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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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A B S T R A C T

Breast cancer (BC) is the most common malignancy worldwide, including in Saudi Arabia. Because of its 
heterogeneous nature, existing diagnostic and prognostic biomarkers are not relevant for all cases. There is a 
need to discover novel biomarkers for early diagnosis and prognosis to reduce mortality. Herein, we utilized 
an integrative bioinformatics approach to identify potential biomarkers for BC. Gene expression profiling of 45 
BC and five normal samples from KAUH, Jeddah was done with the GeneChip Human Genome 1.0 ST Array. 
Data was analyzed by LIMMA package of R and differentially expressed genes (DEGs) detected in Saudi Arabian 
patients were compared with American and Asian datasets. Ingenuity pathway analysis tool and gene ontology 
enrichment analysis were conducted to find aberrant pathways associated with BC. Survival analysis was done 
by Kaplan -Meier plotter to establish prognostic importance of identified genes followed by validation using 
qPCR. The association between RPS21 gene expression and systematic therapeutic response in BC was checked 
using statistical methods. Our results revealed 870, 658 and 567 DEGs in Saudi Arabian (GSE36295) American 
(GSE166044) and Asian (GSE15852) patients, respectively. The genes RPS21, CXCL2, TNMD, TOP2A, HMMR, 
and RRM2 were common in all groups. Pathway analysis revealed cell cycle checkpoints and BC regulation 
by stathmin1 as the most inhibited and activated pathways, respectively. Gene ontology and protein-protein 
interaction (PPI) network analysis of DEGs showed the role of ribosome-related genes and pathways in BC. 
Survival analysis predicted RPS21 to be a potential novel prognostic biomarker. Our findings highlight RPS21 
as a good prognostic biomarker candidate for BC in Saudi patients. It could be used globally after validation 
on bigger cohorts. Functional enrichment and pathway analysis predicted alteration in cell cycle, cancer 
regulation, and ribosome-related pathways associated with BC and provided critical insights into the molecular 
mechanisms driving breast tumorigenesis. 

1. Introduction

Breast cancer (BC) is one of the most frequent malignancies in 
females worldwide, followed by lung cancer (Sung et al. 2021). The 
incidence of new BC cases reached 2.3 million (11.7%) in 2020, and 
685,000 of those cases resulted in death (Arnold et al. 2022; WHO 
2023). In Saudi Arabia, 14.2% (3954)  of all cancer cases in 2020 were 
breast cancer, of which 1095 died, making it the second most common 
cause of cancer-related deaths (Ferlay J 2024).

The heterogeneous nature of BC, involving hundreds of genes and 
different molecular mechanisms in its pathogenesis, leads to diverse 
clinical behaviors (Ferrari et al. 2022). Therefore, the diagnosis 
and prognosis of BC are severely affected by multiple subtypes and 
phenotypic diversity (Eswaran et al. 2012). The known risk factors for 
BC are older age, obesity, smoking, and genetic predisposition, including 
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BRCA1, BRCA2, p53, PTEN, and STK11 gene mutations (Song et al. 
2014). Guided surgical tumor removal is the most effective treatment 
strategy unless metastasis has occurred. Targeted therapy with drugs 
such as tamoxifen and trastuzumab for ER+/PR+, and HER2+ tumors is 
also effective (Paik et al. 2004). Targeted radiation and chemotherapy 
by cyclophosphamide, paclitaxel, and doxorubicin are the last options 
depending on the stage of cancer (Mirza et al. 2023; Okuma et al. 
2016; Romond et al. 2005). Early diagnosis of BC can greatly reduce 
mortality, improve risk prediction, and help determinine the treatment 
response for BC management (Li et al. 2020). Hence, it is essential to 
find biomarkers for early BC screening and diagnosis, prognosis, and 
treatment response.

The advent of high-throughput technologies such as microarray 
and transcriptomic studies has identified several distinct intrinsic BC 
subtypes like luminal A, luminal B, HER2-enriched, and basal-like, 
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depending on the expression patterns of hundreds of differentially 
expressed genes (DEGs) including ER, PR, HER2, cytokines, GATA3, 
and cyclin E1 (Carey et al. 2006; Liao et al. 2015). DNA microarray is 
the ultimate tool for performing massive and simultaneous analysis of 
transcriptomes and leads to the identification of key genes as probable 
biomarkers for early diagnosis and therapeutic response prediction of 
BC (Karim et al. 2016; Lacroix et al. 2002; Liu et al. 2008; Merdad et 
al. 2014; Merdad et al. 2015; Mirza et al. 2023). However, despite the 
direct role in BC pathogenesis, DEGs have also shown their involvement 
through many important signaling pathways. Activation or inhibition of 
pathways alters or transmits the routine differentiation to proliferation, 
invasion, metastasis, and response to treatment (Schramm et al. 2010). 
However, the interaction of interconnected complex pathways within a 
cellular network remains to be completely deciphered.

