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The primary focus of this manuscript is on the approximate controllability of second-order semilinear
control systems with impulses. There have been two sets of necessary requirements discussed.
Combining the theories of the sine and cosine families, as well as the compactness of the cosine operator
along with the fixed point technique (FPT) yields the first set of results. The following discussion avoids
the apply of the compactness and fixed point approach of the cosine function and is shown instead using
Gronwall’s inequality. The existence and uniqueness of the mild solution are also established. We have
also provided a case study of theoretical outcomes that have been confirmed the theory.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Differential equations are extensively used in a variety of scien-
tific and technological fields, particularly when there is knowledge
or speculation about a deterministic relationship between some
continuously varying values and their rates of change in space
and/or time. This is clear from classical mechanics, which holds
that changes in a body’s position and speed over time influence
how it moves. It is well knowledge that systems with abstract dif-
ferential equations can be represented by partial differential equa-
tions. Pazy (Pazy, 1983) examined a range of solutions to nonlinear
and semilinear evolution equations using the semigroups
approach. Numerous problems in physics, biological systems, pop-
ulation dynamics, optimal control, ecology, biotechnology, and
other fields are solved using differential equations.
In physical sciences, economical theories and population
dynamics, impulsive differential equations have become increas-
ingly important. There has been significant progress in impulsive
systems, specifically, the systems having fixed instants. These are
the very useful type for depicting unexpected changes in large
units of the continuous development process and allowing a better
comprehension of any physical situation in applied science, the
readers can refer (Chadha and Bora, 2018; Jeet and Sukavanam,
2020; Chen and Li, 2010; Sivasankaran et al., 2011; Arora and
Sukavanam, 2016; Vijayakumar et al., 2017; Vijayakumar et al.,
2021b; Li and Wu, 2018; Zhou et al., 2018). In applied mathemat-
ics, control theory is essential since it involves developing and
evaluating the control framework. Controllability is used in a dif-
ferent of real-world applications, blood sugar level regulation,
including rocket launch challenges for satellites, missiles in
defense and economic inflation rate regulation. The author initi-
ated a systematic investigation of controllability in 1963, when
Kalman (Kalman, 1963) developed the discussion on controllability
for time-invariant and time-varying systems in the state-space
form.

A branch of application-oriented mathematics called mathe-
matical control theory focuses on the underlying ideas that under-
lie the design and analysis of control systems. The two main
research areas in control theory have often been complimentary,
despite occasionally appearing to move in opposite directions.
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Some of them indicate that the user wishes to modify the object’s
behaviour in some manner and that a suitable model of the object
to be governed is provided. Physical ideas and technological crite-
ria are used, for example, to choose a spacecraft’s trajectory that
minimises overall voyage duration or fuel consumption. A prepro-
grammed flight plan is often the outcome of the methods utilized
here, which are closely related to other areas of optimization the-
ory and the traditional calculus of variations. The other crucial field
of research is founded on the restrictions brought about by uncer-
tainty regarding the model or the environment in which the item
performs. The main tactic in this situation is to use feedback to cor-
rect for departures from the expected conduct.

The state equation and the restrictions on the control signal are
two of the several definitions and criteria for controllability. The
great majority of the specifications that are produced for finite
dimensional systems in the literature and that can be met. It
should be emphasised that there are still a lot of problems around
the control theory.In the context of infinite dimensional systems,
two key controllability concepts can be separated. There are two
types of controllability: exact and approximate controllability. This
is intimately related to the existence of non-closed linear sub-
spaces in infinite dimensional spaces. While approximate control-
lability allows us to guide the system to any small neighbourhood
of the final state, exact controllability allows us to lead the system
to any end state. To put it another way, approximate controllability
makes it possible to point the system in the direction of the state
space’s dense subspace. Clearly, exact controllability is a more
effective concept than approximate controllability in light of this.

