get yT + 2 = f(yT + 1) + εT + 2. 

In this manner, this may repeatedly simulate a future sample route. 
This study gains knowledge of the distribution for all future values by 
continually forging sample routes based on the fitted neural network. 

3. Results and discussion 

3.1. Particulate matter (PM) concentration scenario in natural gas-fired 
power plant 

Table 2 shows the concentration of PM2.5 and PM10 in the natural gas 
burning in 4 storks internal combustion engines in four power plants 
located in Chittagong, Feni, Narshingdi, and Tangail districts of 
Bangladesh, generating a yearly capacity of 1208.88 GW. PM concen
trations in power plants depend on operation, fuel burning, and air 
filtering. Wartsila and Rolls Royce engines ensure rich burn to avoid 
carbon monoxide and PM emissions. This study covered four natural gas 
power plants in different locations to analyze PM2.5 and PM10 data from 
2015 to 2021 and forecast. The concentration of PM in the atmosphere 

has increased day by day as a result of fuel burning and steady emissions 
from fossil fuel-burning power plants without filtering, construction 
work, or other development activities (Shin et al., 2022b). PM emissions 
are not directly from fuel burning and indicate ambient PM concentra
tions in the electricity generation area. According to EPA standards, 
monitored PM concentrations are unhealthy in all fossil fuel-burning 
power plants. PM2.5 and PM10 concentrations in selected power gener
ation complexes have fluctuated over the past seven years, and the 
highest average PM2.5 concentration was recorded in 2020, at 122.6 µg/ 
m3. The lowest average PM2.5 concentration was recorded in 2017, at 
76.3 µg/m3. PM10 concentrations generally followed a similar trend to 
PM2.5 concentrations, and both PM2.5 and PM10 concentrations excee
ded the EPA’s standard in all years measured (Table 2). 

3.2. Forecasting of PM2.5 and PM10 using ARIMA, ETS, and ANN models 

In time series forecasting, ensuring the data is stationary (meaning its 
statistical properties remain constant over time) is crucial for obtaining 
reliable predictions. The ADF test is a common tool used to assess sta
tionarity. As shown in Table 3, the ADF test results for PM2.5 and PM10 
both have p-values less than 0.05 (a commonly used significance level) 
and negative test statistics, indicating a rejection of the null hypothesis 
of a unit root (non-stationarity) at the chosen significance level. The p- 
value is less than 0.05 for both variables, a commonly used statistical 
significance threshold. This further supports the conclusion of statio
narity. The lag order is 3 for both PM2.5 and PM10, indicating that the 
model used to perform the ADF test included 3 lags of the differenced 
data (Table 3). This shows we can reject the null hypothesis of non- 
stationarity, and both variables are likely stationary. With stationary 
data, we can proceed more confidently to our chosen forecasting model. 

In this analysis of PM2.5 and PM10 concentration forecasting, ARIMA 
models emerged as a potentially better solution compared to ETS models 
based on AIC and BIC criteria. For PM2.5, an ARIMA (1,0,0) (1,1,0) [12] 
model captured the influence of the previous month’s value (positive 
coefficient) along with a seasonal effect (negative coefficient). PM10 also 
exhibited a seasonal pattern, but its ARIMA model ARIMA (1,0,0) (2,1,0) 
[12] included two seasonal autoregressive terms, suggesting a more 
complex seasonal influence. Overall, the importance of the seasonal 
component was evident in both PM2.5 and PM10, while automated 
ARIMA models provided a better fit based on the chosen information 
criteria. These methods produce better prediction plots, and Fig. 4 
demonstrates how accurate the predicted value was. We observed the 
data from 2015, 2016, 2017, and 2018 using the ARIMA model, and 
then we forecasted the data for 2019, 2020, and 2021. Even though we 
were aware of the data from 2019, 2020, and 2021, the mean absolute 
scaled error (MASE) value for PM2.5 and PM10 was MASE < 1, which 

Table 2 
Particulate matter concentration status in natural gas-based power plants.  

Year *EPA’s standard (µg/m3) PM2.5 µg/m3 PM10 µg/m3 

PM2.5 PM10 

2015 12–15 >150 86.8 229.3 
2016 95.4 211 
2017 76.3 203.3 
2018 83.0 207.8 
2019 126 283 
2020 122.6 279 
2021 88.5 225 

*U.S. Environmental Protection Agency (Minh et al., 2021). 

