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Abstract In this paper, B-spline finite element method is used to solve the Modified Regularized

Long Wave (MRLW) equation. The proposed approach involves a collocation method using quin-

tic B-splines at the knot points as element shape. Time integration of the resulting system of ordin-

ary differential equation is effected using the fourth order Runge–Kutta method, instead of the

difference method. The resulting system of ordinary differential equations is integrated with respect

to time. Three invariants of motion are evaluated to determine the conservation properties of the

suggested scheme. The suggested numerical scheme leads to accurate and efficient results. More-

over, interaction two and three solitary waves are studied through computer simulation and the

development of the Maxwellian initial condition into solitary waves is also shown.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Solitary waves are wave packets or pulses, which propagate in

nonlinear dispersive media. Due to dynamical balance between
the nonlinear and dispersive effects these waves retain a stable
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waveform. The Regularized Long Wave (RLW) equation of
the form:

ut þ ux þ uux � duxxt ¼ 0; ð1Þ

where d is a positive constant, was originally introduced to

describe the behavior of the undular bore by Peregrine
(1966). This equation is very important in physics media since
it describes phenomena with weak nonlinearity and dispersion

waves, including nonlinear transverse waves in shallow water,
ion-acoustic and magneto hydrodynamic waves in plasma and
phonon packets in nonlinear crystals. The solutions of this

equation are kinds of solitary waves named solitons whose
shape is not affected by a collision. RLW equation was solved
numerically by various forms of finite element methods
(Alexander and Morris, 1979; Gardner and Gardner, 1990;

Gardner et al., 1995, 1996; Dag, 2000; Khalifa et al., 1979;
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Soliman and Raslan, 2001; Dag et al., 2004; Raslan, 2005; Sol-

iman and Hussien, 2005) such as Galerkin method, least
square method and collocation method with quadratic B-
splines, cubic B-splines and recently septic splines. Indeed,

the RLW equation is special case of the Generalized Long
Wave (GRLW) equation, which has the form:

ut þ ux þ lupux � duxxt ¼ 0; ð2Þ

where l and d are positive constants and p is a positive integer.
The GRLW equation is studied by authors Zhang (2005) with

finite difference method for a Cauchy problem and Kaya and
El-Sayed (2003) with adomian decomposition method (ADM).
Also, there are other studies on RLW, EWE, and GRLW

equations (Ramos, 2007; Lu, 2008; Ramos, 2007; Soliman
and Abdou, 2007; Shivamoggi, 2002). In this paper, we con-
sider another special case of the GRLW which is called the

Modified Regularized Long Wave (MRLW) equation. This
equation was considered by Gardner et al. (1997) using Pet-
rov–Galerkin method with quintic B-splines finite element.

Here, a collocation method with quintic B-spline finite ele-
ments and uses the fourth order Runge–Kutta method to solve
the system of first order ordinary differential equations instead
of the finite difference method (Dag, 2000; Khalifa et al., 1979;

Soliman and Raslan, 2001; Dag et al., 2004; Raslan, 2005;
Soliman and Hussien, 2005; Zhang, 2005; Ramadan et al.,
2005; El-Danaf et al., 2005; Hereman et al., 1986) which are

accurate and efficient. The interaction of solitary waves and
other properties of the MRLW equation are also studied.

2. The Governing equation anddirect algebraic method (Gardner

et al., 1997; Khalifa et al., 2007a,b; Hereman et al., 1986;

Raslan, 2008)

Consider the MRLW equation of the form

ut þ ux þ 6u2ux � uxxt ¼ 0; a 6 x 6 b; t P 0; ð3Þ

where the subscripts x and t denote differentiation, is consid-
ered with the boundary conditions u! 0 as x! �1. In this
work, periodic boundary conditions on the region a 6 x 6 b
are assumed in the form:

uða; tÞ ¼ uðb; tÞ ¼ 0;

uxða; tÞ ¼ uxðb; tÞ ¼ 0;

uxxða; tÞ ¼ uxxðb; tÞ ¼ 0;

9>=
>; ð4Þ

and the initial conditions to be used will be prescribed later. To
find the traveling wave solution of Eq. (3), we introduce the
wave variable n ¼ x� ct, where c represents the arbitrary con-

stant velocity of the wave traveling in the positive direction on
the x axis and uðx; tÞ ¼ fðnÞ. So Eq. (3) takes the form:

�cfnðnÞ þ fnðnÞ þ 6f2ðnÞfnðnÞ þ cfnnnðnÞ ¼ 0: ð5Þ

Integrating Eq. (5) gives

ð1� cÞfðnÞ þ 2ðfðnÞÞ3 þ cfnnðnÞ ¼ 0; ð6Þ

where the constant of integration equal zero since the solitary
wave solution and its derivatives equal zero as n! �1. The

linear equation from (6) has the solution in the form

fðnÞ ¼ ekn; k ¼ �
ffiffiffiffiffiffi
c�1
c

q
. We define gðnÞ ¼ ekn and let fðnÞ ¼P1

n¼1anðgðnÞÞ
n
. From Eq. (5), we get the recursion relation

(RR)
ðck2n2 � cþ 1Þan þ 2
Xn�1
m¼2

Xm�1
l¼1

an�mam�lal ¼ 0; n P 3; ð7Þ

where the coefficients, in general, are of the form

a2n ¼ 0; n P 1;

a2nþ1 ¼
a2nþ1
1

22nð1�cÞn ; n P 0;

)
ð8Þ

and then the exact solutions of Eq. (3) take the forms

uðx; tÞ ¼ ð4�4cÞe
ffiffiffiffiffi
c�1
c

p
ðx�ctÞ

a1

4�4cþe2
ffiffiffiffiffi
c�1
c

p
ðx�ctÞ

a2
1

;

uðx; tÞ ¼ ð4�4cÞe
ffiffiffiffiffi
c�1
c

p
ðx�ctÞ

a1

ð4c�4Þe2
ffiffiffiffiffi
c�1
c

p
ðx�ctÞ�a2

1

;

9>>>>=
>>>>;

ð9Þ

In Eq. (9) if we choose a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� 4
p

then the solitary wave
solution of MRLW equation reduces to:

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
c� 1
p

sec h

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
ðx� ctÞ

 !
; ð10Þ

if we replace c by cþ 1 we get the solution, which is the same

solitary wave solution of the MRLW equation appears in
other papers (Gardner et al., 1997; Khalifa et al., 2007b) .

uðx; tÞ ¼
ffiffiffi
c
p

sec h

ffiffiffiffiffiffiffiffiffiffiffi
c

cþ 1

r
ðx� ðcþ 1Þt� x0Þ

� �
: ð11Þ

Hence, this method may not yield the analytical solutions for
many PDEs like in interaction solitary and the Maxwellian ini-
tial condition. Therefore, the numerical analysis plays a very

important role for obtaining the accurate approximate solu-
tions in these cases and that is our objective in this study. Also,
Eq. (3) has three invariants as in the form (Gardner et al.,

1997; Khalifa et al., 2007b):

I1 ¼
R b

a
udx;

I2 ¼
R b

a
ðu2 þ u2xÞdx;

I3 ¼
R b

a
ðu4 � u2xÞdx;

9>>=
>>; ð12Þ

we point out that these invariants help us to test the numerical
schemes especially for equations with no analytical solution

and during the interaction of solitons.

3. Collocation method for solving MRLW equation

In this section, we apply the method with the function Bj as
quintic B-splines. We consider the approximate solution to
the solution uðx; tÞ is given by

uNðx; tÞ ¼
X

CjðtÞBjðxÞ; ð13Þ

where CjðtÞ are time dependent parameters to be determined at
each time level and BjðxÞ are the quintic B-splines given by:

BiðxÞ ¼
1

h5

ðx�xi�3Þ5; xi�36x6xi�2;

ðx�xi�3Þ5�6ðx�xi�2Þ5; xi�26x6xi�1;

ðx�xi�3Þ5�6ðx�xi�2Þ5þ15ðx�xi�1Þ5; xi�16x6xi;

ð�xþxiþ3Þ5þ6ðx�xiþ2Þ5�15ðx�xiþ1Þ5; xi6x6xiþ1;

ð�xþxiþ3Þ5þ6ðx�xiþ2Þ5; xiþ16x6xiþ2;

ð�xþxiþ3Þ5; xiþ26x6xiþ3;