Several engineering and scientific problems are nonlinear, and
they can be described in infinite-dimensional spaces using ODEs
and PDEs. Therefore, nonlinearity is a critical concern in infinite-
dimensional spaces; for further information, check (Curtain and
Zwart, 1995). The controllability of the system in finite dimensions
was studied by several authors. Many scientists studied controlla-
bility in finite-dimensional space and generalised their findings to
infinite-dimensional control systems. Controllability has been
investigated using a variety of methodologies, including fixed-
point theorems, which can be seen here (Vijayakumar et al.,
2022; Naito, 1987; Mahmudov et al., 2020; Mahmudov et al.,
2016; Tomar and Sukavanam, 2011; Sukavanam and Tafesse,
2011; Fu and Mei, 2009; Vijayakumar and Murugesu, 2019;
Vijayakumar et al., 2019; Vijayakumar et al., 2021a). Fractional dif-
ferential systems are mathematical representations of a wide range
of applications in science, economics, engineering, and other fields.
Several researchers have investigated the existence and controlla-
bility of various kinds of integer and fractions order systems can be
found in (Shukla et al., 2014; Shukla et al., 2016; Shukla et al.,
2015; Mohan Raja et al., 2020; Mohan Raja et al., 2020; Sakthivel
et al., 2011; Sakthivel et al., 2012; Kumar and Sukavanam, 2012;
Zhou and Jiao, 2010; You et al., 2020).

Instance a consequence of unexpected jumps at crucial points in
the advancement approach, many systems in pharmacology, the
signal processing, physical in nature, biological in nature, and other
fields have manifested impulsive recently. The articles (Li and Wu,
2016; Li et al., 2015) prove the existence of mild solutions as well
as stability analysis of impulsive functional differential systems.
By using the Lyapunov approach and the Banach contraction theo-
rem, the authorswere capable of coming to some significant conclu-
sions. In Bazighifan et al. (2022), Almarri et al. (2022a), Almarri et al.
(2022b) authors studied oscillation solutions of the differential
equations with delay and impulses. Recently, the authors (Gou
and Li, 2021; Mohan Raja et al., 2022) discussed the approximate
controllability results for fractional stochastic systems by referring
to the fixed point theorems. This paper, we discuss the two sets of
sufficient conditions. Combining the theories of the sine and cosine
functionoperators, aswell as the compactness of the cosine function
2

with the fixed point theorems (FPT) yields the first set of results.
Then, Gronwall’s inequality is apply to show the next discussion,
which avoids the use of the cosine function’s compactness and fixed
point methods. The existence and uniqueness of the mild solution
are also established. The field of mathematical control theory has
benefited significantly from the new and notable results.

The function spaces H ¼ L2 0; |½ �;Hð Þ; Y ¼ L2 0; |½ �; bH� �
, where H

and bH are Hilbert spaces. Let us consider the second-order impul-
sive functional differential system as follows:

dz0 uð Þ
du ¼ Az uð Þ þ Bu uð Þ þ g u; z uð Þð Þ; u 2 J ¼ 0; |½ �;
u– ua; a ¼ 1;2; � � � ;b;
z 0ð Þ ¼ z0; z0 0ð Þ ¼ z1;
Dz uað Þ ¼ va z uað Þð Þ; Dz0 uað Þ ¼ eva z uað Þð Þ; a ¼ 1;2; � � � ;b;

8>>>><>>>>:
ð1:1Þ

where z uð Þ 2 H denotes the state variable; the control function

u uð Þ 2 bH; the linear closed operator A : D Að Þ#H into H (refer
(Pazy, 1983) for basics), that produces a strongly continuous cosine
function P uð Þ, where D Að Þ is a dense domain of A; the purely non
linear function g defined on an into mapping 0; |½ � � H ! H. va; eva

maps from H into H, which are the appropriate functions. Assume
ui < uiþ1 i ¼ 0;1; . . . . . . b with u0 ¼ 0 and ubþ1 ¼ |;Dz uað Þ repre-
sent the jump at point of discontinuity ua and is denoted as
z uþ

a

� �� z u�
a

� � ¼ Dz uað Þ. z uþ
a

� �
and z u�

a

� �
represents the right and

left limits of z at ua.
The aforementioned (1.1) linear type system is given by

dz0 uð Þ
du ¼ Az uð Þ þ Bu uð Þ; u 2 J ¼ 0; |½ �; u– ua; a ¼ 1;2; . . . ;b;

z 0ð Þ ¼ z0; z0 0ð Þ ¼ z1;

Dz uað Þ ¼ va z uað Þð Þ; Dz0 uað Þ ¼ eva z uað Þð Þ; a ¼ 1;2; . . . ;b:

8><>:
ð1:2Þ

The following is the breakdown of our article’s structure: Sec-
tion 2 presents some more fundamental theories and outcomes
related to control theory. The mild solution’s outcomes are demon-
strated in Section 3. Section 3 explains the apply of the fixed point
theorem to determine controllability. Gronwall’s inequality is used
in Section 5 to provide a new set of necessary conditions. The val-
idation of the theory is demonstrated in Section 6.