Table 3 
Data summary of unit root tests for PM2.5 and PM10.  

Variable ADF test Lag order P-value Alternative hypothesis 

PM2.5  − 3.9076 3  0.02018 Stationary 
PM10  − 3.9126 3  0.0212 Stationary  
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indicates the model does not need improvement and model is exactly as 
good (Wang and Lu, 2018). It is possible to say, based on a rule of thumb, 
lower Root mean squared error (RMSE) values, demonstrate that the 
model can predict the data accurately. Similarly, the ETS models for 
PM2.5 and PM10 employed additive errors and additive trend compo
nents. ETS (M, N, M), ETS (A, N, A), and NNAR (1,1,2) [12] were used 
for PM2.5 and PM10 series, which gives a better prediction plot. We 
observed the data as before observed for the ARIMA model from 2015, 
2016, 2017, and 2018 using the ETS and ANN model, and then we 
forecasted the data for 2019, 2020, and 2021 (Table 4). The ANN model 
summary suggests it’s not just a single model, but an ensemble of 20 
similar ANNs with 2 hidden layers, each containing 2 neurons. These 
networks likely have slightly different weights leading to a more robust 
prediction. ANN model also has the total number of trainable parame
ters (weights and biases) in each network within the ensemble (2 neu
rons in the first layer * 2 neurons in the second layer + biases = 9). The 
final layer of each network uses linear activation, meaning the output is 
a direct linear combination of the weighted inputs from the previous 
layer. However, the mean absolute error (MAE) of PM2.5 from the ANN 
model was closer to zero than PM2.5 from the ETS model, and PM10 from 
the ETS model was closer to zero than PM10 from the ANN model, which 
indicates PM2.5 from the ANN model, and PM10 from ETS model is more 
accurate than PM2.5 from ETS and PM10 from ANN model respectively 
(Eǧrioǧlu et al., 2008). According to the RMSE, MAE, MAPE (Mean 
absolute percentage error), and MASE values projected by the ARIMA, 
ETS, and ANN models, the expected value for PM concentration in 
natural gas-fueled power plant areas in 2022, 2023, and 2024 are ac
curate, and the model used for forecasting worked well. Table 4 com
pares the forecasts of ARIMA, ETS, and ANN models for PM2.5 and PM10 
concentrations in the study area and shows the predicted concentrations 
for January to December in 2022, 2023, and 2024. 

In Fig. 3, the x-axis of the graphs is time, ranging from 2015 to 2025. 
The y-axis is PM2.5 or PM10 concentration, measured in micrograms per 
cubic meter (μg/m3). The forecasts from the four models are shown as 
lines on the graphs. The solid line is the forecast, and the shaded area 
around the line represents the uncertainty of the forecast. The wider the 
shaded area, the less certain the forecast is. All three models predict that 
PM2.5 and PM10 concentrations will be highest in the winter months 
(December to February) and lowest in the summer months (June to 
August) (Fig. 3). The ARIMA model generally predicts the highest 

concentrations of PM2.5 and PM10, followed by the ETS model and then 
the ANN model. The ETS model tends to predict the most stable con
centrations of PM2.5 and PM10 throughout the year, with less variation 
between months. The ANN model tends to predict the most volatile 
concentrations of PM2.5 and PM10, with the most variation between 
months. 

3.3. Accuracy between the observed value and the predicted value of 
PM2.5 and PM10 

Data on PM concentrations used to train ARIMA, ETS, and ANN 
models for modeling time series. The plots demonstrate that an ARIMA, 
ETS, or ANN model can be used to explain the observed time series. 
Fig. 4 displays, however, the degree of accuracy by the predicted value. 
To calculate the accuracy rate, we observed the data for 2015 to 2019 
and forecasted data for 2020 and 2021. Though we knew the data for 
2020 and 2021 (Fig. 4), the accuracy rate for PM2.5 and PM10 was good 
enough for the black line (Fig. 4), indicating observation, and the blue 
line for prediction. 

