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The deformation and strength characteristics of rocks are crucial for the effective development of under-
ground resources and the construction of underground engineering projects. In this study, a novel
approach is proposed to predict the triaxial mechanical properties of rocks by utilizing mesoscopic finite
element numerical simulation and multi-objective machine learning. First, the mesoscopic mechanical
properties of rocks are obtained through microscale finite element simulations to generate a training
dataset. Then, three machine learning algorithms, namely support vector regression (SVR), artificial neu-
ral network (ANN), and random forest (RF), are employed to performmulti-objective machine learning on
the triaxial elastic modulus, Poisson’s ratio, and compressive strength of rocks, using uniaxial elastic
modulus, Poisson’s ratio, tensile strength, compressive strength, and confining pressure as feature vari-
ables. The performance evaluation, based on 10-fold cross-validation, demonstrates that all three models
exhibit excellent predictive capabilities, especially the SVR and RF models, which show high accuracy and
correlation, respectively. Among the five feature variables, confining pressure is the most important fea-
ture, while uniaxial tensile strength is the least important feature. The absence of uniaxial tensile
strength does not significantly impact the predictive performance of the models. These findings offer
novel insights into the investigation of the triaxial mechanical properties of rocks.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Rock deformation and strength play a significant role in geolog-
ical disasters and engineering accidents in underground engineer-
ing construction and resource development. These include
collapse, landslides, surface subsidence, and casing damage. Conse-
quently, understanding the mechanical properties of rock is crucial
for the efficient development of underground resources and the
construction of underground engineering projects.

In the field of geotechnical engineering, the study of rock’s
mechanical properties has been a focal point. This research is par-
ticularly important for understanding the strength and deforma-
tion characteristics of rock. The strength characteristics of rock
refer to its ability to withstand various stresses, including uniaxial
compressive strength, tensile strength, and triaxial compressive
strength. On the other hand, the deformation characteristics of
rock refer to the amount of deformation it can undergo under load,
including elastic modulus and Poisson’s ratio. These mechanical
properties are essential for assessing the behavior of rock
materials.

Rock mechanics testing is a widely used and intuitive approach
for studying the mechanical properties of rocks. Various tests, such
as uniaxial compression (Xue et al., 2014; Liu et al., 2015), Brazilian
splitting (Li et al., 2013; Wang et al., 2020), triaxial compression
(Gong et al., 2020; Li et al., 2019), direct shear (Sanei et al., 2015;
Bahaaddini et al., 2017), point load (Basu et al., 2010; S.
Kahraman, 2014), Schmidt hammer(Çobanoğlu et al., 2008, Aydin
et al., 2005), impact (Chen et al., 2022), Los Angeles abrasion (Ajal-
loeian, et al., 2022), and ultrasonic pulse velocity (ldeeky et al.,
2018) tests, have been conducted to investigate these properties.
However, these testing methods have certain drawbacks, including
long testing cycles, high costs, difficulties in sampling, and signifi-
cant variability in results.
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Fig. 1. Finite element model of the rock specimen in compression tests, (a) model
geometry; (b) mesh grids and initial elastic modulus.
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In recent decades, numerical simulation methods have gained
popularity in predicting rock mechanical properties due to
advancements in computer technology (Tang et al., 2000;
Mahabadi et al., 2010; Golshani et al., 2006; Yang et al., 2014;
Park et al., 2009; Bahaaddini et al., 2013). Compared to laboratory
testing, numerical simulation allows for precise control of influenc-
ing factors. However, accurate prediction of rock mechanical prop-
erties relies on the selection of appropriate constitutive models
and reliable model calibration. Additionally, numerical simulation
methods often suffer from poor convergence and low computa-
tional efficiency. These limitations necessitate a theoretical basis
and pose challenges for engineering applications. Therefore, there
is an urgent need to explore simpler, more efficient, and data-
driven methods for predicting rock mechanical properties.