2. Preliminaries

This section analyzes the steps required to get the main points
of our discussion. Suppose that

PC J;Vð Þ ¼ z maps from J into H; z uð Þ is continuous atf
u ¼ ua; left continuous at u ¼ ua;

and z uþ
a

� � 9 a ¼ 1;2; � � � ;bg:
Obviously, the Banach space PC J;Vð Þ with

kzkPC ¼ sup
u2J

kz uð Þk : z 2 PC J;Vð Þf g:

Assume that PC1 J;Vð Þ consist of all continuously differentiable
function z belongs to PC J;Vð Þ, accompanying outcomes:

z0R uð Þ ¼ lim
n!0þ

z uþ nð Þ � z uþð Þ
n

; and z0L uð Þ ¼ lim
n!0�

z uþ nð Þ � z u�ð Þ
n

:

In the above z0L uð Þ and z0R uð Þ are both continuous on the semi-
closed intervals 0; |ð � and 0; |½ Þ respectively. Furthermore, for z

belongs to PC1 J;Vð Þ; z0 0ð Þ, denotes the right derivative at 0, and
by z0 uð Þ the left derivative at 0 < u 6 |. In full view ofPC1 J;Vð Þ rep-
resents Banach space along with
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kzkPC1 ¼ max kzkPC ; kz0kPC

� �
:

Definition 2.1 ((Travis and Webb, 1978)). A strongly continuous
cosine family is defined as the operator P uð Þf gu2R of bounded
linear operators mapping Y into Y iff
að Þ P 0ð Þ ¼ I.
bð Þ P nþuð Þ þ C n�uð Þ ¼ 2P nð ÞP uð Þ.
cð Þ P uð Þw is continuous in u on R for every w 2 Y.

The sine function Q uð Þ;u 2 Rf g connected with P uð Þ;u 2 Rf g
presented as

Q uð Þ ¼
Z u

0
P nð Þdn; u 2 R:

The infinitesimal generator of P uð Þ;u 2 Rf g is A : Y ! Y pre-
sented as

Az ¼ d2

du2 P 0ð Þz:

The domain of A will now be defined in the following way:

dom Að Þ ¼ z 2 Y : thefunction P uð Þz is a twice continuouslyf
differentiable function of ug:

The cosine and sine family function introduced above with A satisfy
the subsequent characteristics:

Lemma 1. (Travis and Webb, 1978) Consider A is the infinitesimal
generator of P uð Þ : u 2 Rf g. Then, it satisfies:

(a) 9M0 P 1 and x P 0 such that jjP uð Þjj 6 M0exjtj, and then
jjQ uð Þjj 6 M0exjtj;

(b) 9 N0 P 1 3; jjQ nð Þ � Q pð Þjj 6 N0 R p
n exjnjdn

��� ���;8 0 6 n 6 p < 1;

(c) A
R p
n Q uð Þzdu ¼ P pð Þ � P nð Þ½ �z;8 0 6 n 6 p < 1.

Because of the uniform boundedness principle and að Þ, both P uð Þ and
Q uð Þ are uniformly bounded. Furthermore, M ¼ M0exjbj.
Proposition 1. (Travis and Webb, 1978) Suppose that the strongly
continuous cosine family P uð Þf gu2R in Y, then the operatorbA : Y ! Y presented as

bAz ¼ lim
u!0

P 2uð Þz� zð Þ
2u2 ;

with domain those z 2 Y for that this limit exists, is the infinitesimal
generator of P uð Þf gu2R.

Now, we define the mild solution of the system (1.1) according
to u �ð Þ belongs to Y as follows:

Definition 2.2. Provided that

z uð Þ ¼ P uð Þz0 þ Q uð Þz1 þ
Ru
0 Q u� rð Þ

½Bu rð Þ þ g r; z rð Þð �drþ
X

0<ua<u

P u�uað Þva z uað Þð Þ

þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ; u 2 0; |½ �; ð2:1Þ

is satisfied by z �ð Þ 2 H, next which is called mild solution of the sys-
tem (1.1).
3

Definition 2.3. (Sakthivel et al., 2011) The reachable set of (1.1) is
presented as K| gð Þ ¼ z |ð Þ 2 H : z �ð Þf represents the mild solution of
(1.1)g. In case g � 0, in addition, the system (1.1) reduces to the
system (1.2) and is said to be linear system according to the system
(1.1). The set K| 0ð Þ denotes a reachable.
Definition 2.4. (Sakthivel et al., 2011) Provided that K| gð Þ ¼ H, in
addition, the semilinear control system is approximate control-
lable on J. K| gð Þ denotes the closure of K| gð Þ. If K| 0ð Þ ¼ H, then lin-
ear system is approximate controllable.