0; otherwise:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð14Þ
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Then, the discredited equations for the space derivative are de-

rived asX
ðBjðxÞ � B00j ðxÞÞ _CjðtÞ ¼ � 1þ 6

X
CjðtÞBjðxÞ

� �2� �
�
X

CjðtÞB0jðxÞ; ð15Þ

where x takes the values at the selected collocation knot points
for quintic B-spline. The values of BjðxÞ and its first and sec-

ond derivatives at knots points are given in Table 1.
From these equations a system of first order ordinary dif-

ferential equations can be obtained of the form:

A _CðtÞ ¼ FðCðtÞÞ: ð16Þ

Several others studies solved the first order ordinary differen-
tial system (16) by using the central difference approximation

for C, but in the present studies we solve the system (16) using
fourth order Runge–Kutta method.

AK1 ¼ FðCnÞ;
AK2 ¼ F Cn þ 1

2
K1

� �
;

AK3 ¼ F Cn þ 1
2
K2

� �
;

AK4 ¼ F Cn þ K3ð Þ;

9>>>=
>>>;

ð17Þ

and we solved the last equations and using

Cnþ1 ¼ Cn þ kðK1 þ 2K2 þ 2K3 þ K4Þ
6

: ð18Þ
Table 1 The values of quintic B-spline and its first and second der

x xj�3 xj�2 xj�1

Bi 0 1 26

B0i 0 5=h 50=h

B00i 0 20=h2 40=h2

Table 2 Invariants and errors for single solitary wave for c ¼ 1;Dx

T I1 I2 I3

0 4.442883 3.298731 1.4

1 4.442883 3.298723 1.4

2 4.442883 3.298712 1.4

3 4.442885 3.298702 1.4

4 4.442884 3.298692 1.4

5 4.442884 3.298681 1.4

6 4.442883 3.298672 1.4

7 4.442883 3.298661 1.4

8 4.442884 3.298652 1.4

9 4.442882 3.298642 1.4

10 4.442882 3.298630 1.4

Table 3 Invariants and errors for single solitary wave for c ¼ 1;Dx

Method I1 I2

Analytical 4.44288 3.29983

Present 4.44288 3.29863

Gardner et al. (1997) 4.442 3.299

Gardner et al. (1997) 4.440 3.296

Khalifa et al. (2007b) 4.44288 3.29983
where K1;K2;K3 and K4 can be found by solving four systems

(17). Once the parameter C has been determined at a specified
time we can compute the solution at the required knots the
time evolution of the approximate solution uNðx; tÞ is deter-

mined from that of the vector Cn which is found by repeatedly
applying the above procedure once the starting vector C 0 has
been computed from the initial condition.

4. Numerical tests and results

In this section we present some numerical tests of our scheme
for the solution of MRLW equation for single solitary waves

in addition to determining the solution of two and three soli-
tary waves interaction at different time levels. Also to show
the development of Maxwellian initial condition into solitary

waves. The numerical solution must preserve the conservation
laws during propagation.

4.1. Propagation of single solitary waves

To examine the validated and the efficiency of our scheme, we
consider two cases in our numerical work, since L1-error norm

and L2-error norm are used to compare our numerical solutions
with the exact solution of Eq. (3). Also the quantities
I1; I2 and I3 are evaluated to measure the conservation proper-
ties of the collocation scheme, the analytical values of these
ivatives at the knots points.

xj xjþ1 xjþ2 xjþ3

66 26 1 0

0 �50=h �5=h 0

�120=h2 40=h2 20=h2 0

¼ 0:2;Dt ¼ 0:1 and x0 ¼ 40; 0 6 x 6 100.

L2-error norm L1-error norm

15311 2.855687E�6 2.145767E�6
15301 2.257935E�5 1.645088E�5
15290 4.273932E�5 2.598763E�5
15280 6.246631E�5 3.492832E�5
15270 8.416529E�5 4.494190E�5
15260 1.078404E�4 5.537271E�5
15250 1.334255E�4 6.842613E�5
15240 1.620302E�4 8.213520E�5
15230 1.931854E�4 9.953976E�5
15219 2.265411E�4 1.171231E�4
15209 2.632212E�4 1.369715E�4

¼ 0:2;Dt ¼ 0:1 and x0 ¼ 40; 0 6 x 6 100, time = 10.