In recent years, the field of geotechnical engineering has wit-
nessed a rapid integration of artificial intelligence (AI) andmachine
learning (ML) techniques, particularly in the areas of data mining
and predictive modeling (Phoon et al., 2023; Zhang et al., 2023;
Xie et al., 2022; Zhu et al., 2022; Chou et al., 2016; Tang et al.,
2021; Zhang et al., 2022; Marcher et al., 2020). One specific appli-
cation of machine learning in geotechnical engineering is the pre-
diction of rock mechanical properties. These properties include the
elastic modulus (Meng et al., 2023; Zhao et al., 2023; Saad et al.,
2018; Gong et al., 2019; Koopialipoor et al., 2022; Li et al., 2019),
shear strength parameters (Shen et al., 2018; Puri et al., 2018;
Mahmoodzadeh et al., 2022; Hussain et al., 2020), uniaxial tensile
strength (Tie et al., 2023), uniaxial compressive strength (Miah
et al., 2020; Wei et al., 2022; Ren et al., 2019), triaxial compressive
strength (Fathipour-Azar et al., 2022; Hu et al., 2022), and other
related properties (Shi et al., 2022; Sun et al., 2020; Meybodi
et al., 2022; Zhou et al., 2023).

It is important to note that these machine learning models for
predicting rock mechanical properties typically focus on a single
target variable at a time. This means that each target variable
requires a specific set of corresponding feature variables for accu-
rate prediction. Consequently, multiple target variables necessitate
the use of distinct feature variables, different models, and separate
hyperparameters. Furthermore, there is no inherent correlation
between these target variables in the context of single target
machine learning.

The majority of rocks found in nature experience triaxial com-
pressive stress. The strength and deformation properties of rocks
under triaxial compressive stress provide a more accurate repre-
sentation of their mechanical characteristics. Therefore, it is crucial
for geotechnical engineering to focus on studying the strength and
deformation properties of rocks under triaxial stress rather than
solely examining their uniaxial compression strength and defor-
mation characteristics. Experimental results indicated that weak
rocks with multiple fractures exhibit an increase in elastic modulus
and Poisson’s ratio to varying degrees as the confining pressure
rises. This increase is attributed to the closure of pores or fractures
under the influence of confining pressure. Considering the distinct
variations in deformation and strength parameters with confining
pressure, it becomes necessary to employ multi-objective machine
learning techniques to predict the mechanical properties of rocks
under triaxial stress. Multi-objective machine learning utilizes a
set of feature variables to describe multiple targets, enabling an
accurate and effective representation of the complex relationships
between feature variables and target variables, as well as between
different target variables.

This study presents a scientific approach by combining meso-
scale finite element numerical simulation and multi-objective
machine learning techniques to develop a predictive model for
the triaxial mechanical properties of rocks. The feature variables
comprise uniaxial tensile strength, compressive strength, elastic
modulus, Poisson’s ratio, and confining pressure. The target vari-
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ables comprise triaxial elastic modulus, Poisson’s ratio, and com-
pressive strength. In order to identify the most effective
predictive model, we utilized support vector regression (SVR), arti-
ficial neural network (ANN), and random forest (RF) algorithms for
model training and conducted a comparative analysis. Further-
more, we conducted importance ranking and selection of feature
variables.
2. Data sources

2.1. Numerical model

To investigate the deformation and strength characteristics of rock
under varying confining pressures, the author developed a meso
heterogeneous model of rock samples using continuum damage
mechanics (Wang et al., 2022). This model incorporates the meso
heterogeneity of rock materials and the stochastic distribution of
defects, enabling the assessment of meso element failure through
damage variables. Consequently, the entire process of rock sample
failure, from meso damage to macro fracture, can be
simulated. Fig. 1 illustrates the numerical calculationmodel of a stan-
dard rock sample in a triaxial compression test. The specimen dimen-
sions are 25mm� 50mm,with a unit size of 0.5mm� 0.5mm. Fig. 2
illustrates the step-by-step numerical calculation process in detail.
Compared to laboratory testing, numerical testing offers several
advantages, including versatility, convenience, flexibility, and
repeatability. Utilizing this model, we conducted numerical simula-
tions of uniaxial compression, uniaxial tension, and triaxial compres-
sion tests on rock samples subjected to different confining pressures.