The operator @ mapping from H into H is provided as

@z½ � uð Þ ¼ g u; z uð Þð Þ; t 2 0; |ð �:
Assume that q mapping from H into itself, then

qz½ � uð Þ ¼
Z u

0
Q u� rð Þz rð Þdr:

Then, we introduce the operator L mapping from H into H as

Ll ¼
Z |

0
Q |� rð Þl rð Þdr:

Assume that N0 Lð Þ as the null space in the manner of L. Then,
the closed and the orthogonal space N0 Lð Þ is a subspace of H it is
denotes N?

0 Lð Þ. Thus, it can then be uniquely defined by

H ¼ N0 Lð Þ � N?
0 Lð Þ. R Bð Þ;R Bð Þ represents the range of B and clo-

sure of R Bð Þ.
3. Existence of mild solutions

We assume the following assumptions before moving to the
primary outcomes:

Assumption 1. For u 2 R; P uð Þf g is compact.
Assumption 2. The nonlinear function g u; zð Þ, which is fulfills lin-
ear growth and Lipschitz condition. Then, 9 a positive constant l
fulfilling

jjg u; xð Þ � g u; zð Þjj 6 ljjx� zjj; for all x; z 2 H;0 6 u 6 |:
Assumption 3. The function va : H ! H, which is continuous, then
9 qa; fqa > 0 with

jjva zð Þ � va sð Þjj 6 qajjz� sjj; jjva zð Þjj 6 fqa 1þ jjzjjð Þ; a ¼ 1;2; . . . ;b;

8 z; s belongs to H.
Assumption 4. The continuous function eva : H ! H; 9 ea; fea > 0
with

jjeva zð Þ � eva sð Þjj 6 eajjz� sjj; jjeva zð Þjj 6fea 1þ jjzjjð Þ; a ¼ 1;2; . . . ; b:

8 z; s belongs to H.
Theorem 3.1. If the preceding assumptions (1)-(4) are met, u �ð Þ be-
longs to Y, according to u �ð Þ. Furthermore, the (1.1) system has a
unique mild solution in H. Here, jjBjj 6 MB
Proof. Assume that lg ¼ max06t6|jjg u;0ð Þjj.
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Determine U : L2 0;u1½ �;Hð Þ ! L2 0;u1½ �;Hð Þð by

Uzð Þ uð Þ ¼ P uð Þz0 þ Q uð Þz1 þ
Ru
0 Q u� rð Þ

½Bu rð Þ þ g r; z rð Þð �drþ
X

0<ua<u

P u�uað Þva z uað Þð Þ

þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ; u 2 0;u1ð �:

Now we need to verify that (2.1) represents mild solution on 0;u1½ �,
and that U has a fixed point in L2 0;u1½ �;Hð Þ.

Assume that the closed and bounded set XR � L2 0;u1½ �;Hð Þ,
where

XR ¼ z uð Þ 2 L2 0;u1½ �;Hð Þ : jjzjjL2 0;u1½ �;Hð Þ 6 R; z 0ð Þ ¼ z0; z0 0ð Þ ¼ z1
n o

:

For any z �ð Þ 2 XR, we have

jj Uzð Þ uð Þjj 6 Mjjz0jj þMjjz1jj þMMB
Ru
0 jju rð ÞjjdrþM

Ru
0 jjg

r; z rð ÞjjdrþM
X

0<ua<u

jjva z uað Þð Þjj þM
X

0<ua<u

jjeva z uað Þð Þjj
 
6 Mjjz0jj þMjjz1jj þMMB

ffiffiffiffiup jjujjY þM
Ru
0 jjg r; z rð Þð Þ � g r;0ð Þjjdr

þM
Ru
0 jjg r;0ð ÞjjdrþM

Xb
a¼1

jjva zð Þjj þM
Xb
a¼1

jjeva zð Þjj

6 Mjjz0jj þMjjz1jj þMMB
ffiffiffiffiup jjujjY þMl

Ru
0 jjz rð ÞjjdrþMlg

Ru
0 dr

þMfqaXb
a¼1

1þ jjzjjð Þ þMfeaXb
a¼1

1þ jjzjjð Þ 6 Mjjz0jj þMjjz1jj

þMMB
ffiffiffiffiup jjujjY þMlR

ffiffiffiffiup þMlguþMfqab 1þ jjzjjð Þ
þMfeab 1þ jjzjjð Þ 6 Mjjz0jj þMjjz1jj þMMB

ffiffiffiffiffiffiu1
p jjujjY þMlR

ffiffiffiffiffiffiu1
p

þMlgu1 þMfqab 1þ Rð Þ þMfeab 1þ Rð Þ:

Now, let

Mjjz0jj þMjjz1jj þMMB
ffiffiffiffiffiffi
u1

p jjujjY þMlR
ffiffiffiffiffiffi
u1

p þMlgu1

þMfqab 1þ Rð Þ þMfeab 1þ Rð Þ
< R:

Then

Mjjz0jj þMjjz1jj þMMB
ffiffiffiffiffiffi
u1

p jjujjY þMlgu1 þMfqabþMfeab
< R 1�Ml

ffiffiffiffiffiffi
u1

p �Mfqab�Mfeab� �
:

If the right hand side is positive,

u1 <
1�Mfqab�Mfeab

Ml


 �2

: ð3:1Þ

Hence, provided that (3.1) holds the operator U : XR ! XR.
We now must check that U is a contraction on XR. Again for

aforementioned reasons, we will consider that z; n belongs to XR,
consequently we obtain

jj Uzð Þ uð Þ � Unð Þ uð Þjj 6 M
Ru
0 jjg r; z rð Þð Þ � g r; n rð Þð Þjjdr

þM
X

0<ua<u

jjva z uað Þð Þ � va n uað Þð Þjj

þM
X

0<ua<u

jjeva z uað Þð Þ � eva n uað Þð Þjj

6 Ml
Ru1
0 jjz rð Þ � n rð ÞjjdrþMqa

Xb
a¼1

jjz� njj þMea
Xb
a¼1

jjz� njj

6 Ml
ffiffiffiffiffiffiu1

p jjz� njj þMqa
Xb
a¼1

jjz� njj þMea
Xb
a¼1

jjz� njj:
4

As a result, in light of (3.1),U is a contraction mapping. Hence,U has
a unique fixed point in XR, then (2.1) signifies the mild solution on
0;u1½ �. Likewise, we shall prove (2.1) denotes the mild solution in
closed interval u1; t2½ �; u1 < t2. Following in just this way, we can
arrive at the conclusion that (2.1) provides a mild solution on
0;u	½ Þ; u	 < 1. Moreover, we now must check the mild solution’s
boundedness.

jjz uð Þjj 6Mjjz0jjþMjjz1jjþMMB
Ru
0 jju rð ÞjjdrþMl

Ru
0 jjz rð ÞjjdrþMlgu

þMfqab 1þjjzjjð ÞþMfeab 1þjjzjjð Þ
6Mjjz0jjþMjjz1jjþMMB

ffiffiffiffiup jjujjY þMlguþMl
Ru
0 jjz rð Þjjdr

þMfqabþMfqabjjzjjþMfeabþMfeabjjzjj:
Now that Gronwall’s inequality implies that z �ð Þ is bounded, we may
conclude that z is properly determined on 0; |½ �.

The notion of uniqueness must be discussed. Then, if
u 2 0;u	½ Þ, then we suppose that z and n are any two solutions
of the system (2.1).

jj zð Þ uð Þ � nð Þ uð Þjj 6 M
Ru
0 jjg r; z rð Þð Þ � g r; n rð Þð Þjjdr

þM
X

0<ua<u

jjva z uað Þð Þ � va n uað Þð Þjj

þM
X

0<ua<u

jjeva z uað Þð Þ � eva n uað Þð Þjj

6 Ml
Ru
0 jjz rð Þ � n rð ÞjjdrþMqabjjz� njj

þMeabjjz� njj:
Utilizing Gronwall’s inequality, we have z uð Þ ¼ n uð Þ, for any
u 2 0; |½ �. As a result, the mild solution is unique. h
4. Approximate controllability outcomes through FPT

The approximate controllability of the studied system is dis-
cussed in this section. Schauder’s fixed point theorem is used to
produce the primary results. We assume the following when con-
tinuing on to the part of an evaluation:

Assumption 5. Ll ¼ Lm such that m belongs to R Bð Þ, for any l
belongs to H.

9 m belongs to R Bð Þ with l� m ¼ h 2 N0 Lð Þ for all l belongs to
H. Hence, H ¼ N0 Lð Þ � R Bð Þ. Then, we can determine E maps from
N?