I3 L2 · 103 L1 · 103

1.41421 0 0

1.415209 0.26322 0.13697

1.413 19.39 9.24

1.411 20.3 11.2

1.41420 9.30196 5.43718
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Figure 1 Single solitary wave with c ¼ 1;Dx ¼ 0:2;Dt ¼ 0:1 and

x0 ¼ 40; 0 6 x 6 100, T = 10.

Table 5 Invariants of interaction two solitary waves of

MRLW equation c1 ¼ 4; c2 ¼ 1; x1 ¼ 25;x2 ¼ 55; ½0; 250�.
Time I1 I2 I3

1 11.467700 14.617920 22.885030

2 11.467700 14.616560 22.879620

3 11.467700 14.615220 22.874220

4 11.467700 14.613870 22.868820

5 11.467770 14.612520 22.863410

6 11.467620 14.611190 22.858020

7 11.467270 14.609970 22.852570

8 11.466890 14.609760 22.846460

9 11.466490 14.613410 22.839010

10 11.466050 14.608160 22.842790

0.00 100.00 200.00 300.00
-0.50

0.00

0.50

1.00

1.50

2.00

0.00 100.00 200.00 300.00 400.00
0.00

0.40

0.80

1.20

1.60

2.00

a

b

Figure 2 (a) Interaction two solitary waves with c1 = 4, c2 = 1,

x1 = 25, x2 = 55, [0, 250] at times T = 0. (b) Interaction two

solitary waves with c1 = 4, c2 = 1, x1 = 25, x2=55, [0, 250] at

times T= 14.
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invariants can be found as (Gardner et al., 1997):

I1 ¼ p
ffiffi
c
p

2
; I2 ¼ cþ 4c

3
and I3 ¼ 2c2

3
� 4c

3
. In the first case, we

choose the parameters c ¼ 1;Dx ¼ 0:2;Dt ¼ 0:1 and x0 ¼ 40.
The conservation properties and the L2-error norm and L1-

error norms. The analytical values for the invariants are
I1 ¼ 4:44288; I2 ¼ 3:29983 and I3 ¼ 1:41421 are illustrated in
Table 2 below. Moreover, Table 3 represents the values of the

invariants and error norms of the present method at time 10
against the results of Gardner et al. (1997) and Khalifa et al.
(2007b).

Also, Table 3 represents the values of the invariants and er-
rors norms of the present method at time 10 against the re-
corded results of Gardner et al. (1997) and Khalifa et al.
(2007b).

We find that our scheme provides good results than others.
The motion of solitary wave using our scheme is plotted at
time 10 in Fig. 1.

In the second case, we choose the parameters c ¼ 0:3;Dx ¼
0:2;Dt ¼ 0:1 and x0 ¼ 40 then the amplitude is 0.54772. The
analytical values of the invariants are I1 ¼ 3:58197; I2 ¼
1:34508 and I3 ¼ 0:153723. The changes of the invariants
from the initial variants approach to zero throughout and
agree with the analytical values for the three invariants, which
indicated that our scheme is satisfactorily conservative. Errors

are satisfactorily small, since L2-error norm ¼ 1:9193� 10�5

and L1-error norm ¼ 8:970499� 10�6 at time 10. The results
for the second case are shown in Table 4.

4.2. Interaction of two solitary waves

Interaction of two positive solitary waves is studied using the

initial conditions given by the linear sum of two well-separated
solitary waves of various amplitudes:

uðx; 0Þ ¼ A1 sec hðp1ðx� x1ÞÞ þ A2 sec hðp2ðx� x2ÞÞ; ð19Þ
Table 4 Invariants and errors for single solitary wave for c ¼ 0:3;D

T I1 I2 I3

1 3.581964 1.344973 0.15

2 3.581966 1.344973 0.15

3 3.581964 1.344973 0.15

4 3.581965 1.344973 0.15

5 3.581964 1.344973 0.15

6 3.581965 1.344973 0.15

7 3.581964 1.344972 0.15

8 3.581964 1.344973 0.15

9 3.581960 1.344972 0.15

10 3.581958 1.344973 0.15
where Ai ¼
ffiffiffiffi
ci
p

; pi ¼
ffiffiffiffiffiffiffi
ci

ciþ1

q
; i ¼ 1; 2; xi and ci are arbitrary

constants. The analytical values of the conservation laws of

this case can be found as I1 ¼ p
ffiffi
c
p

1

p1
þ p

ffiffi
c
p

2

p2
; I2 ¼

2c1
p1
þ 2c2

p2
þ 2p1c1

3
þ 2p2c2

3
and I3 ¼

4c2
1

3p1
þ 4c2

2

3p2
� 2p1c1

3
� 2p2c2

3
. In our

computational work, we choose c1 ¼ 4; c2 ¼ 1; x1 ¼ 25;
x2 ¼ 55; d ¼ 1;Dx ¼ 0:2;Dt ¼ 0:05 with interval [0, 250], then