Table 5 compares the performance of three different models named 
ARIMA, ETS, and ANN for predicting the concentration of two pollut
ants, PM2.5 and PM10. It uses four different error measures RMSE, MAE, 
MAPE, and MASE, and a lower value indicates better performance. 
Overall, ANN and ARIMA seem to have comparable performance for 
PM2.5 prediction based on RMSE and MAE. Both have very similar 
values. MAPE is slightly higher for ANN, while MASE is slightly lower. 
For PM10 prediction, ANN might perform slightly worse than ARIMA 
based on RMSE and MAE. The difference is small though. MAPE is again 
slightly higher for ANN, while MASE is comparable. ETS seems to 
perform worse than both ARIMA and ANN for both pollutants based on 
all error measures. It has higher values for RMSE, MAE, MAPE, and 
MASE for both PM2.5 and PM10. MAPE greater than 10 % but less than 
25 % was found in ARIMA, ETS, and ANN models for PM10 and indicates 
low but acceptable accuracy, and MAPE for PM2.5 in all models is above 
25 %, suggesting a relatively poor fit for predicting PM2.5 concentra
tions. MASE is below 1 and indicates the model used in forecasting data 
shows forecasting performance was good. 

In addition, R2 yielded promising results for PM2.5 prediction. The 
ARIMA model captured a moderate amount of variance (R2 = 0.56), 
which means it explains a decent portion of the fluctuations in PM2.5 

Table 4 
Predicted values of PM concentrations (μg/m3) in natural gas-fired power plants during 2022–2024.  

ARIMA Forecasting  

Year Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

PM2.5  2022  203.7  155.5  129.1  42.2  27.5  19.9  14.6  73.3  65.9  76.0  178.7  214.7 
2023  223.6  140.6  122.6  53.9  30.4  25.3  14.3  80.7  45.5  65.7  151.5  181.0 
2024  212.9  148.6  126.0  47.7  28.9  22.3  14.5  76.7  56.4  67.0  166.1  199.0 

PM10 2022  364.5  302.5  297.0  201.7  160.0  139.5  111.6  207.3  215.2  270.6  323.6  337.5 
2023  391.1  336.7  313.5  200.4  150.3  118.1  89.5  205.4  213.6  274.9  333.9  354.3 
2024  391.3  325.2  306.4  209.6  152.7  127.2  87.5  205.8  189.0  246.7  315.7  332.7  

ETS forecasting 
PM2.5 2022  191.0  149.3  110.4  40.5  30.1  20.8  14.7  41.3  41.9  45.0  98.3  157.3 

2023  191.0  149.3  110.4  40.5  30.1  20.8  14.7  41.3  42.0  45.0  98.3  157.3 
2024  149.3  110.4  40.5  30.1  20.8  14.7  41.3  40.0  45.0  98.3  157.3  199.0 

PM10 2022  363.6  314.9  278.9  147.9  110.5  64.4  41.5  74.3  118.4  170.5  252.6  298.6 
2023  363.6  314.9  278.9  147.9  110.5  64.4  41.5  74.3  118.4  170.5  252.6  298.6 
2024  363.6  314.9  278.9  147.9  110.5  64.4  41.5  74.3  118.4  170.5  252.6  298.6  

ANN forecasting 
PM2.5 2022  179.0  174.3  155.0  100.4  87.4  75.7  62.0  62.8  49.5  42.5  70.5  121.7 

2023  170.9  183.0  194.6  153.7  102.4  84.1  68.5  60.9  52.6  45.0  47.5  64.4 
2024  122.5  175.3  185.4  195.0  156.8  101.4  85.7  69.3  58.9  50.0  44.7  45.6 

PM10 2022  367.8  366.8  365.0  245.0  233.3  219.6  150.8  126.0  111.7  119.8  219.9  237.9 
2023  269.1  345.1  367.6  265.0  232.0  137.2  121.0  110.8  105.7  106.1  124.4  123.9 
2024  170.9  238.1  269.1  290.3  234.5  220.2  136.5  111.7  104.9  103.6  106.5  107.0  
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levels. The ETS model performed even better (R2 = 0.64), effectively 
capturing trends and seasonal patterns. The ANN model emerged as the 
leader (R2 = 0.89), explaining a very high proportion of the variance in 
PM2.5 data. In statistical terms, an R2 of 1 indicates a perfect fit, while 
0 signifies the model doesn’t explain any variance. Therefore, the ANN 
model seems adept at capturing complex relationships in PM2.5 data that 
other models might miss. However, PM10 prediction remains a chal
lenge. Both ARIMA and ETS models underperformed (R2 < 0.06), sug
gesting they may not be suitable for capturing the patterns in PM10 
concentrations. The ANN model also exhibited a negative R2, indicating 
its forecasts were on average worse than simply using the historical 
average PM10 value. Further investigation is necessary to identify a more 
effective model for PM10 prediction. 