Herein, we conducted expression profiling of BC samples. We also 
elucidated DEGs significantly associated with BC, conducted pathway 
and network analysis, compared the transcriptomic and pathway results 
with American and Asian ethnic groups, validated the novel DEGs by 
qPCR, and investigated their prognostic importance in Saudi patients 
with BC. Consequently, this study's findings can offer more mechanistic 
details and an understanding of signaling pathways involved in BC 
in comparison to other gene expression studies. To the best of our 
knowledge, we herein report RPS21 as a prognostic BC biomarker for 
the first time.

2. Material and methods

2.1 Subjects

The study was conducted after receiving ethical approval 
(16-CEGMR-Bioeth-2022) from the CEGMR Ethical Review Committee 
at King Abdulaziz University in October 2022. Subjects were recruited 
from King Abdulaziz University Hospital, KSA. The collected samples 
comprised 45 surgical resected tumors at different stages from BC cases 
aged 40–70 years, and five non-tumor healthy breast tissue. Collected 
BC tumor and normal breast tissues were either processed instantly for 
RNA isolation or preserved in RNAlater (Qiagen Inc) at −20°C till RNA 
extraction.

2.2 RNA isolation

Total RNA was extracted from human flesh and tumor breast 
tissues by means of RNeasy® Plus Mini Kit (Qiagen), as instructed by 
the manufacturer and kept at −80°C. For evaluating RNA yield and 
quality, A260/A280 RNA ratios were examined with the Experion 
automated electrophoresis system (BioRad). RNA concentrations were 
calculated using Nanodrop.

2.3 Gene expression profiling

Gene expression profiling of 45 BC and five control samples was 
performed with the GeneChip Human Genome 1.0 ST Array (Affymetrix 
Inc.) representing 55,000+ transcripts. At least 100 ng of total RNA was 
amplified, labeled, fragmented, and hybridized by GeneChip 3′ IVT 
Express Kit according to the manufacturer’s protocol. GeneChip Fluidics 
Station 450 was used for washing and staining before scanning the arrays 
using GeneChip Scanner 3000 7G. Affymetrix GCC software version 3.2 
was used to convert scanned images to ‘.CEL’ files. We deposited our 
expression results of 50 Saudi BC cases at GEO (Accession No. GSE36295, 
platform GPL6244). For comparative analysis, we retrieved two BC 
datasets from GEO/NCBI: GSE166044 (n=30, platform GPL18573) from 
Indiana University School of Medicine, USA, and GSE15852 (n=86, 
platform GPL96) from Institute for Medical Research, Malaysia.

2.4 Identification of differentially expressed genes

The batch effect correction of the GSE datasets was done utilizing 
the “Sva” (version 3.29.1) package of R language (version 3.5.1). Linear 
Models for Microarray Data package (LIMMA, version 3.37.4) was used 
to compare gene expression values and identify DEGs associated with 
BC (Diboun et al. 2006). Statistically significant DEGs between BC and 

healthy breast tissues were filtered using Benjamini Hochberg method, 
a cutoff of adjusted P-values < 0.05, to evade false-positive results. To 
determine up- or down-regulation patterns, a cut-off value of log2 fold 
change ≥ ±1 was accepted as significant. Later, multiple probes in lieu 
of single gene expression were averaged to retain exclusive genes and 
remove duplicate probes. Visualization of intersected DEGs from three 
datasets was done by Venn diagrams (http://bioinformatics.psb.ugent.
be/webtools/Venn/).

2.5 Gene ontology and pathway enrichment analysis

Pathway and network enrichment analyses of DEGs were performed 
using IPA (Ingenuity Pathway Analysis, Version-101138820). 
Additionally, Gene ontology annotation analyses were done to 
investigate their biofunctions. PPI network of validated DEGs was built 
with STRING version 12.0 (https://string-db.org/) (Szklarczyk et al. 
2021). The cut-off of the interaction score was set as 0.4. A PPI network 
with edges indicating both functional and physical protein associations 
was visualized.

2.6 Survival analysis

Survival analysis was done to compare the survival time difference. 
Kaplan-Meier plotter (www.kmplot.com) helped to plot the overall 
survival for BC patients for each potential gene and identified candidate 
genes showing a strong association with survival (Lacny et al. 2018). A 
graph was created and shown with the hazard ratio (HR) and log-rank P 
values along with a 95% confidence interval. The Benjamini–Hochberg 
method was used to calculate the false-discovery rate (FDR) in order to 
consider multiple hypothesis testing. Every test was two-sided, and an 
adjusted P<0.05 defined a statistically significant difference.

2.7 Response to therapy

We utilized robust statistical techniques, specifically receiver 
operating characteristics (ROC) analysis, and Mann-Whitney tests, 
to rigorously find correlation between gene expression and therapy 
response. The ROC plotter online tool (https://www.rocplot.com/) was 
employed to confirm the association between RPS21 expression and 
the efficacy of numerous therapies commonly utilized in BC treatment, 
together with endocrine drugs (such as aromatase inhibitors and 
tamoxifen), anti-HER2 therapy drugs (like lapatinib and trastuzumab), 
as well as chemotherapies (including anthracycline, taxane, ixabepilone, 
etc).

