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Abstract In this study, we present numerical solutions for the space- and time-fractional Fokker–

Planck equation using the homotopy perturbation method (HPM). The fractional derivatives are

described in the Caputo sense. The methods give an analytic solution in the form of a convergent

series with easily computable components, requiring no linearization or small perturbation. Some

examples are given and comparisons are made, the comparisons show that the homotopy perturba-

tion method is very effective and convenient and overcome the difficulty of traditional methods. The

numerical results show that the approaches are easy to implement and accurate when applied to

space- and time-fractional Fokker–Planck equations. The methods introduce a promising tool

for solving many space–time fractional partial differential equations.
ª 2010 King Saud University. All rights reserved.
1. Introduction

The Fokker–Planck equation arises in various fields in natural
science, including solid-state physics, quantum optics, chemi-
cal physics, theoretical biology and circuit theory. The Fok-

ker–Planck equation was first used by Fokker and Plank (for
instance, see Risken (1989)) to describe the Brownian motion
.tr.
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of particles. A FPE describes the change of probability of a
random function in space and time; hence it is naturally used

to describe solute transport. The general FPE for the motion
of a concentration field u(x, t) of one space variable x at time
t has the form (Risken, 1989)

@u

@t
¼ � @

@x
AðxÞ þ @2

@x2
BðxÞ

� �
uðx; tÞ; ð1Þ

with the initial condition given by

uðx; 0Þ ¼ fðxÞ; x 2 R; ð2Þ

where B(x) > 0 is the diffusion coefficient and A(x) is the drift
coefficient. The drift and diffusion coefficients may also de-
pend on time. Eq. (1) is a linear second-order partial differen-

tial equation of parabolic type.
There is a more general form of FPE which is called nonlin-

ear Fokker–Planck equation. Nonlinear FPE has important
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applications in various areas such as plasma physics, surface

physics, population dynamic, biophysics, engineering, neuro-
sciences, nonlinear hydrodynamics, polymer physics, laser
physics, pattern formation, psychology and marketing (see
Frank, 2004 and reference therein). In one variable case, the

nonlinear FPE is written in the following form

@u

@t
¼ � @

@x
Aðx; t; uÞ þ @2

@x2
Bðx; t; uÞ

� �
uðx; tÞ; ð3Þ

with the initial condition given by

uðx; 0Þ ¼ fðxÞ; x 2 R; ð4Þ

In recent years there has been a great deal of interest in fractional

diffusion equations. These equations arise in continuous time
random walks, modelling of anomalous diffusive and subdiffu-
sive systems, unification of diffusion andwave propagation phe-

nomenon, and simplification of the results (Agrawal, 2002).
Our concern in this work is to consider the numerical solu-

tion of the nonlinear FPE with space- and time-fractional

derivatives of the form:

@au

@ta
¼ � @b

@xb
Aðx; t; uÞ þ @2b

@x2b
Bðx; t; uÞ

� �
uðx; tÞ; t > 0;

0 < a; b 6 1; ð5Þ

where a and b are parameters describing the order of the frac-
tional time- and space derivatives, respectively. The function

u(x, t) is assumed to be a causal function of time and space,
i.e., vanishing for t< 0 and x < 0. The fractional derivatives
are considered in the Caputo sense. The general response

expression contains parameters describing the order of the
fractional derivatives that can be varied to obtain various re-
sponses. In the case of a = 1 and b = 1, the fractional equa-
tion reduces to the classical nonlinear FPE (3).

The objective of this paper is to extend the application of
the homotopy perturbation method (HPM) to obtain analytic
solutions to the space- and time-fractional Fokker–Planck

equations. The homotopy perturbation method is a computa-
tional method that yields analytical solutions and has certain
advantages over standard numerical methods. It is free from

rounding off errors as it does not involve discretization, and
does not require large computer obtained memory or power.
The method introduce the solution in the form of a convergent

fractional series with elegantly computable terms.
The homotopy perturbation method was first proposed by

the Chinese mathematician Ji-Huan He (He and Wu, 2006; He,
2004, 2005a,b, 2006c, 1999, 2000, 2003). The essential idea of

this method is to introduce a homotopy parameter, say p,
which takes values from 0 to 1. When p= 0, the system of
equations usually reduces to a sufficiently simplified form,