The primary input parameters of the numerical model comprise
the meso-scale homogeneity, elastic modulus, Poisson’s ratio, uni-
axial tensile strength and uniaxial compressive strength. Varia-
tions in these parameters result in distinct deformation and
strength characteristics of rocks. The stress–strain curve of a simu-
lated rock sample, obtained under the specified parameters, is
depicted in the Fig. 3.
2.2. Data collection

The data utilized in this study exclusively originate from
numerical simulations. By modifying the input parameters of the
numerical model (refer to Table 1), a total of 384 sets of rock
mechanics experiments were simulated. These experiments
encompassed uniaxial tensile/compression tests and triaxial com-
pression tests conducted under confining pressures of 10, 20, 30,



Fig. 2. Calculation flowchart of numerical simulation.

Fig. 3. Stress–strain curves under different confining pressures.
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Table 1
Input parameters of numerical model.

Parameter Value

meso elastic modulus(GPa) 60, 100
meso Poisson’s ratio 0.2, 0.3
meso uniaxial compressive strength 100, 200
meso uniaxial tensile strength 10, 20
meso homogeneity, 3, 4
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and 40, respectively. Consequently, 384 sets of data were obtained,
which included uniaxial elastic modulus, Poisson’s ratio, tensile
strength, compressive strength, as well as triaxial elastic modulus,
Poisson’s ratio, and compressive strength under varying confining
pressures.

The sample data for machine learning consists of 384 groups of
data. The objective is to investigate the potential for predicting tri-
axial deformation and strength parameters based on uniaxial
deformation and strength parameters of rock materials. The fea-
ture variables for machine learning include uniaxial elastic modu-
lus, Poisson’s ratio, tensile strength, compressive strength, and
confining pressures. The target variables for machine learning are
triaxial elastic modulus, Poisson’s ratio, and compressive strength.
Table 2 presents the minimum, maximum, and average values for
each feature variable.

2.3. Data preparation

Normalization of feature variables is necessary prior to model
training. In this study, the linear function normalization technique
is employed to normalize the raw data. The normalization formula
is expressed as follows:

Xnorm ¼ ðX � XminÞ=ðXmax � XminÞ ð1Þ
where, Xnorm represents the normalized data, X denotes the

original data, and Xmax and Xmin represent the maximum and min-
imum values of the original dataset, respectively. This method
ensures equal scaling of the original data.

2.4. Correlation analysis of variables

To analyze the linear correlation between variables in the data-
set, we employed the Pearson correlation coefficient (Edwards,
1976) for each variable, as depicted in the Fig. 4. A correlation coef-
ficient of 1 indicates a complete positive correlation between the
variables, while a coefficient of �1 signifies a complete negative
correlation. A coefficient of 0 suggests no linear correlation
between the variables. Generally, a correlation coefficient above
0.7 indicates a very close relationship, 0.4 to 0.7 indicates a close
relationship, and 0.2 to 0.4 indicates a general relationship.

Observing the correlation coefficients between the five feature
variables, we find that they are all less than 0.7, indicating a lack
of very close relationships among the input parameters. Conse-
quently, correlation analysis cannot reduce the feature space. The
correlation coefficients between the three target variables are all
less than 0.4, suggesting a general or distant relationship between
Table 2
Characteristic variables of machine learning.

Feature Name min max mean

Macro uniaxial modulus of elasticity (GPa) 50.97 95.43 71.54
Macroscopic uniaxial Poisson’s ratio 0.1852 0.2833 0.234
Uniaxial tensile strength 3.059 8.801 5.54
uniaxial compression strength 16.64 61.71 34.56
confining pressure 10 40 25
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the output parameters. The correlation between the feature vari-
ables and target variables is complex. Specifically, uniaxial elastic
modulus, uniaxial Poisson’s ratio, and uniaxial compressive
strength are closely related to triaxial elastic modulus, triaxial
Poisson’s ratio, and triaxial compressive strength, respectively,
but are far from other output parameters. On the other hand, the
relationship between confining pressure and the three output
parameters is very close, while the relationship between uniaxial
tensile strength and the three output parameters is distant or
general.

Based on the aforementioned analysis, considering accuracy
and computational efficiency, this study selects the Support Vector
Regression (SVR), Artificial Neural Network (ANN), and Random
Forest (RF) algorithms to establish triaxial mechanical properties
prediction models and compares the prediction results. The algo-
rithms used in this study are all sourced from the open-source
algorithm package in scikit-learn.