3.4. Health impact assessment of particulate matter from natural gas- 
fired power plant 

Electricity generation and fuel consumption are connected with air 
emissions from natural gas-fired power plants. Electricity utilities are 
regulated at the national level under DoE rules and regulations. Emis
sions from power plants pose a potentially considerable risk to human 

health and the environment. These pollution sources are of particular 
concern in Bangladesh, where the burning of natural gas generates a 
large share of electricity. There are a variety of effects on human health 
depending on the content of air pollutants, the quantity, and duration of 
exposure, and the fact that people are often exposed to combinations of 
pollutants rather than single ones. Health consequences on people might 
include anything from cancer to nausea and respiratory problems. 
People working in a power plant exposed to emissions face health issues 
like breathing or skin irritation at a higher than the community people 
(Kampa and Castanas, 2008). Health effects can be distinguished into 
acute and chronic, not including cancer and cancerous. Epidemiological 
and animal model studies show that the cardiovascular and respiratory 
systems are predominantly impacted by the exposure (Pinkerton et al., 
2019). Fig. 5 shows the yearly average air pollution level, including 
forecasted pollution mean level compared with AQI value and associ
ated health risks in NG-fired power plants. 

However, this research separated the year into four distinct seasons: 
winter (March-May), pre-monsoon (June-August), post-monsoon 
(September-November), and monsoon (December- February). 
Applying the ARIMA model to the data on PM2.5, it was predicted that 
during the monsoon season, natural gas-fired power plants will be 

Fig. 3. Predicted vs. observed PM2.5 and PM10 values using ARIMA, ETS, and ANN models.  
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unhealthy for sensitive groups in 2022, 2023, and 2024. The health 
hazard from PM10 will be moderate in the 2024 monsoon season. ETS 
forecasting for 2022, 2023, and 2024 indicates that the health risk from 
PM2.5 will be moderate in the monsoon season, and in the winter, the 
health risk will be very unhealthy in the power-generating site. Ac
cording to the ANN forecasting model, due to PM2.5, health hazards will 

be very unhealthy for the sensitive group in the pre-monsoon season of 
2023 and 2024 and in the winter season of 2022 (Fig. 5). Digging deep 
into the health of natural gas-fired power plant workers, interviewed 
100 employees. The results were alarming, 15 % reported grappling 
with health issues directly linked to the power plant’s air quality. This 
translated to 2 % struggling with respiratory problems and even higher 
13 % bore the visible marks of poor air quality on their skin, with rashes 
and irritation a constant reminder of their occupational hazard. These 
statistics underscore the urgent need for stricter air quality regulations 
and better protective measures for power plant workers. However, 
implementing regular health checks, air filtration systems, and renew
able energy consumption can provide a multitude of benefits for the 
environment. These practices promote healthier living, reduce envi
ronmental pollution, and contribute to a more sustainable future 
(Martínez-Mendoza et al., 2022). 

4. Conclusions 

This study investigated PM2.5 and PM10 concentrations near natural 
gas-fired power plants using time series analysis and forecasting models 
ARIMA, ETS, and ANN to assess potential health risks associated with 
PM exposure and predict future air quality. Our findings revealed a link 
between PM concentrations and potential health problems like 

Fig. 4. Observed value vs. predicted value plot (accuracy of prediction).  

Table 5 
Error measure for the predicted value of ARIMA, ETS, and ANN models.  

Models Pollutants RMSE MAE MAPE MASE R2 

ARIMA PM2.5  36.69  0.247  39.8  0.57  0.56 
PM10  48.49  0.363  20.26  0.59  0.062  

ETS PM2.5  49.07  0.306  38.25  0.70  0.64 
PM10  44.60  0.355  19.26  0.57  − 0.10  

ANN PM2.5  36.63  0.283  45.94  0.65  0.89 
PM10  46.59  0.388  22.47  0.63  − 0.01 

N. B.: ARIMA = Auto-Regressive Integrated Moving Average, ETS = Error Trend 
Seasonal, ANN = Artificial Neural Network, RMSE = Root mean squared error, 
MAE = mean absolute error, MAPE = Mean absolute percentage error, MASE =
mean absolute scaled error, R2 = Coefficient of Determination. 
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respiratory issues, heart disease, and premature death, aligning with 
established scientific evidence from the EPA. These results highlight the 
need for stricter PM control strategies to safeguard human health and 
environmental quality around these types of power plants. 
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