which normally admits a rather simple solution. As p is grad-
ually increased to 1, the system goes through a sequence of
deformations, the solution for each of which is close to that

at the previous stage of deformation. Eventually at p = 1,
the system takes the original form of the equation and the final
stage of deformation gives the desired solution. One of the
most remarkable features of the HPM is that usually just

few perturbation terms are sufficient for obtaining a reason-
ably accurate solution. Considerable research works have been
conducted recently in applying this method to a class of linear

and non-linear equations (Özis� and Yıldırım, 2007a,b,c,d;
Yıldırım and Özis�, 2007; Yıldırım, 2008a, 2010, 2008b,c;
Shakeri and Dehghan, 2007; Dehghan and Shakeri, 2007,

2008; Shakeri and Dehghan, 2008; Saadatmandi et al., 2009;
Yusufoǧlu 2007a,b; Chowdhury and Hashim, 2009a,b). The
interested reader can see the Refs. He (2006a,b, 2008) for last
development of HPM. This homotopy perturbation method

will become a much more interesting method to solving nonlin-
ear differential equations in science and engineering. We ex-
tend the method to solve the space- and time-fractional

Fokker–Planck equations.

2. Fractional calculus

We give some basic definitions and properties of the fractional
calculus theory which are used further in this paper.

Definition 2.1. A real function f(x), x > 0, is said to be in the

space Cl, l 2 R if there exists a real number p(>l), such that
f(x) = xpf1(x), where f1(x) 2 C[0,1), and it is said to be in the
space Cm

l if f(m) 2 Cl, m 2 N.

Definition 2.2. The Riemann–Liouville fractional integral
operator of order a P 0, of a function f 2 Cl,l P �1, is
defined as

JafðxÞ ¼ 1

CðaÞ

Z x

0

ðx� tÞa�1fðtÞdt; a > 0; x > 0;

J0fðxÞ ¼ fðxÞ:

Properties of the operator Ja can be found in Refs. Miller
and Ross (1993), Samko et al. (1993) Oldham and Spanier
(1974), we mention only the following. For f 2 Cl,l P �1,
a,b P 0 and c > �1:

1. JaJb = Ja+bf(x),
2. JaJb = JbJaf(x),

3. J axc ¼ Cðcþ1Þ
Cðaþcþ1Þ x

aþc.

The Riemann–Liouville derivative has certain disadvan-

tages when trying to model realworld phenomena with frac-
tional differential equations. Therefore, we shall introduce a
modified fractional differential operator Da proposed by Cap-

uto in his work on the theory of viscoelasticity (Luchko and
Gorneflo, 1998).

Definition 2.3. The fractional derivative f(x) in the Caputo
sense is defined as

DafðxÞ ¼ Jm�aDmfðxÞ

¼ 1

Cðm� aÞ

Z x

0

ðx� tÞm�a�1
fðmÞðtÞdt; ð6Þ

for m� 1 < a 6 m; m 2 N; x > 0; f 2 Cm
�1.

Also, we need here two of its basic properties.

Lemma 2.1. If m �1 < a 6 m, m 2 N and f 2 Cm
l ; l P �1,

then

DaJafðxÞ ¼ fðxÞ; and;

JaDafðxÞ ¼ fðxÞ �
Xm�1
k¼0

fðkÞð0þÞx
k

k!
; x > 0:
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The Caputo fractional derivatives are considered here because

it allows traditional initial and boundary conditions to be in-
cluded in the formulation of the problem. In this paper, we
consider the fractional partial differential equations in fluid

mechanics, and the fractional derivatives are taken in Caputo
sense as follows.

Definition 2.4. For m to be the smallest integer that exceeds a,
the Caputo time-fractional derivative operator of order a > 0

is defined as

Da
t uðx; tÞ ¼

@auðx; tÞ
@ta

¼
1

Cðm�aÞ
R t

0
ðt� sÞm�a�1 @muðx;sÞ

@tm
ds; for m� 1< a<m

@muðx;tÞ
@tm

; for a¼m 2N

(

ð7Þ

For more information on the mathematical properties of
fractional derivatives and integrals one can consult the men-

tioned references.
3. Basic ideas of HPM

To illustrate the basic idea of He’s homotopy perturbation

method, consider the following general nonlinear differential
equation;

AðuÞ � fðrÞ ¼ 0; r 2 X ð8Þ

with boundary conditions;

Bðu; @u=@nÞ ¼ 0; r 2 C ð9Þ

where A is a general differential operator, B is a boundary
operator, f(r) is a known analytic function, C is the boundary
of the domain X.