3. Model performance evaluation

To objectively assess the generalization capability of various
models, while considering the stability and operational efficiency
of the evaluation metrics, the dataset is partitioned using the
cross-validation method. Specifically, the dataset is randomly
divided into 10 subsets of equal size. Each iteration involves using
the union of 9 subsets as the training set, while the remaining sub-
set serves as the test set. This process is repeated 10 times, result-
ing in 10 sets of training and test sets. The average value of the 10
test results is then calculated as the final outcome.

Following the 10-fold cross-validation, this study employs the
Pearson correlation coefficient (R), relative root mean square error
(RRMSE), determination coefficient (R2), and mean absolute per-
centage error (MAPE) as performance evaluation metrics for the
prediction model. These metrics are defined as follows:

R ¼ R yi � �yð Þ f i � �f
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R yi � �yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R f i � �f
� �2q ð2Þ

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
yi � f ið Þ2

q

yi
ð3Þ

R2 ¼ 1� R yi � f ið Þ2
R yi � �yð Þ2

ð4Þ

MAPE ¼ 1
n
R

yi � f ið Þ
yi

����
���� ð5Þ

where,yi，f i，and �f represents the actual value, the predicted
value and the average value of the actual value and the predicted
value respectively. The coefficient R ranges between �1 and 1. R
ranges between �1 and 1. A higher absolute value indicates a
stronger correlation between the predicted and actual values,
while a lower absolute value indicates a weaker correlation.
RRMSE and MAPE range between 0 and +1, with smaller values
indicating higher prediction accuracy of the model. R2 ranges
between 0 and 1, with larger values indicating higher model
accuracy.

4. Prediction models of triaxial mechanical properties

4.1. SVR

SVR, which stands for Support Vector Regression, is a regression
algorithm based on support vector machines. Its core objective is



Fig. 4. Pearson correlation coefficient for each variable.
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to find a hyperplane that minimizes the distance between the sam-
ple points and the hyperplane. Specifically, the goal is to minimize
the sum of squared errors between the predicted values of the
model and the true values, while maximizing the margin. By intro-
ducing Lagrange multipliers and kernel functions, the optimization
problem of SVR can be transformed into a dual problem, which can
be solved using convex optimization methods. The predicted val-
ues of the model can be calculated using kernel functions, and
the bias term can be computed using the samples from the support
vector set. One of the main advantages of SVR is that its computa-
tional complexity does not depend on the dimensionality of the
input space. It is also robust to outliers and has low computational
cost. Additionally, it exhibits excellent generalization ability and
high prediction accuracy, making it perform well in handling non-
linear regression problems.

The SVR hyperparameters primarily include the kernel type,
regularization parameter C, and kernel coefficient gamma. The reg-
ularization parameter C is used to control the complexity of the
model, while gamma is used to control the influence range of the
Table 3
The optimized values of SVR hyperparameters in this study.

Parameter Value

Kernel type rbf
C 100
gamma 1
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kernel function. The optimized values of SVR hyperparameters in
this study are displayed in Table 3.

The comparison of predicted values and actual values for the
targets, based on the SVR model, is presented in Fig. 5. It is evident
that the predicted values closely match the actual values for all
three targets. The R values obtained through 10-fold cross-
validation for the triaxial elastic modulus, Poisson’s ratio, and com-
pressive strength are 0.9881, 0.9926, and 0.9884, respectively. The
corresponding Root Relative Mean Squared Error (RRMSE) values
are 2.75%, 2.08%, and 3.75%. The average R and RRMSE values are
0.9874 and 2.86%, respectively, indicating a high predictive capa-
bility of the SVR model. Notably, the SVR model demonstrates
higher accuracy in predicting the triaxial Poisson’s ratio compared
to the triaxial elastic modulus and compressive strength. This sug-
gests a stronger correlation between the triaxial Poisson’s ratio and
the input parameters, indicating its greater sensitivity to variations
in the input parameters compared to the triaxial elastic modulus
and compressive strength.