2.8 Analysis of receiver operating characteristics (ROC) and area under 
the curve (AUC)

The ROC curve plots true vs negative-positive rate for each threshold 
setting, while the AUC assesses the test's ability to differentiate between 
the two groups. A larger area under the ROC curve indicates higher 
accuracy in prediction of treatment response. AUC values exceeding 
0.6 are deemed acceptable, those falling between 0.6 and 0.7 suggest a 
potential biomarker with clinical significance, values within the range 
of 0.7 to 0.8 indicate a good quality biomarker, and values surpassing 
0.8 are indicative of a blockbuster cancer biomarker.

2.9 Real-time qPCR assay

We validated the expression of RPS21 gene by RTqPCR experiment 
at StepOnePlus RT-PCR system (ThermoFisher Scientific, USA). 
PowerUp™ SYBR™ Green Master Mix was used for quantification while 
GAPDH gene was used as reference and following primers were used for 
expression analysis: RPS21 (forward) 5ʹ-CAGGCTGTCCCATTGTGGAG-
3ʹ and RPS21 (reverse) 5ʹ-CCAATGCGCACGGTAAAGTC-3ʹ, and 
GAPDH (forward) 5ʹ-TGAGGCTCCCACCTTTCTCA-3ʹ and (reverse) 
5ʹ-GGCCATCCACAGTCTTCTGG-3ʹ. For expression analysis DataAssist™ 
Software was used to calculate initial Ct values and ΔΔCt method was 
used for relative and quantitative expression. Expression pattern of 
RPS21 was confirmed with RNA-seq results of bigger cohort in TCGA 
dataset using UALCAN portal (https://ualcan.path.uab.edu/index.
html) (Chandrashekar et al. 2022).

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/
http://www.kmplot.com
https://www.rocplot.com/
https://ualcan.path.uab.edu/index.html
https://ualcan.path.uab.edu/index.html
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2.10 Statistical analysis

SPSS version 24 was used to conduct statistical analyses. Student’s 
t-tests and ANOVA were employed to identify significant differential 
expression between BC and control. Prediction of prognostic importance 
of candidate genes were analyzed by the KM method. Additionally, 
the Mann-Whitney U test was used to assess response to therapy. 
Box-and-whisker plot was used for visualization, and significance was 
determined with a threshold of p < 0.05 (Fekete and Győrffy 2019).

3. Results

3.1 Identification of DEGs in breast cancer

We identified 870 significantly associated DEGs comprising 451 
upregulated and 419 downregulated genes in Saudi BC patients after 
normalization of median value of each sample and significantly up 
and downregulated DEGs were shown in volcano plot and a HeatMap 
was generated by unsupervised hierarchical clustering (Fig. 1). LIMMA 
package of R was used for identification of DEGs having adjusted P 
value < 0.05 and log2FC >±1. Similarly, we identified 356  (151-up and 
205-downregulated) and 338 (212-up and 126-downregulated) DEGs in 
American and Asian BC patients, respectively.

3.2 Functional enrichment and ingenuity pathway analysis

To further conduct enrichment of the DEGs, IPA based pathway 
analysis was conducted to detect canonical pathways for three 
populations as well as merged datasets to find common pathways 
associated with BC. Interestingly, despite the difference in DEGs 

pattern in three datasets, we found hundreds of common pathways. 
Most inhibited pathways were associated with alteration of the cell 
cycle such as cell cycle checkpoints, mitotic metaphase and anaphase, 
mitotic prometaphase, mitotic G1 phase and G1/S transition and 
kinetochore metaphase signaling pathway. Prediction analysis showed 
the activation of molecular mechanisms of cancer, BC regulation by 
stathmin1, oxytocin signaling, G-Protein coupled receptor signaling and 
FAK signaling pathways to be strongly associated with BC (Table 1). To 
identify more significant canonical pathways associated with BC, we 
overlapped all predicted pathways and found three closely linked super-
pathways including peptide chain elongation, cell cycle and molecular 
mechanism of cancer. Gene ontology and functional categorization 
of DEGs with over-representation analysis results revealed biological 
regulation, metabolic processes, and response to stimulus processes as 
top biological processes; protein binding, ion binding, and hydrolase 
activity as top molecular functions, and membrane and nucleus were 
enriched as the top cellular components.