The operator A can, generally speaking, be divided in to
two parts L and N, where L is linear, and N is nonlinear, there-
fore Eq. (8) can be written as,

LðuÞ þNðuÞ � fðrÞ ¼ 0: ð10Þ

By using homotopy technique, one can construct a homotopy
v(r,p):X · [0,1] fi R which satisfies

Hðv; pÞ ¼ ð1� pÞ½LðvÞ � Lðu0Þ� þ p½AðvÞ � fðrÞ�
¼ 0; p 2 ½0; 1�; ð11:aÞ

or

Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ p½NðvÞ � fðrÞ� ¼ 0 ð11:bÞ

where p 2 [0,1] is an embedding parameter, and u0 is the initial
approximation of Eq. (8) which satisfies the boundary condi-

tions. Clearly, we have

Hðv; 0Þ ¼ LðvÞ � Lðu0Þ ¼ 0 ð12Þ
Hðv; 1Þ ¼ AðvÞ � fðrÞ ¼ 0 ð13Þ

the changing process of p from zero to unity is just that of
v(r,p) changing from u0(r) to u(r). This is called deformation,
and also, L(v) � L(u0) and A(v) � f(r) are called homotopic

in topology. If, the embedding parameter p; (0 6 p 6 1) is con-
sidered as a ‘‘small parameter’’, applying the classical pertur-
bation technique, we can naturally assume that the solution

of Eqs. (12) and (13) can be given as a power series in p, i.e.,
v ¼ v0 þ pv1 þ p2v2 þ . . . ð14Þ

and setting p = 1 results in the approximate solution of Eq.

(11) as;

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ . . . ð15Þ

The convergence of series (15) has been proved by He (2004).
It is worth to note that the major advantage of He’s homotopy
perturbation method is that the perturbation equation can be
freely constructed in many ways (therefore is problem depen-

dent) by homotopy in topology and the initial approximation
can also be freely selected.

4. Applications

In this section we shall illustrate the homotopy perturbation

technique by several examples. These examples are somewhat
artificial in the sense that the exact answer, for the special
case a = 1 and b = 1, is known in advance and the initial

and boundary conditions are directly taken from this answer.
Nonetheless, such an approach is needed to evaluate the
accuracy of the analytical techniques and to examine the ef-
fect of varying the order of the space- and time-fractional

derivatives on the behavior of the solution. All the results
are calculated by using the symbolic calculus software Maple.

Example 1. Consider the linear space fractional FPE

@u

@t
¼ � @b

@xb
:xþ @2b

@x2b
:
x2

2

� �
uðx; tÞ; t > 0; x > 0; ð16Þ

where 0 < b 6 1, subject to the initial condition

uðx; 0Þ ¼ x: ð17Þ

To solve Eqs. (16) and (17) by homotopy perturbation meth-
od, we construct the following homotopy:

@u

@t
� @u0
@t

� �
¼ p � @

b xuð Þ
@xb

þ
@2b x2u

2

� �
@x2b

� @u0
@t

0
@

1
A; ð18Þ

Assume the solution of Eq. (18) to be in the form:

u ¼ u0 þ pu1 þ p2u2 þ p3u3 þ . . . . . . ð19Þ

Substituting Eq. (19) into Eq. (18) and collecting terms of the
same power of p give

p0 :
@u0
@t
� @u0
@t
¼ 0; ð20Þ

p1 :
@u1
@t
¼ � @

bðxu0Þ
@xb

þ
@2b x2u0

2

� �
@x2b

� @u0
@t

; ð21Þ

p2 :
@u2
@t
¼ � @

bðxu1Þ
@xb

þ
@2b x2u1

2

� �
@x2b

; ð22Þ

p3 :
@u3
@t
¼ � @

bðxu2Þ
@xb

þ
@2b x2u2

2

� �
@x2b

; ð23Þ

..