0L into R Bð Þ is continuous, linear and presented as Eu	 ¼ m	,
which is stands for unique minimum norm element in
R Bð Þ \ u	 þ N0 Lð Þf g, that is,

jjEu	jj ¼ jjm	jj ¼ min jjv jj : v 2 u	 þ N0 Lð Þf g � R Bð Þ
n o

:

Clearly with the help of assumption (5) 8 u	 belongs to N?
0 Lð Þ;R Bð Þ

is the non-void subset of u	 þ N0 Lð Þf g and we can express z 2 H as
z ¼ hþ m	. uniquely Therefore, E is clearly specified. Then, jjEjj 6 .,
where . is a constant.

Lemma 2. The inequality jjhjjH 6 1þ .ð ÞjjzjjH, holds, for every z 2 H
and h 2 N0 Lð Þ.

Suppose that H is the subspace of H (refer (Sukavanam and
Tafesse, 2011)) 3
H ¼ b 2 H : b uð Þ ¼ qhð Þ uð Þ; h 2 N0 Lð Þf g; t 2 0; |½ �:
This is obvious b |ð Þ ¼ 0;8 b 2 H.

Now, we introduce the operator gz mapping from H into H as

gz bð Þ ¼ qh; t 2 0; |½ �:
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In the above h is given as the unique decomposition.

@ zþ bð Þ ¼ hþ m; h 2 N0 Lð Þ; m 2 R Bð Þ: ð4:1Þ

Lemma 3. Based on the condition (3), b0 2 H along with g b0ð Þ ¼ b0 if
Ml| 1þ .ð Þ < 1.
Proof. Assume that Xr ¼ z 2 H : jjzjj 6 r; r > 0f g. Our main goal is
to demonstrate that gz : Xr ! Xr . We will show it by contradiction.
Let b 2 Xr , but gz bð Þ R Xr , that is, jjgz bð Þjj > r. From assumption (3)
and Lemma 2, we get

r < jjgz bð Þjj ¼ jjqhjj 6 Ru0 jjQ u� rð Þjj jjh rð Þjjdr
6 M

Ru
0 jjh rð Þjjdr

6 M
Ru
0 1þ .ð Þjj@ zþ bð Þ rð Þjjdr

6 M 1þ .ð Þ Ru0 jjg r; zþ bð Þ rð Þð Þjjdr
6 M 1þ .ð Þ Ru0 ljj zþ bð Þ rð Þjj þ lg

� 

dr

6 Ml 1þ .ð Þ Ru0 jjz rð Þ þ bð Þ rð ÞjjdrþM|lg 1þ .ð Þ�
6 Ml 1þ .ð Þ ffiffiffiffiup jjzjjH þMlr 1þ .ð Þt þM|lg 1þ .ð Þ
6 M 1þ .ð Þ l

ffiffi
|

p jjzjjH þ lr|þ lg|
� 


:

Applying a limit r tends to 1 after dividing by r we get

Ml| 1þ .ð Þ P 1

Therefore, by contradiction we deduce that gz : Xr ! Xr .
We now validate that gz is a compact operator. As P uð Þ is

compact, the integral operator q is compact, and so gz is compact.
According to Schauder’s fixed point theorem, the fixed point of gz is
b0, that is,

gz b0ð Þ ¼ qh ¼ b0:

The proof is now finished. h
Theorem 4.1. If the conditions (1)-(5) are met, (1.2) system is
approximately controllable. In addition, the system (1.1) is also
approximate controllable.
Proof. Assume that the mild solution according to the system (1.2)
is denoted by z �ð Þ, consequently
z uð Þ¼ P uð Þz0þQ uð Þz1þqBu uð Þþ

X
0<ua<u

P u�uað Þva z uað Þð Þ ð4:2Þ

þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ; u2 0; |ð �: ð4:3Þ

Our purpose is to show that s uð Þ ¼ z uð Þ þ b0 uð Þ is the mild solution
to the equations below

ds uð Þ
du

¼ As uð Þ þ Bu� mð Þ uð Þ þ g u; s uð Þð Þ; u 2 0; |ð �;

u– ua;a ¼ 1;2; . . . ;b; ð4:4Þ
s 0ð Þ ¼ z0; s0 0ð Þ ¼ z1; ð4:5Þ
Ds uað Þ ¼ va z uað Þð Þ; Ds0 uað Þ ¼ eva z uað Þð Þ; a ¼ 1;2; . . . ;b: ð4:6Þ
By (4.1), we get

@ zþ bð Þ uð Þ ¼ h uð Þ þ m uð Þ:
Using the specification for and Lemma 3 together, one may obtain
by acting q at b ¼ b0, which is a fixed point of gz.