the amplitudes are in ratio 2:1, where A1 ¼ 2A2. The analytical
values for the invariants of this case are I1 ¼ 11:467698;
I2 ¼ 14:629243 and I3 ¼ 22:880466 and the changes in I1, I2
x ¼ 0:2;Dt ¼ 0:1 and x0 ¼ 40; 0 6 x 6 100.

L2-error norm L1-error norm

38265 2.142769E�06 1.221895E�06
38264 4.352044E�06 2.086163E�06
38264 6.752275E�06 3.129244E�06
38264 8.884196E�06 4.291534E�06
38264 1.087434E�05 5.215406E�06
38264 1.292003E�05 6.198883E�06
38264 1.472382E�05 7.271767E�06
38264 1.632736E�05 7.659197E�06
38264 1.784318E�05 8.493662E�06
38264 1.919314E�05 8.970499E�06



Table 6 Invariants of interaction three solitary waves of

MRLW equation c1 ¼ 4; c2 ¼ 1; c3 ¼ 0:25;x1 ¼ 15; x2 ¼ 45;

x3 ¼ 60; ½0; 250�.
Time I1 I2 I3

1 14.980110 15.826100 23.012800

2 14.980090 15.824760 23.007380

3 14.980180 15.823430 23.001970

4 14.979930 15.822100 22.996530

5 14.979550 15.820770 22.991110

6 14.979140 15.819470 22.985690

7 14.978740 15.818400 22.980090

8 14.978040 15.818480 22.973750

9 14.974250 15.822740 22.965790

10 14.930390 15.822500 22.964190

Table 7 Computed values I1, I2, I3 for Maxwellian initial
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and I3 as seen in Table 5 are small. Also, Fig. 2 shows the com-

puter plot of the interaction of these solitary waves at different
time levels, where the simulation is done to t= 14.

4.3. Interaction of three solitary waves

The interaction of three MRLW solitary waves having differ-
ent amplitudes and traveling in the same direction is illus-
trated. We consider the MRLW equation with initial

conditions given by the linear sum of three well-separated sol-
itary waves of various amplitudes:

uðx; 0Þ ¼ A1 sec hðp1ðx� x1ÞÞ þ A2 sec hðp2ðx� x2ÞÞ
þ A3 sec hðp3ðx� x3ÞÞ; ð20Þ

where Ai ¼
ffiffiffiffi
ci
p

; pi ¼
ffiffiffiffiffiffiffi
ci

ciþ1

q
; i ¼ 1; 2; 3; xi and ci are arbitrary

constants. The analytical values of the conservation laws of
this case can be found as:

I1 ¼
p
ffiffiffi
c
p

1

p1
þ p

ffiffiffi
c
p

2

p2
þ p

ffiffiffi
c
p

3

p3
;

I2 ¼
2c1
p1
þ 2c2

p2
þ 2c3

p3
þ 2p1c1

3
þ 2p2c2

3
þ 2p3c3

3
;

I3 ¼
4c21
3p1
þ 4c22
3p2
þ 4c23
3p3
� 2p1c1

3
� 2p2c2

3
� 2p3c3

3
:

In our computational work, we choose c1 ¼ 4; c2 ¼ 1; c3 ¼
0:25; x1 ¼ 15; x2 ¼ 45; x3 ¼ 60 with interval [0, 250], then the
amplitudes are in ratio 4:2:1, where A1 = 2A2 = 4A3. The
analytical values for the invariants of this case are

I1 = 14.9801, I2 = 15.8218 and I3 = 22.9923 and we find from
our numerical scheme, that the invariants I1, I2 and I3 for inter-
action of these solitary waves are sensible constants, compar-

ing with their big amplitudes, the changes are
5� 10�2; 5� 10�3 and 1� 10�2 percent, respectively, for the
computer run and the results are recorded in Table 3. Fig. 3

shows details of interaction of these solitary waves at different
time levels, and the simulation is done to t= 10 (see Table 6).
0.00 100.00 200.00 300.00
-0.50
0.00
0.50
1.00
1.50
2.00