3.3 Comparison analysis of DEGs in Arabian, American and Asian ethnic 
groups

Only six genes including topoisomerase (DNA) II alpha (TOP2A), 
ribonucleotide reductase regulatory subunit M2 (RRM2), hyaluronan 
mediated motility receptor (HMMR), tenomodulin (TNMD), C-X-C 
motif chemokine ligand 2 (CXCL2), and ribosomal protein S21 (RPS21) 
were common among Arabian, American and Asian ethnic groups, 
while 166 genes were present at least in two groups (Table 2, Fig. 2). 
The diagnostic and prognostic roles of TOP2A, RRM2, CXCL2, TNMD 
and HMMR in BC have been well reported earlier but that of RPS21 are 
still under investigation. The Venn diagram clearly indicates unique 
expression patterns in each population, but pathway analysis showed 
common BC associated pathways. In IPA study of DEGs, we found that 
RPS21 plays a key role in activation of EIF2 signaling [-log(p-value) 
=7.27, z-score = 1.21], mTOR signaling pathway [-log(p-value) = 4.47, 
z-score = 1.15], inhibition of eukaryotic translation initiation [-log(p-
value) = 10.80, z-score = -1.26], eukaryotic translation elongation 
[-log(p-value) = 14.00, z-score = -1.25], and eukaryotic translation 
termination [-log(p-value) = 13.3, z-score = -1.09].

3.4 Protein-Protein Interaction network

Initially selected 234 BC-associated DEGs were used for STRING 
analysis to get a full overview of their PPI networks and clues to their 
functions. STRING analysis of RPS21 resulted in 11 nodes and 55 edges 
in one cluster with PPI enrichment p-value of 8.86e-09 (Fig. 3).

3.5 Survival analysis of RPS21 in BC

Survival analysis of RPS21 expression using Kaplan–Meier plotter 
revealed a significant association with BC without any restriction to 
subtype using mRNA chip data for both RFS and OS with a median cut-
off. We found HR (1.25 and 1.24) with CI (1.13-1.38 and 1.03-1.49) 
and Log-rank p-value (1.40E-05 and 2.25E-02) indicating RPS21 to be 
a significant prognostic indicator of BC for RFS and OS respectively 
(Fig. 4).

3.6 Treatment response to various therapies

We investigated the correlation in BC amid RPS21 expression 
and therapeutic response, covering a range of therapies commonly 
employed in BC treatment, including aromatase inhibitors and 
tamoxifen for endocrine therapy, lapatinib and trastuzumab for 
targeted anti-HER2 therapy, and anthracycline, taxane, and ixabepilone 
for chemotherapy. Our analysis was based on dual robust statistical 
approaches: ROC analysis in addition to Mann-Whitney tests, with box 
plots used to visualize the differences between responders and non-
responders across all therapies. Key quantitative findings, including 
the AUC, ROC, and Mann-Whitney test results for RPS21 expression, 
were logged as treatment response outcomes. In terms of endocrine 
therapy, specifically tamoxifen, our results showed exceptional efficacy 
(AUC=0.9, p = 2.3e-03), suggesting the likely utility of the gene as a BC 

Fig. 1. Differentially expressed genes: (a) Principal Component Analysis (PCA) 
showing three-dimensional scatter plot grouping of samples according to overall 

similarity of microarray expression data of 45 breast cancer and five normal cases in 
blue and red color respectively, (b) Volcano Plot showing the up- and downregulated 
DEGs in red and blue color respectively, (c) Heatmap depicts the expression of genes 
across different samples in the microarray dataset where rows corresponds to genes 
and columns represent samples. Each cell’s color intensity reflects the normalized 

expression values, with darker shades signifying higher expression. Heatmap includes 
color bars alongside each column, that provide textual data about the samples, like 

tissue origin or experimental treatment.

(a)

(c)

(b)
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Table 1.  
Top five inhibited and activated canonical pathways predicted by IPA using combined DEGs from Saudi, American and Asian microarray data.

Ingenuity canonical 
pathways

-log(p-value) z-score* Associated genes

Cell Cycle Checkpoints 19 -7.181 BIRC5, BLM, BRIP1, BUB1, BUB1B, BUB3,  , KIF18A, KIF2C, KNL1, KNTC1, MAD2L1, MCM10CCNA2,  CCNB1, CCNB2, 
CCNE2, CDC25C, CDC45, CDC6, CDCA8, CDK1, CDK2, CENPA, CENPE, CENPF, CENPI, CENPK, CENPO, CENPU, CHEK1, 
CLSPN, DNA2, EXO1, H2BC11, H2BC12, H2BC14, H2BC21, H2BC5, KIF18A, KIF2C, KNL1, KNTC1, MAD2L1, MCM10, 
MCM2, MCM4, MCM6, MCM8, NDC80, NUF2, NUP43, ORC1, ORC6, PLK1, PPP2R1B, PPP2R5A, PSMA5, PSMB4, PSMB8, 
PSME4, RFC3, RPS27A, SFN, SKA1, SKA2, SPC25, UBE2C, WEE1, ZWINT