4.2. ANN

ANN (Artificial neural network) is a computational model that
simulate the structure and function of biological neural networks.
ANN consists of a large number of nodes (also known as ‘‘neurons”
or ‘‘units”) that are interconnected, allowing them to model com-
plex relationships between data. ANN can be classified into
multi-layered and single-layered networks, with each layer con-



Fig. 5. The comparison of predicted values and actual values for the targets based on SVR, (a) Triaxial elastic modulus; (b) Triaxial Poisson’s ratio; (c) Triaxial compressive
strength; (d) R and RRMSE values obtained through 10-fold cross-validation.

Table 4
The optimized values of ANN hyperparameters in this study.

Parameter Value

Hidden layers no 1
activation reLu
Number of hidden layer neurons 300
Optimizer Adam
Loss MAPE
epochs 500
batch_size 384
verbose 0
Validation_split 0.2
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taining multiple neurons. The neurons are connected to each other
through directed arcs with variable weights. By repeatedly learn-
ing from known information and adjusting the weights of neuron
connections, ANN is able to process information and simulate the
relationships between inputs and outputs. Unlike traditional data
processing methods, ANN does not require knowledge of the exact
relationship between inputs and outputs, but rather focus on non-
constant factors that cause output changes. As a result, ANN has
significant advantages in handling fuzzy data, random data, and
nonlinear data, making them particularly suitable for large-scale,
complex, and uncertain systems.The optimized values of ANN
hyperparameters in this study are displayed in Table 4.

Similarly, the accuracy of the ANN model in predicting the
three-axis Poisson’s ratio is higher than that for the three-axis elas-
tic modulus and compressive strength.

The comparison of predicted values and actual values for the
targets, based on the Artificial Neural Network (ANN) model, is
presented in Fig. 6. It is evident that the predicted values closely
align with the actual values for all three targets. The R values
6

obtained through 10-fold cross-validation for the three-axis elastic
modulus, Poisson’s ratio, and compressive strength are 0.9969,
0.9972, and 0.9992, respectively. The corresponding Relative Root
Mean Square Error (RRMSE) values are 8.65%, 4.53%, and 7.53%.
The mean R and RRMSE values are 0.9977 and 6.90%, respectively,
indicating that the ANN model yields accurate and acceptable pre-



Fig. 6. The comparison of predicted values and actual values for the targets based on ANN, (a) Triaxial elastic modulus; (b) Triaxial Poisson’s ratio; (c) Triaxial compressive
strength; (d) R and RRMSE values obtained through 10-fold cross-validation.
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dictions. Furthermore, the accuracy of the ANNmodel in predicting
the triaxial Poisson’s ratio is superior to that of the triaxial elastic
modulus and compressive strength, similar to the previous SVR
model. In comparison to the previous SVR model, the ANN model
demonstrates stronger correlation between predicted and actual
values, albeit with slightly lower prediction accuracy.

4.3. RF

RF (Random Forest) is a machine learning algorithm based on
ensemble learning, widely used for regression problems. It models
the data by using multiple decision trees and integrates their pre-
diction results to improve the performance and stability of the
model. The basic principles of the Random Forest algorithm are
as follows: (1) Randomly select a subset of training data and train
a decision tree model on it. (2) Repeat the above process multiple
times on the entire dataset, each time selecting a different subset
of data and training multiple decision tree models. (3) Combine
the prediction results of multiple decision tree models to obtain
the final prediction result. The advantages of Random Forest
7

include: (1) It can handle high-dimensional data and large-scale
datasets. (2) It has good generalization performance and can effec-
tively reduce the risk of overfitting. (3) It can handle missing values
and outliers. (4) It exhibits strong fitting capability for data with
nonlinear relationships.

The hyperparameters of RF mainly include n_estimators,
max_features, min_samples_split, min_samples_leaf, and
max_depth. The n_estimators is responsible for controlling the
number of decision trees within the random forest. The max_fea-
tures determines the number of features available for splitting at
each node. The min_samples_split sets the minimum number of
samples required to split an internal node. The min_samples_leaf
sets the minimum number of samples required to form a leaf node.
Lastly, the max_depth controls the maximum depth of the decision
tree. The optimized values of RF hyperparameters in this study are
displayed in Table 5.

The comparison between the predicted values and the true val-
ues of the targets based on the RF model is shown in Fig. 7. The pre-
dicted values closely align with the actual values for all three
targets. The R values obtained from 10-fold cross-validation for



Table 5
The optimized values of RF hyperparameters in this study.