.

The given initial value admits the use of

u0ðx; tÞ ¼ x; ð24Þ
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The solution reads

u1ðx; tÞ ¼
3x3�2b

Cð4� 2bÞ �
2x2�b

Cð3� bÞ

� �
t; ð25Þ

u2ðx; tÞ ¼
2Cð4�bÞx3�2b

Cð3�bÞCð4�2bÞ �
3Cð5�2bÞ
Cð4�2bÞ þ

Cð5�bÞ
Cð3�bÞ

� �
x4�3b

Cð5�3bÞ þ
3Cð6�2bÞx5�4b

2Cð4�2bÞCð6�4bÞ

2
4

3
5 t2

2
; ð26Þ

..

.

and so on, in this manner the rest of components of the homot-
opy perturbation series can be obtained.

The solution of Eqs. (16) and (17) can be obtained by set-

ting p = 1 in Eq. (19):

u ¼ u0 þ u1 þ u2 þ u3 þ . . . . . . ð27Þ

Thus, we have

uðx; tÞ ¼ xþ 3x3�2b

Cð4� 2bÞ �
2x2�b

Cð3� bÞ

� �
t

þ 2Cð4� bÞx3�2b

Cð3� bÞCð4� 2bÞ �
3Cð5� 2bÞ
Cð4� 2bÞ þ

Cð5� bÞ
Cð3� bÞ

� ��

� x4�3b

Cð5� 3bÞ þ
3Cð6� 2bÞx5�4b

2Cð4� 2bÞCð6� 4bÞ

�
t2

2
þ . . . ; ð28Þ

Setting b = 1 in (28), we reproduce the solution of problem as

follows

uðx; tÞ ¼ x 1þ tþ t2

2!
þ t3

3!
þ t4

4!
þ . . . ::

� �
; ð29Þ
Figure 1 The surface shows the solution u(x, t) for Eqs. (16) and (17

(c) Œuex � uappŒ.
This solution is equivalent to the exact solution in a closed

form

uðx; tÞ ¼ xet ð30Þ

It is clear that no linearization or perturbation was used and a

closed form solution is obtainable by adding more terms to the
homotopy perturbation series.

The results for the exact solution (30) and the approximate

solution (28) obtained using the homotopy perturbation meth-
od, for the special case b = 1, are shown in Fig. 1. It can be
seen from Fig. 1 that the solution obtained by the present

method is nearly identical with the exact solution. Fig. 2a
and b show the approximate solutions when b = 0.5 and
b = 0.75, respectively. It is to be noted that only the second-
order term of the homotopy perturbation solution was used

in evaluating the approximate solutions for Fig. 2. It is evident
that the efficiency of this approach can be dramatically en-
hanced by computing further terms of u(x, t) when the homot-

opy perturbation method is used.

Example 2. Consider the nonlinear time-fractional FPE

@au

@ta
¼ � @

@x
:
4u

x
� x

3

� �
þ @2

@x2
:u

� �
uðx; tÞ; t> 0; x> 0; ð31Þ

where 0 < a 6 1, subject to the initial condition

uðx; 0Þ ¼ x2: ð32Þ
) when b = 1: (a) exact solution (30) (b) approximate solution (29)



Figure 2 The surface shows the solution u(x, t) for Eqs. (16) and (17): (a) b = 0.5, (b) b = 0.75.
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To solve Eqs. (31) and (32) by homotopy perturbation meth-
od, we construct the following homotopy:

@au

@ta
� @

au0
@ta

� �
¼ p �

@ 4u2

x
� xu

3

� �
@x

þ @
2ðu2Þ
@x2

� @
au0
@ta

0
@

1
A; ð33Þ

Substituting Eq. (19) into Eq. (33) and collecting terms of the
same power of p give

p0 :
@au0
@t
� @

au0
@t
¼ 0; ð34Þ

p1 :
@au1
@t
¼ �

@
4u2

0

x
� xu0

3

� �
@x

þ @
2ðu20Þ
@x2

� @
au0
@ta

; ð35Þ

p2 :
@au2
@t
¼ �

@ 8u0u1
x
� xu1

3

� 	
@x

þ @
2ð2u0u1Þ
@x2

; ð36Þ

p3 :
@au3
@t
¼ �

@
8u0u2þ4u21

x
� xu2

3

� �
@x

þ
@2 2u0u2 þ u21
� 	

@x2
; ð37Þ

..