0.00 100.00 200.00 300.00
0.00
0.40
0.80
1.20
1.60
2.00

0.00 100.00 200.00 300.00 400.00
0.00
0.40
0.80
1.20
1.60
2.00

a

b

c

Figure 3 c1¼ 4;c2¼ 1;c3¼ 0:25;x1¼ 15;x2¼ 45;x3¼ 60; ½0; 250�,
T = 1. (b) c1¼ 4;c2¼ 1;c3¼ 0:25;x1¼ 15;x2¼ 45; x3¼ 60; ½0; 250�,
T = 5. (c) c1¼ 4;c2¼ 1;c3¼ 0:25;x1¼ 15; x2¼ 45;x3¼ 60; ½0; 250�,
T = 10.
4.4. The Maxwellian initial condition

The fourth numerical test of our scheme is concerned with the
generation of a train of solitary waves from Maxwellian initial
condition:

uðx; 0Þ ¼ e�ðx�40Þ
2

; ð21Þ

into a train of solitary waves is examined. In this section, we
consider the MRLW equation of the form

ut þ ux þ 6u2ux � duxxt ¼ 0; ð22Þ

as it is known, with the Maxwellian Eq. (21), the behavior of
the solution depends on the values of d. For d� dc, where

dc is some critical value. The Maxwellian does not break up
into solutions but exhibits rapidly oscillating wave packets.
When d � dc the mixed type of solutions is found which con-
sists of a leading soliton and an oscillating tail. For d� dc
condition when h = 0.1, k = 0.1, [0, 100].

d Time I1 I2 I3

1 2 1.772449 2.506352 �0.3668149
4 1.772446 2.506235 �0.3666974
6 1.772447 2.506171 �0.3666326
8 1.772446 2.506123 �0.3665860
10 1.772444 2.506092 �0.3665553

0.5 2 1.772451 1.879888 0. 2596494

4 1.772446 1.879855 0.2596828

6 1.772449 1.879841 0.2596973

8 1.772450 1.879834 0.2597050

10 1.772449 1.879828 0.2597092

0.1 2 1.772452 1.378607 0.7608777

4 1.772451 1.378577 0.7608364

6 1.772451 1.378546 0.7607937

8 1.772451 1.378515 0.7607529

10 1.772453 1.378483 0.7607117

0.04 2 1.772453 1.302368 0.8343938

4 1.772453 1.300995 0.8320332

6 1.772453 1.299635 0.8296967

8 1.772451 1.298285 0.8273833

10 1.772440 1.296948 0.8250930
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Figure 4 Maxwellian initial condition, Dx ¼ 0:1;Dt ¼ 0:1;

½0; 100�; d ¼ 1. (b) Maxwellian initial condition, Dx ¼ 0:1;Dt ¼
0:1; ½0; 100�; d ¼ 0:1. (c) Maxwellian initial condition, Dx ¼ 0:1;

Dt ¼ 0:1; ½0; 100�; d ¼ 0:04.
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the Maxwellian breaks up into a number of solitons according

to the value of d. The recorded values of the invariants I1, I2, I3
are given in Table 7. The conservation properties are all good.

By decreasing the value of d, more solitary waves are ob-

tained. When d ¼ 0:1, a single solitary wave is generated for
our scheme, when d ¼ 0:04 a train of two stable solitary waves
is generated, and so on. The total number of solitary waves gen-

erated for various values of d are in agreement with the results
found inGardner et al. (1997) andKhalifa et al. (2007b) (Fig. 4).

5. Conclusion

A numerical method based on collocation method using quin-
tic B-spline finite elements within the collocation method leads

to a system of first order differential equations is solved by
fourth order Runge–Kutta method, which shows good conser-
vation. The efficiency of the method is tested on the problems
of propagation of single solitary wave, interaction of two and

three solitary waves and development of train of solitary waves
from Maxwellian initial condition. The three invariants of mo-
tion are constant in all the computer simulations described

here. The problems presented in this paper suggest that the
methods should be considered as one of possible ways of solv-
ing these kinds of nonlinear partial differential equations.
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