Parameter Value

n_estimators 100
max_features sqrt
min_samples_split 2
min_samples_leaf 1
max_depth 19
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the triaxial elastic modulus, Poisson’s ratio, and compressive
strength are 0.9999, 0.9987, and 0.9994, respectively. The corre-
sponding RRMSE values are 6.29%, 5.54%, and 5.61%. The mean R
and RRMSE values are 0.9993 and 5.81%, respectively. Similar to
the previously mentioned ANN model, the RF model also provides
Fig. 7. The comparison of predicted values and actual values for the targets based on R
strength; (d) R and RRMSE values obtained through 10-fold cross-validation.

8

good and acceptable predictions. Additionally, the accuracy of the
RF model in predicting the triaxial Poisson’s ratio is slightly higher
than that for the triaxial elastic modulus and compressive strength.

4.4. Results comparison

To determine the most effective predictive model for forecast-
ing triaxial mechanical performance parameters, a comparative
analysis of three machine learning models was conducted in this
study. The predictive results were evaluated and compared using
statistical evaluation metrics, as shown in Table 6 and Fig. 8.

Based on the results, it can be concluded that among the three
models, the ANN model exhibits the poorest predictive perfor-
mance in terms of predicting the triaxial mechanical properties.
On the other hand, SVR and RF models demonstrate relatively bet-
ter predictive performance. Specifically, the SVR model exhibited
F, (a) Triaxial elastic modulus; (b) Triaxial Poisson’s ratio; (c) Triaxial compressive



Table 6
The statistical evaluation metrics of three machine learning models.

Parameter Method R Score RRMSE Score R2 Score MAPE Score Total score

Triaxial
elastic
modulus

SVR 0.9811 1 0.0275 3 0.9659 2 0.0250 3 9
ANN 0.9969 2 0.0806 1 0.9641 1 0.0651 1 5
RF 0.9999 3 0.0629 2 0.9838 3 0.0572 2 10

Triaxial
Poisson’s
ratio

SVR 0.9926 1 0.0208 3 0.9858 1 0.0192 3 8
ANN 0.9972 2 0.0330 2 0.9946 3 0.0284 2 9
RF 0.9987 3 0.0554 1 0.9904 2 0.0589 1 7

Triaxial
compressive
strength

SVR 0.9884 1 0.0375 3 0.9693 2 0.0359 3 9
ANN 0.9992 2 0.0718 1 0.9631 1 0.0563 2 6
RF 0.9994 3 0.0561 2 0.9866 3 0.0639 1 9

Fig. 8. The comparison of ranking scores of three machine learning models.
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higher accuracy in its predictions, while the RF model showed a
stronger correlation.
5. Feature importance ranking and selection

During the training phase of the three aforementioned predic-
tive models, the dataset comprised five distinct feature variables:
uniaxial elastic modulus, Poisson’s ratio, tensile strength, compres-
sive strength, and confining pressure. However, in practical engi-
neering scenarios, it is often impractical to gather all five feature
variables. The absence of a specific input parameter or feature vari-
9

able can have varying effects on the predictive performance of the
model. To assess the significance of each input parameter in pre-
dicting the triaxial mechanical properties of rocks, we employed
three methods: correlation coefficient, ANN, and RF. These meth-
ods were used to rank the importance of the five feature variables
relative to the target variable, thereby evaluating the contribution
of each input parameter.

Fig. 9(a) displays the feature importance ranking determined by
the absolute value of the multiple correlation coefficient. The mul-
tiple correlation coefficient, denoted as R, is calculated as the Pear-
son correlation coefficient between the multiple variable, yc, and
the features. The multiple target variable, yc, is obtained by aggre-
gating the normalized single targets, y1; y2; � � � ; yT; with equal
weights, i.e., yc ¼ y1 þ y2 þ � � � þ yT.

Fig. 9(b) displays the feature importance ranking obtained using
ANN. The ANN employs the permutation method to assess feature
importance. This method involves shuffling a specific feature and
observing the resulting change in the MSE metric. A larger change
in the metric signifies a more significant feature.