.

The given initial value admits the use of

u0ðx; tÞ ¼ x2; ð38Þ

The solution reads

u1ðx; tÞ ¼ x2 ta

Cðaþ 1Þ ; ð39Þ

u2ðx; tÞ ¼ x2 t2a

Cð2aþ 1Þ ; ð40Þ

u3ðx; tÞ ¼ x2 t3a

Cð3aþ 1Þ ; ð41Þ

..

.

and so on, in this manner the rest of components of the homot-
opy perturbation series can be obtained.

Thus, we have

uðx; tÞ ¼ x2 1þ ta

Cðaþ 1Þþ
t2a

Cð2aþ 1Þþ
t3a

Cð3aþ 1Þþ . . . :

� �
; ð42Þ

Setting a = 1 in (42), we reproduce the solution of problem as
follows

uðx; tÞ ¼ x2 1þ tþ t2

2!
þ t3

3!
þ t4

4!
þ . . . ::

� �
; ð43Þ
This solution is equivalent to the exact solution in a closed
form

uðx; tÞ ¼ x2et ð44Þ

The results for the exact solution (44) and the approximate
solution (42) obtained using the homotopy perturbation meth-

od, for the special case a = 1, are shown in Fig. 3. It can be
seen from Fig. 3 that the solution obtained by the present
method is nearly identical with the exact solution. Fig. 4a
and b show the approximate solutions when a = 0.5 and

a = 0.75, respectively. It is to be noted that only the third-or-
der term of the homotopy perturbation solution was used in
evaluating the approximate solutions for Fig. 4.

Example 3. Consider the linear space- and time-fractional
FPE
@au

@ta
¼ � @b

@xb
:
x

6

� �
þ @2b

@x2b
:

x2

12

� �� �
uðx; tÞ; t > 0; x

> 0; ð45Þ

where 0 < a,b 6 1, subject to the initial condition

uðx; 0Þ ¼ x2: ð46Þ

To solve Eqs. (45) and (46) by homotopy perturbation meth-
od, we construct the following homotopy:

@au

@ta
� @

au0
@ta

� �
¼ p �

@b xu
6

� 	
@xb

þ
@2b x2u

12

� �
@x2b

� @
au0
@ta

0
@

1
A; ð47Þ

Substituting Eq. (19) into Eq. (47) and collecting terms of the
same power of p give

p0 :
@au0
@t
� @

au0
@t
¼ 0; ð48Þ

p1 :
@au1
@t
¼ �

@b xu0
6

� 	
@xb

þ
@2b x2u0

12

� �
@x2b

� @
au0
@ta

; ð49Þ

p2 :
@au2
@t
¼ �

@b xu1
6

� 	
@xb

þ
@2b x2u1

12

� �
@x2b

; ð50Þ

p3 :
@au3
@t
¼ �

@b xu2
6

� 	
@xb

þ
@2b x2u2

12

� �
@x2b

; ð51Þ

..

.



Figure 3 The surface shows the solution u(x, t) for Eqs. (31) and (32) when a = 1: (a) exact solution (44) (b) approximate solution (43)

(c) Œuex � uappŒ.

Figure 4 The surface shows the solution u(x, t) for Eqs. (31) and (32): (a) a = 0.5, (b) a = 0.75.
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The given initial value admits the use of

u0ðx; tÞ ¼ x2; ð52Þ
The solution reads

u1ðx; tÞ ¼
2x4�2b

Cð5� 2bÞ�
x3�b

Cð4�bÞ

� �
ta

Cðaþ 1Þ ; ð53Þ

u2ðx; tÞ ¼
C 5�bð Þx4�2b

6Cð4�bÞCð5�2bÞ �
Cð6�2bÞ
3Cð5�2bÞ þ

Cð6�bÞ
12Cð4�bÞ

� �
x5�3b

Cð6�3bÞ

þ Cð7�2bÞx6�4b
6Cð5�2bÞCð7�4bÞ

2
4

3
5 t2a

Cð2aþ 1Þ ;

ð54Þ
..
.