q@ zþ b0ð Þ uð Þ ¼ qh uð Þ þ qm uð Þ;
¼ b0 uð Þ þ qm uð Þ:

When we add z �ð Þ to both sides, we obtain
5

z uð Þ þ q@ zþ b0ð Þ uð Þ ¼ z uð Þ þ b0 uð Þ þ qm uð Þ:
Let s uð Þ ¼ z uð Þ þ b0 uð Þ, then

z uð Þ þ q@ sð Þ uð Þ ¼ s uð Þ þ qm uð Þ;
) s uð Þ ¼ z uð Þ þ q@ sð Þ uð Þ � qm uð Þ: ð4:7Þ

Using Eq. (4.3), we obtain

s uð Þ ¼ P uð Þz0 þ Q uð Þz1 þ q Bu� mð Þ uð Þ þ q@ sð Þ uð Þ
þ
X

0<ua<u

P u�uað Þva z uað Þð Þ þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ:

This is really the necessary mild solution (4.4)–(4.6), as well as the
control Bu� mð Þ.

In addition, we get b0 0ð Þ ¼ 0 ¼ b0 |ð Þ and b00 0ð Þ ¼ 0 ¼ b00 |ð Þ so
s 0ð Þ ¼ z 0ð Þ þ b0 0ð Þ ¼ z0; s0 0ð Þ ¼ z0 0ð Þ þ b0 0ð Þ ¼ z1;

and

s |ð Þ ¼ z |ð Þ þ b0 |ð Þ ¼ z |ð Þ 2 q| 0ð Þ:

Moreover, hence m in R Bð Þ, there exists v in Y such that
jjBv � mjj 6 � for all � > 0.
If w ¼ u� v then consider zw �ð Þ as mild solution of (1.1). The

following can be easily demonstrated:

jjs |ð Þ � zw |ð Þjj ¼ jjz |ð Þ � zw |ð Þjj 6 �:

It means that K | 0ð Þ#K | gð Þ. Because K | 0ð Þ is dense belongs to H
((1.2) system is approximate controllable with the help of assump-
tion (5)), K | gð Þ is dense in H as well. As a result, (1.1) system is
approximate controllable. h
5. Approximate controllability outcomes without apply of FPT

We must first establish the following assumption before mov-
ing on to the primary topic of this section:

Assumption 6. R Bð Þ is a superset of R @ð Þ .
Theorem 5.1. If assumption (2)-(6) are satisfied then (1.1) is approx-
imately controllable provided (1.2) is approximately controllable.
Proof. Assume that mild solution corresponding to (1.2) system is
denoted by z �ð Þ, then
z uð Þ ¼ P uð Þz0 þ Q uð Þz1 þ qBu uð Þ þ

X
0<ua<u

P u�uað Þva z uað Þð Þ

þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ; u 2 0; |ð �:

Clearly, @ zð Þ belongs to R Bð Þ (using assumption (6)). Hence, if � > 0,
there exists an element of Y, namely w �ð Þ with
jj@ zð Þ � BwjjH 6 �:

Let n uð Þ stands for the mild solution according to u�wð Þ of (1.1). In
addition,

z uð Þ�n uð Þ¼ Ru
0 Q u�rð ÞBw rð Þdr�Ru0 Q u�rð Þ @n½ � rð Þdr
þ
X

0<ua<u

P u�uað Þva z uað Þð Þ�
X

0<ua<u

P u�uað Þva n uað Þð Þ

þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ�
X

0<ua<u

Q u�uað Þeva n uað Þð Þ

¼ Ru0 Q u�rð Þ Bw�@z½ � rð ÞdrþRu0 Q u�rð Þ @z�@n½ � rð Þdr
þ
X

0<ua<u

P u�uað Þva z uað Þð Þ�
X

0<ua<u

P u�uað Þva n uað Þð Þ

þ
X

0<ua<u

Q u�uað Þeva z uað Þð Þ�
X

0<ua<u

Q u�uað Þeva n uað Þð Þ:
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Applying norm, we get

jjz uð Þ � n uð Þjj 6 M
Ru
0 jjBw rð Þ � @z½ � rð ÞjjHdrþM

Ru
0 jj @z½ � rð Þ

� @n½ � rð Þjjdr
þM

X
0<ua<u

jjva z uað Þð Þ � va n uað Þð Þjj

þM
X

0<ua<u

jjeva z uað Þð Þ � eva n uað Þð Þjj

6 M
ffiffi
|

p jjBw� @zjjH þMl
Ru
0 jjz rð Þ � n rð Þjjdr

þMqabjjz� njj þMeabjjz� njj
6 M

ffiffi
|

p �þMl
R |

0 jjz rð Þ � n rð ÞjjdrþMqabjjz� njj
þMeabjjz� njj:

We can do jjz |ð Þ � n |ð ÞjjH arbitrarily small by choosing an appropri-
ate control w and with the help of Gronwall’s inequality. As a result,
the (1.1) solution set is dense in (1.2), which is dense in H. h
6. Example

Consider the semilinear impulsive functional heat control sys-
tem as follows:

@2z u;yð Þ
@u2 ¼ @2z u;yð Þ

@y2 þ l u; yð Þ þ F u; z u; yð Þð Þ; 0 6 u 6 |;

u – ua;a ¼ 1;2; . . . ; b;
z u; 0ð Þ ¼ z u;pð Þ ¼ 0; t > 0;
z 0;uð Þ ¼ z0 uð Þ; 0 6 u 6 p; @

@u z 0;uð Þ ¼ z1 uð Þ;
Mz ua; yð Þ ¼ va z ua; yð Þð Þ; a ¼ 1;2; ::; b;
Mz0 ua; yð Þ ¼ eva z ua; yð Þð Þ; a ¼ 1;2; ::; b:

8>>>>>>>>><>>>>>>>>>:
ð6:1Þ

To transform the aforementioned system (6.1) into its abstract ver-
sion (1.1), let U ¼ L2 0;p½ �. In addition, we introduce the operator
A : D Að Þ � U ! U as Ay ¼ y00; y 2 D Að Þ, where

D Að Þ ¼ y in U : y; y0 are absolutely continuous;f
y00 in U; y 0ð Þ ¼ y pð Þ ¼ 0g:

Choose hk xð Þ ¼ 2=pð Þ1=2sin krð Þ; x 2 0;p½ �; k belongs to N, so
hk xð Þf g denote an orthonormal basis of U;A has eigenvalue

kk ¼ �k2 k belongs to N and the eigenfunction defined by hk.
Therefore, the spectral representation of A is presented by:

Az ¼
X1
k¼1

� k2 y;hkh ihk; y 2 D Að Þ:

Now, we define the P uð Þ as follows:

P uð Þz ¼
X1
k¼1

cos ktð Þ y; hkh ihk; u 2 R;

along with sine function

Q uð Þz ¼
X1
k¼1

sin ktð Þ
k

y;hkh ihk; u 2 R:

Undoubtedly, kP uð Þk 6 1;8 u 2 R. Therefore, P �ð Þ is uniformly
bounded on R.

Define by

bU ¼ uju ¼
X1
k¼2

ukhk; with
X1
k¼2

u2
k < 1

( )
:

The norm is represented by bU , which is an infinite dimensional
space.

jjujjbU ¼
X1
k¼2

u2
k

 !1
2

6

Determine the linear continuous operator B maps from bU ! U by

Bu ¼ 2u2e1 þ
X1
k¼2

ukek; u ¼
X1
k¼2

ukek 2 bU :

Choose z uð Þ ¼ z u; �ð Þ, that is, z uð Þ |ð Þ ¼ z u; |ð Þ;u belongs to J; |
belongs to 0;p½ � and u uð Þ ¼ l u; �ð Þ, which is mapping from
J � 0;p½ � into 0;p½ � is continuous. Now, we define the function g
from J � U into U as

F u; yð Þ uð Þ ¼ g u; y uð Þð Þ; y 2 U; u 2 0;p½ �
and

Bu uð Þ |ð Þ ¼ l u; yð Þ; u 2 J; 0 6 y 6 p:

Furthermore, we provide some suitable demands based on the facts
described from above order to show the conclusions of Theorem 4.1
and deduce that (6.1) is approximately controllable.

7. Conclusion

The approximate controllability of second-order semilinear dif-
ferential systems with impulses was the subject of our paper. Two
sets of essential conditions have been developed. Combining the
ideas of the sine and cosine families, as well as the compactness
of the cosine function, with fixed point approach yielded the first
set of findings. The primary point was proven in the second set,
that avoided the apply of the fixed point theorem and the compact-
ness of the cosine function. The existence and uniqueness of mild
solutions are also demonstrated. We’ve will provide an application
of theoretical outcomes that have been verified.

Future research will discuss on the controllability of the second-
order impulsive neutral stochastic control system the usage of the
fixed point methods. With appropriate adjustments, the results of
this article can be generalized to fractional-order systems.
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