Fig. 9(c) displays the feature importance ranking obtained using
RF. RF determines feature importance by calculating the reduction
in average impurity across all decision trees in the forest. Subse-
quently, all the obtained importance scores are normalized.

Among the three rankings, confining pressure consistently
ranks first, indicating that it is the most critical feature. Conversely,
the uniaxial tensile strength is consistently ranked at the bottom,
suggesting that it is the least important feature. None of the three
methods’ rankings exhibit features with completely conflicting
levels of importance.

Next, we will explore the feasibility of reducing the feature
space, i.e., feature selection, in the prediction of triaxial mechanical
properties of rocks based on the ranking results of feature impor-
tance from the ANN and RF models. We systematically increase
the number of features from 2 to 5 in order of importance and
assess the changes in performance evaluation indicators with
respect to the number of features. Fig. 10 illustrates the relation-
ship between the performance evaluation metrics, namely R and
RRMSE, and the number of features.

Our findings reveal that as the number of features increases, the
R value continuously increases, while the RRMSE value continu-
ously decreases, indicating an improvement in the predictive per-
formance of the models with an increasing number of features.
However, it is important to note that the rate of improvement in
the performance evaluation indicators diminishes as the number
of features increases. When the number of features increases from
4 to 5, the R values obtained from the ANN and RF models only
increase by 0.002 and 0.006, respectively, while the RRMSE values
decrease by only 0.038 and 0.017, respectively. This suggests that if
the uniaxial tensile strength is excluded and only 4 feature vari-
ables are retained, the decrease in predictive performance of the
models is not significant, and the predicted results remain
acceptable.



Fig. 9. Feature importance ranking.
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6. Conclusions

This paper introduces a novel prediction model for the triaxial
mechanical properties of rocks based on mesoscale finite element
numerical simulation and multi-objective machine learning tech-
niques. The model is capable of predicting the triaxial mechanical
properties of rocks based on their uniaxial mechanical properties
and confining pressure. The mesoscale finite element model has
been validated through experiments and utilized to calculate the
macroscopic mechanical properties of rocks. By establishing corre-
lations between the uniaxial mechanical properties (such as elastic
modulus, Poisson’s ratio, tensile strength, and compressive
strength) and the triaxial mechanical properties (including elastic
modulus, Poisson’s ratio, and compressive strength), a training
dataset is generated for the machine learning algorithms. Three
multi-objective machine learning methods, namely Support Vector
10
Regression (SVR), Artificial Neural Network (ANN), and Random
Forest (RF), are employed to establish the prediction models. The
predictive performance of the three models is evaluated using
10-fold cross-validation. The main conclusions are as follows:

(1) The average R and RRMSE values of the three models are
R = 0.9874, RRMSE = 2.86% (SVR), R = 0.9977, RRMSE = 6.90%
(ANN), and R = 0.9993, RRMSE = 5.81% (RF). All three models
demonstrate reliable prediction capabilities for the triaxial
mechanical properties of rocks, with a slightly higher accu-
racy in predicting the triaxial Poisson’s ratio compared to
the triaxial elastic modulus and compressive strength.

(2) The comprehensive ranking, based on four performance
evaluation metrics (R, RRMSE, R2, and MAPE), indicates that
the artificial neural network (ANN) model exhibits relatively
poor prediction performance, while the support vector



Fig. 10. The relationship between the performance evaluation metrics and the number of features.
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regression (SVR) and random forest (RF) models demon-
strate relatively good prediction performance. Specifically,
the SVR model demonstrates higher accuracy in prediction,
while the RF model shows a stronger correlation.

(3) The feature importance ranking, based on three methods
(correlation coefficient, ANN, and RF), reveals that among
the five feature vectors, confining pressure is the most
important feature, while uniaxial tensile strength is the least
important feature. As the number of features increases from
2 to 5, the predictive performance of the models gradually
11
improves, but the improvement rate of the evaluation met-
rics decreases. If uniaxial tensile strength is excluded and
only four feature variables, namely uniaxial elastic modulus,
Poisson’s ratio, compressive strength, and confining pres-
sure, are retained, the predictive performance of the models
does not significantly decrease, and the prediction results
remain acceptable.

(4) This study presents a novel approach for investigating the
triaxial mechanical properties of rocks under varying confin-
ing pressures.
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