and so on, in this manner the rest of components of the homot-
opy perturbation series can be obtained. Thus, we have

uðx; tÞ ¼ x2þ 2x4�2b

Cð5� 2bÞ�
x3�b

Cð4�bÞ

� �
ta

Cðaþ 1Þ

þ Cð5�bÞx4�2b
6Cð4�bÞCð5�2bÞ �

Cð6�2bÞ
3Cð5�2bÞ þ

Cð6�bÞ
12Cð4�bÞ

� �
x5�3b

Cð6�3bÞ

h
þ Cð7� 2bÞx6�4b

6Cð5� 2bÞCð7� 4bÞ

�
t2a

Cð2aþ 1Þþ . . . ; ð55Þ

Setting a = 1 and b = 1 in (55), we reproduce the solution of
problem as follows



Figure 5 The surface shows the solution u(x, t) for Eqs. (45) and (46) when a = 1, b = 1: (a) exact solution (57) (b) approximate solution

(56) (c) Œuex � uappŒ.

Figure 6 The surface shows the solution u(x, t) for Eqs. (45) and (46): (a) a,b = 0.5, (b) a,b = 0.75.
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uðx; tÞ ¼ x2 1þ t

2

� �
þ

t
2

� 	2
2!
þ

t
2

� 	3
3!
þ

t
2

� 	4
4!
þ . . .

 !
; ð56Þ

This solution is equivalent to the exact solution in a closed

form

uðx; tÞ ¼ x2et=2 ð57Þ

The results for the exact solution (57) and the approximate
solution (55) obtained using the homotopy perturbation meth-
od, for the special case a = 1 and b = 1, are shown in Fig. 5. It
can be seen from Fig. 5 that the solution obtained by the pres-
ent method is nearly identical with the exact solution. Fig. 6a
and b show the approximate solutions when a,b = 0.5 and

a,b = 0.75, respectively. It is to be noted that only the sec-
ond-order term of the homotopy perturbation solution was
used in evaluating the approximate solutions for Fig. 6.

5. Conclusion

In this study, the homotopy perturbation method is imple-
mented to solve the space- and time-fractional Fokker–Planck
equation. It may be concluded that the method is very
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powerful and efficient in finding analytical as well as numerical

solutions for wide classes of space–time fractional partial dif-
ferential equations. It provides the solutions in terms of con-
vergent series with easily computable components in a direct
way without using linearization, perturbation or restrictive

assumptions. The study shows that the technique requires less
computational work than existing approaches while supplying
quantitatively reliable results. Finally, the homotopy perturba-

tion method is more effective and overcome the difficulty of
traditional methods.
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of Sound and Vibration 301, 415–419.

Risken, H., 1989. The Fokker–Planck Equation: Method of Solution

and Applications. Springer, Berlin.

Saadatmandi, A., Dehghan, M., Eftekhari, 2009. Application of He’s

homotopy perturbation method for nonlinear system of second-

order boundary value problems. Nonlinear Analysis: Real World

Applications 10, 1912–1922.

Samko, S.G., Kilbas, A.A., Marichev, O.I., 1993. Fractional Integrals

and Derivatives: Theory and Applications. Gordon and Breach,

Yverdon.

Shakeri, F., Dehghan, M., 2007. Inverse problem of diffusion equation

by He’s homotopy perturbation method. Physica Scripta 75, 551.

Shakeri, F., Dehghan, M., 2008. Solution of the delay differential

equations via homotopy perturbation method. Mathematical and

Computer Modelling 48, 486–498.

Yıldırım, A., 2008a. Solution of BVPs for Fourth-order integro-

differential equations by using homotopy perturbation method.

Computers & Mathematics with Applications 56, 3175–3180.

Yıldırım, A., 2008b. The homotopy perturbation method for approx-

imate solution of the modified KdV equation. Zeitschrift für

Naturforschung A, A Journal of Physical Sciences 63a, 621–626.

Yıldırım, A., 2008c. Application of the homotopy perturbation

method for the Fokker–Planck equation. Communications in

Numerical Methods in Engineering. doi:10.1002/cnm.1200.

Yıldırım, A., 2010. He’s homotopy perturbation method for nonlinear

differential-difference equations. International Journal of Com-

puter Mathematics 87, 992–996.
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