Kinetochore Metaphase 
Signaling Pathway

12.1 -3.272 BIRC5, BUB1, BUB1B, BUB3, CCNB1, CDCA8, CDK1, CENPA, CENPE, CENPK, CENPO, CENPU, ENSA, ESPL1, KIF2C, 
KNL1, KNTC1,  SKA3,  SPC25,  TTK,  ZWINT, MAD2L1, NDC80, NEK2, NUF2,  PLK1,  PPP1R14A,  PPP2R5A,  PTTG1,  
SKA1,  SKA2,  SKA3,  SPC25,  TTK,  ZWINT

Mitotic Metaphase and 
Anaphase

10.2 -5.427 BIRC5, BUB1, BUB1B, BUB3, CCNB1, CCNB2, CDCA5, CDCA8, CDK1, CENPA, CENPE, CENPF, CENPI, CENPK, CENPO, 
CENPU, ESPL1, KIF18A, KIF2C, KNL1, KNTC1, LMNB1, MAD2L1, NDC80, NUF2, NUP205, NUP43, PLK1, PPP2R1B, 
PPP2R5A, PSMA5, PSMB4, PSMB8, PSME4, PTTG1, RPS27A, SKA1, SKA2, SPC25, TMPO, TUBA1C, TUBB2A, UBE2C, 
ZWINT

Mitotic Prometaphase 11.2 -4.938 BIRC5, BUB1, BUB1B, BUB3, CCNB1, CCNB2, CDCA5, CDCA8, CDK1, CENPA, CENPE, CENPF, CENPI, CENPK, CENPO, 
CENPU, KIF18A, KIF2C, KNL1, KNTC1, MAD2L1, MZT2B, NCAPG, NCAPH, NDC80, NEK2, NEK7, NUF2, NUP43, PLK1, 
PLK4, PPP2R1B, PPP2R5A, PRKAR2B, SKA1, SKA2, SMC2, SMC4, SPC25, TUBA1C, TUBB2A,  ZWINT

Mitotic G1 phase and 
G1/S transition

8.01 -3.674 CCNA2, CCNB1, CCNE2, CDC45, CDC6, CDK1, CDK2, CDKN1C, CDKN2B, CDKN2C, CDT1, E2F3, E2F5, MCM8, MYBL2, 
MYC, ORC1, ORC6, PCNA, PPP2R1B, PSMA5, PSMB4, PSMB8, RPS27A, RRM2, TOP2A, TYMS, WEE1

Breast Cancer Regulation 
by Stathmin1

6.4 3.586 ACKR1, ACKR3, ADGRA2, ADGRD1, ADGRF1, ADGRF5, ADGRG1, ADGRL4, ADRA1A, ADRA1D, ADRA2A, ARHGEF6, 
AURKA, CCR6, CCR8, CDK1, CDK2, CELSR1, CNR1, DRD1, E2F3, E2F5, EDNRB, FGF2, FOXM1, FZD1, FZD10, FZD4, 
GNG11, GNG2, GPR146, GPR156, GPR162, GPR171, GPR176, GPR21, GPR34, GPR4, HCAR3, HRH2, HTR1F, IGF1, JUN, 
LHCGR, LPAR1, MMP9, MRAS, NPY5R, OXGR1, OXTR, P2RY12, P2RY14, PPP1R14A, PPP2R1B, PPP2R5A, PRKAR2B, 
PRKCI, PTGER2, PTGER3, PTGFR, RASD1, RRAS2, S1PR1, SUCNR1, TACR1, TGFA, TUBA1C, TUBB2A, VEGFA, VEGFC

Molecular Mechanisms 
of Cancer

9.06 3.483 ACKR1, ACKR3, ADGRA2, ADGRD1, ADGRF1, ADGRF5, ADGRG1, ADGRL4, ADRA1A, ADRA1D, ADRA2A, ARHGEF6, 
AURKA, CCNE2, CCR6, CCR8, CDC25C, CDH1, CDK2, CDKN2B, CDKN2C, CELSR1, CHEK1, CNR1, DHH, DRD1, E2F3, 
E2F5, EDNRB, FANCD2, FGF2, FOS, FOXO1, FZD1, FZD10, FZD4, GAB2, GHR, GNAI1, GNG11, GNG2, GPR146, GPR156, 
GPR162, GPR171, GPR176, GPR21, GPR34, GPR4, HCAR3, HIPK2, HRH2, HTR1F, IGF1, IL11RA, IL1RL1, IL22RA2, 
ITGA1, ITGA7, ITGA8, ITGAX, ITGB3, JUN, LEF1, LHCGR, LPAR1, MAPK10, MAPK11, MMP11, MMP13, MMP9, MRAS, 
MYC, NPY5R, OXGR1, OXTR, P2RY12, P2RY14, PAK3, PRKAR2B, PRKCI, PRKDC, PTGER2, PTGER3, PTGFR, PTPN11, 
RASD1, RHOJ, RHOQ, RHOU, RND3, RRAS2, S1PR1, SMAD6, STK36, SUCNR1, TACR1, TCF7L2, TGFA, TGFBR2, VEGFA

Oxytocin Signaling 
Pathway

5.79 4.323 CACNA2D1, CACNB3, CCL5, CD36, EGFR, FOS, GNAI1, GNG11, GNG2, GUCY1A2, HSPB2, HSPB7, IL6, KCNA5, KCNJ8, 
LEP, LIPE, LPL, MAPK10, MAPK11, MAPK6, MRAS, MYH1, MYH9, MYL9, NOS3, NPR1, NPR3, OXTR, PLA2G2A, 
PLA2G4A, PNPLA2, PPARG, PPP1R14A, PRKAR2B, PRKCI, PTGFR, RASD1, ROCK2, RRAS2

Focal Adhesion Kinase 
(FAK) Signaling

1.9 4.146 ACKR1, ACKR3, ACTR2, ACVR1C, ADGRA2, ADGRD1, ADGRF1, ADGRF5, ADGRG1, ADGRL4, ADRA1A, ADRA1D, 
ADRA2A, ARHGEF6, CAPN6, CCR6, CCR8, CDH1, CDH5, CELSR1, CNR1, COL10A1, COL1A1, DRD1, ECM1, ECM2, 
EDNRB, EFNA1, EGFR, FLT1, FOS, FZD1, FZD10, FZD4, GHR, GPR146, GPR156, GPR162, GPR171, GPR176, GPR21, 
GPR34, GPR4, HCAR3, HRH2, HTR1F, IL11RA, IL1RL1, IL22RA2, IL33, ITGA1, ITGA7, ITGA8, ITGAX, ITGB3, JUN, KIT, 
LEF1, LHCGR, LPAR1, MAPK10, MAPK11, mir7,  MMP9, MRAS,  MYC, NPY5R,  OXGR1, OXTR, P2RY12, P2RY14, PAK3, 
PTEN, PTGER2,  PTGER3, PTGFR,  RASD1,  RRAS2, S1PR1, SUCNR1,  TACR1,  TCF7L2,  TGFBR2,  TGFBR3

G-Protein Coupled 
Receptor Signaling

3.48 3.881 ACKR1, ACKR3, ADGRA2, ADGRD1, ADGRF1, ADGRF5, ADGRG1, ADGRL4, ADRA1A, ADRA1D, ADRA2A, CCR6, CCR8, 
CELSR1, CNR1, DRD1, DUSP1, EDNRB, FOS, FOXO1, FZD1, FZD10, FZD4, GNAI1, GNG11, GNG2, GPR146, GPR156, 
GPR162, GPR171, GPR176, GPR21, GPR34, GPR4, GRK3, HCAR3, HRH2, HTR1F, JUN, LHCGR, LPAR1, MAPK10, 
MAPK11, MRAS, MYL9, NPR3, NPY5R, OXGR1, OXTR, P2RY12, P2RY14, PAK3, PDE1A, PDE2A, PDE3B, PDE7B, PREX2, 
PRKAR2B, PTGER2, PTGER3, PTGFR, RASD1, RGS2, ROCK2, RRAS2, S1PR1, SUCNR1, TACR1

* (-) sign of z-score indicating prediction of inhibition of pathway. IPA: Ingenuity pathway analysis, DEGs: Differentially expressed genes.

Table 2.  
Expression of common genes in Saudi Arabian, American and Asian ethnic 
groups. 

Gene name Symbol Saudi arabian American Asian

P-value log2FC P-value log2FC P-value log2FC

Topoisomerase (DNA) 
II alpha

TOP2A 0.0006 -2.6140 0.0092 -1.8141 0.0014 -1.0335

Ribonucleotide 
reductase regulatory 
subunit M2

RRM2 0.00507 -1.79194 0.0135 -1.70919 2.21E-06 -1.0927

Hyaluronan mediated 
motility receptor

HMMR 0.0241 -1.6885 0.0046 -1.6309 0.0019 -1.0645

Tenomodulin TNMD 6.53E-08 1.7350 0.0456 1.1642 4.27E-05 1.0009
C-X-C motif chemokine 
ligand 2

CXCL2 0.00157 2.3717 0.0033 -4.0615 0.0046 1.0269

Ribosomal protein S21 RPS21 0.0295 1.1228 0.0021 1.2974 0.0062 1.2319

biomarker (Fig. 5). Regarding anti-HER2 therapy, lapatinib exhibited 
potential clinical significance (AUC=0.67, p < 0.05) according to 
our analysis. However, for chemotherapy, both taxane (AUC = 0.53, 
p < 0.05) and anthracycline (AUC = 0.53, p < 0.05) did not show 
statistically significant treatment efficacy. Furthermore, the Mann-
Whitney test results indicated that lapatinib under anti-HER2 therapy 
and anthracycline under chemotherapy advocate the potential of the 
RPS21 as a gene biomarker.

Fig. 2. Venn diagram of DEGs in Saudi Arabian, American, and Asian ethnic groups. 
DEGs: Differentially expressed genes.
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signaling and regulatory networks. Detecting BC-associated pathways, 
deciphering these complex networks, and understanding their 
involvement in pathogenesis can lead to the identification of biomarkers 
for diagnosis and prognosis (Ciriello et al. 2015; Vishnubalaji et al. 
2019; Yu et al. 2020). Although many mRNA expression-based studies 
have been conducted in several parts of the world to identify BC-related 
genes, biomarkers, and pathways (Dey et al. 2013; Kittaneh et al. 2013; 
Reis-Filho and Pusztai 2011), few have focused on the Arabian region 
(D'Arcy et al. 2015; Karim et al. 2022; Mirza et al. 2023).

Here comparative analysis of transcriptome data from Saudi Arabian, 
American, and Asian BC patients revealed 870, 658, and 567 DEGs, 
respectively. Only six genes were common (TOP2A, RRM2, CXCL2, 
TNMD, HMMR, and RPS21), while 166 genes were expressed in two 
groups. These mutually exclusive genes attracted attention since they 
could represent the variations between the three population groups and 
may potentially uniquely impact BC risk and disease graphs in the Saudi 
population. Therefore, expression data from each ethnic group was 
first analyzed individually and later as integrated expression profiles 
from all. Pathway analysis was used to comprehend BC pathobiology. 
Surprisingly, despite the difference in gene expression patterns, our IPA 
results from all groups showed the cell cycle checkpoints pathway to 
be most significantly altered in BC, followed by eukaryotic translation 
-initiation, -elongation, and -termination pathways. Additionally, 
mitotic metaphase and anaphase, mitotic prometaphase, mitotic 
G1 phase and G1/S transition, and kinetochore metaphase signaling 
pathway were also inhibited, whereas molecular mechanisms of cancer, 
BC regulation by stathmin1, oxytocin signaling, FAK signaling, GPCR 
signaling, molecular mechanisms of cancer, and mTOR signaling 
pathways were most activated. Our results suggest the importance 
of dysregulation of these pathways in breast carcinogenesis. Many 
signaling pathways implicated in BC pathogenesis have been previously 
reported (Dey et al. 2013; Karim et al. 2016; Kittaneh, Montero, and 
Glück 2013; Merdad et al. 2014; Merdad et al. 2015; Reis-Filho and 
Pusztai 2011).

Cell cycle checkpoints pathway: Each step of the cell cycle is strictly 
controlled by G1/S transition, G2/M transition, and spindle checkpoints 
to ensure equal division of chromosomes to daughter cells (Molinari 
2000). The cell cycle involves prudently orchestrated steps, including 
prophase (chromosome condensation), metaphase (chromosome center 
alignment), anaphase (chromosome segregation to an opposite pole), 
and telophase (cytokinesis) (Lew 2013). It is an evolutionary conserved 
process essential for accurate genome replication, fair cell division, 
normal growth, and survival (Schatten 2013). Quiescent G0 state of 
cells requires stimuli to pass the G1/S transition, but overexpression of 
checkpoint genes (cyclin, cell division cycle, cyclin dependent kinase) 
or dysfunction of cell cycle signal drive G0 cells to be independent of 
stimuli. This can lead to genetic instability and cancerous behavior 
(Chaturvedi et al. 1999; Hall and Peters 1996; Hanahan and Weinberg 
2011; Karlsson et al. 1999). In normal mitosis, kinetochores are required 
for proper segregation of chromosomes by binding to microtubules of 
the mitotic spindle (Herman et al. 2015). However, deregulation of 
the kinetochore metaphase signaling pathway causes chromosomal 
instability and initiation of cancer (Roschke and Rozenblum 2013; 
Santaguida and Musacchio 2009; Yoon et al. 2002). Dysfunction of cell-
cycle associated genes and pathways is a major hallmark of cancer, 
and many of these genes/proteins have been identified as therapeutic 
biomarkers (Dominguez-Brauer et al. 2015).

Fig. 3. PPI network of RPS21 shows a single cluster with 11 nodes and 55 edges. PPI: 
Protein-protein interaction.

Fig. 4. Survival analysis using Kaplan–Meier plot for RPS21 gene: (a) Relapse-free 
survival (b) Overall survival of BC patients without any restriction to subtype using 

mRNA (gene chip) data.

Fig. 5. Receiver operating characteristics (ROC) and area under the curve (AUC): (a) 
RPS21 gene expression among responders and non-responders of endocrine therapy by 

tamoxifen. (b) AUC of 0.9 with p-value 2.3e-03 as treatment response.

Fig. 6. (a) RT-qPCR result showing over-expression of RPS21 in BC, (b) RNA-Seq 
results from TCGA database at UALCAN portal also displaying RPS21 over-expression 

in BC. RT-qPCR: Reverse transcription quantitative polymerase chain reaction.

3.7 Validation of RPS21 expression by real-time qPCR

Quantitative PCR was done for RPS21 on 45 BC patients and five 
normal samples. We found significant over-expression (Rq or FC = 
3.43, Log2FC = 1.78, p-value 0.0352). Thus, qPCR confirmed the RPS21 
expression in microarray data (Log2FC = 1.12, p-value 0.029). Moreover, 
RNA-seq results also established RPS21 expression (transcript per 
million 2.131 and p value 1.588E-04) on a larger cohort of 1097 primary 
BC tumors at the TCGA platform (Fig. 6).

4. Discussion

Breast cancer, a complex disease, is initiated by the genetic, 
epigenetic, and transcriptomic changes resulting in dysregulation of 

(a) (b)

(a) (b)

(a) (b)
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RPS21 is a pivotal component of the 40s ribosome involved in 
cellular proliferation, DNA repair, transcription, and RNA processing. 
Inhibition or knockdown of RPs, including RPS21, have been linked to 
p53, CDK1, and EGFR and usually induce apoptosis, cell cycle arrest 
in the S phase, G0/G1 phase, G2-M phase or senescence (Chakraborty et 
al. 2011; Wang et al. 2019; Zhou et al. 2015). RPS21 was upregulated 
in several malignancies, including prostate cancer, osteosarcoma, and 
colorectal cancer (Liang et al. 2019; Wang et al. 2020; Wang et al. 
2015). In the present study, we evaluated the RPS21 expression levels 
in BC to assess its potential clinical relevance, and diagnostic and 
prognostic value.

Inhibition of translation: Translation of mRNA to protein is another 
key phenomenon required for structural and regulatory functions via 
signaling pathways (Liu et al. 2022; Zhou et al. 2021). We observed 
the inhibition of translational initiation, translational elongation, and 
translational termination pathways suggesting their involvement in 
tumorigenesis and progression of BC. Interestingly, the PPI network 
done by means of STRING also showed ribosome-related genes 
(RPs27a, RPlp0, RPS21, RPS3a, RPs29, RPS14, Rpl34) binding directly 
or indirectly to each other, pointing to the fact that ribosomal genes 
may play an important role in BC (Luo et al. 2023; Szklarczyk et al. 
2021).

We observed six common DEGs among three datasets, where 
TOP2A (An et al. 2018), RRM2 (Shi et al. 2022), HMMR (Shang et al. 
2022), and CXCL2 (Boissière-Michot et al. 2020) had been reported as 
prognostic biomarkers in several studies. However, very few reports are 
available for RPS21 (Liang et al. 2019) and TNMD (Deng et al. 2019). 
We, therefore, conducted a survival analysis of RPS21 and TNMD 
expression, and RPS21 was found significant for both overall survival 
(2.25E-02) and disease-free survival (1.40E-05). KM plot showed 
that patients with increased expression of RPS21 gene had a higher 
propensity for BC, and hence, can be a potential prognostic biomarker. 
Somatic variants noted in RPS21, namely, E7Q, D28N, K41T, F46C, 
R60C, D66H, I78F, and K81N had moderate impact on the proteins’ 
structure and function. Association of these genetic variants with BC 
needs further investigation.

We are, for the first time, reporting the prognostic importance of 
RPS21 in BC. This gene codes for the small ribosomal subunit protein 
eS21, a small ribosomal subunit component that is a part of the large 
ribonucleoprotein complex responsible for the protein synthesis 
function (Anger et al. 2013; Behrmann et al. 2015). RPS21 protein is 83 
amino acids in length and 9.1 kDa, is cytosolic, and found in ribosomes 
connected to the rough endoplasmic reticulum. Transcriptomic 
evidence available in The Human Protein Atlas suggests its presence in 
the breast myoepithelial and glandular epithelial cells. RPS21 has been 
recently reported as a diagnostic and prognostic biomarker for prostate 
cancer (Liang et al. 2019). RNA-binding proteins are recognized as 
important modulators of tumorigenesis, and RPS21 has been identified 
as overexpressed in the LumB BC subtype (Santiago et al. 2020). RPS21 
can help predict likely disease outcomes (e.g., cancer recurrence, 
progression, death, and survival); hence, has potential to be used 
clinically as a prognostic biomarker for BC.

5. Conclusions

RPS21 is a potential prognostic biomarker for BC. Comparative 
analyses have shown only six DEGs (TOP2A, RRM2, CXCL2, TNMD, 
HMMR, and RPS21) common in Saudi Arabian, American, and Asian 
groups out of 870, 658, and 567 DEGs, respectively. However, despite 
the differences in expression patterns of the three populations, pathway 
enrichment analysis results showed common canonical pathways such 
as dysregulation of cell cycle and translation in these independent 
cohorts. Further investigations using comparative transcriptomic 
approaches are necessary to explore the molecular mechanisms 
driving breast tumorigenesis, studying the transcriptomics data of BC 
from different ethnicities. Hence, the present study unlocks formerly 
unfamiliar niches, which might aid in an improved understanding 
of the malignancy besides the development of possible therapeutic 
interventions.
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