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Abstract In this study, delay differential equations are investigated using the variational iteration

method. Delay differential equations (DDEs) have a wide range of application in science and engi-

neering. They arise when the rate of change of a time-dependent process in its mathematical mod-

eling is not only determined by its present state but also by a certain past state. Recent studies in

such diverse fields as biology, economy, control and electrodynamics have shown that DDEs play

an important role in explaining many different phenomena. The procedure of present method is

based on the search for a solution in the form of a series with easily computed components. Some

numerical illustrations are given. These results reveal that the proposed method is very effective and

simple to perform.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Analytical methods commonly used to solve nonlinear equa-
tions are very restricted and numerical techniques involving
discretization of the variables on the other hand gives rise to

rounding off errors. Recently introduced variational iteration
method by He (2007, 1997a,b, 1998a,b, 1999, 2000), which
5687895.

(H. Koçak).

y. Production and hosting by

Saud University.

lsevier
gives rapidly convergent successive approximations of the ex-
act solution if such a solution exists, has proven successful in

deriving analytical solutions of linear and nonlinear differen-
tial equations. This method is preferable over numerical meth-
ods as it is free from rounding off errors and neither requires
large computer power/memory. He (2007, 1997a,b, 1998a,b,

1999, 2000) has applied this method for obtaining analytical
solutions of autonomous ordinary differential equation, non-
linear partial differential equations with variable coefficients

and integro-differential equations. The variational iteration
method was successfully applied to linear and nonlinear prob-
lems by researchers (Özis� and Yıldırım, 2007; Yıldırım and

Özis�, 2008; Yıldırım, 2008a,b; Momani et al., 2006; Momani
and Abuasad, 2006; Tatari and Dehghan, 2007a,b; Wang
and He, 2007; Wazwaz, 2007a,b; Xu et al., 2007; Abdou and

Soliman, 2005a,b; Abdou, 2007).
In the mathematical description of a physical process, one

generally assumes that the behavior of the process considered
depends only on the present state, an assumption which is
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verified for a large class of dynamical systems. However, there

exist situations where this assumption is not satisfied and the
use of a ‘‘classical’’ model in systems analysis and their design
may lead to poor performance. In such cases, it is better to
consider that the system’s behavior includes also information

on the former state. These systems are called time-delay sys-
tems. Many of the processes, both natural and artificial, in
biology, medicine, chemistry, physics, engineering, economics

etc involve time delays. In fact, time delays occur so often, in
almost every situation, that to ignore them is to ignore reality.
A simple example in nature is that of reforestation (Kuang,

1993). A cut forest, after replanting, will take at least 20 years
before reaching any kind of maturity. For certain species of
trees (redwoods for example) it would be much longer. Hence,

any mathematical model of forest harvesting and regeneration
clearly must have time delays built into it.

So, while in many applications it is assumed that the system
under consideration is governed by a principle of causality,

that is, the future state of the system is independent of the past
and is determined solely by the present, one should keep in
mind that this is only a first approximation to the true

situation. A more realistic model must include some of the past
history of the system.

1.1. Applications of delay differential equations

In this section, in order to show the great importance of
DDEs, we present some applications of them.

1.1.1. A delayed epidemic model
Mathematical biologist A.J. Lotka investigated, in a series of
papers from 1912 on, a differential equation model of malaria
epidemics due to Ross (1911). In particular, he examined the
effect of incubation delays. The equations are for the human

population

_h t ¼ bgm t� u½p� h t� u�=p�Mþ rh t;

and for the mosquito population

_m t ¼ bfh t� v½q�m t� u�=p�Nþ sm t:

Here, u= 0.5 month in humans and v= 0.6 months in mos-
quitos, p and q are the total human and mosquito populations,
treated as constant quantities, which is a standard practice in

simple epidemiological models. The functions h(t) and m(t)
stand for human and mosquito populations carrying the
malaria organism (the infected or diseased population), respec-

tively. A fixed proportion of each of these populations is
assumed to be infective, with the infective populations being
fh and gm, respectively. The quantities M and N are death

rates, while r and s are recovery rates. It is assumed that each
mosquito bites b people in unit time, and that each person
receives a bites in unit time (Kuang, 1993). The delay is from
the time of a bite to the time at which the human or mosquito

is infective.

1.1.2. Delay models in physiology: Dynamic diseases
There are many acute physiological diseases where the initial
symptoms are manifested by an alteration or irregularity in a
control system that is normally periodic, or by the onset of

an oscillation in a nonoscillatory process. Such physiological
diseases have been termed dynamical diseases by Glass and
Mackey (1979), who have made a systematic study of several

important and interesting physiological models with time
delays. The following are three examples of these models:

_x t ¼ k� aVmx txN t� s
hn þ xn t� s

;

_p t ¼ b0h
n

hn þ pn t� s
� cp t;

_p t ¼ b0h
np t� s

hn þ pn t� s
� cp t:

Here, k, a, Vm, n, s, h, b0 and c are positive constants. The first
equation is used to study a ‘‘dynamic disease’’ involving respi-

ratory disorders, where x(t) denotes the arterial CO2 concen-
tration of a mammal, k is the CO2 production rate, Vm

denotes the maximum ‘‘ventilation’’ rate of CO2, and s is the

time between oxygenation of blood in the lungs and simulation
of chemoreceptors in the brainstem. The second and third
equations are proposed as models of hematopoiesis (blood cell

production). In these two equations, p(t) denotes the density of
mature cells in blood circulation, and s is the time delay
between the production of immature cells in the bone marrow

and their maturation for release in the circulating bloodstream
(Kuang, 1993).

1.1.3. Chemical industry
Consider a first order, exothermic, irreversible reaction:
A ´ B. Since, in practice, the conversion from A to B is not
complete, one classical technique uses a recycle stream (which

increases overall conversion, reduces costs of the reaction,
etc.). In order to recycle, the output must be separated from
the input and must flow through some length of pipe. This pro-

cess does not take place ‘‘instantaneously’’; it requires some
‘‘transport’’ time from the output to the input, and thus one
may consider a system model involving a transport delay. Sup-

pose now that the unreacted A has a recycle flow rate (1 � k)q
and s is the transport delay. Then the material and energy bal-
ances are described by a dynamical system including delayed

states of the form

dA t

dt
¼ q

V
½kA0 þ 1� k A t� s� A t� � K0e

�Q
TA t;

dT t

dt
¼ 1

V
½kT0 þ 1� kT t� s� T t�DH

Cq
� K0e

�Q
TA t

� 1

VCq
U T t� Tw;

where A(t) is the concentration of the componentA, T(t) is the

temperature and k is the recycle coefficient, which satisfies the
condition k 2 [0,1]. The limits 0 and 1 correspond to no recycle
stream and to a complete recycle, respectively (Dugard and

Verriest, 1997). In the last 50 years, much researches have been
focused on the analysis and numerical solutions of delay differ-
ential equations. Recently Shakeri and Dehghan (2008) used
homotopy perturbation method successfully for solving delay

differential equations.
In this work we focus on the delay differential equation of

the following form which contains a large class of the DDEs:

uðmÞðtÞ ¼
XJ
j¼0

Xm�1
k¼0

ljkðtÞuðkÞðajktþ bjkÞ þ gðuÞ þ fðtÞ; ð1:1Þ

with the initial conditions
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Xm�1
k¼0

ciku
kð0Þ ¼ ki; i ¼ 0; 1; . . . ;m� 1;

where gðuÞ ¼ buþ
Pl

i¼1diu
ci , di 2 R, ci 2 N, ci > 1, l 2 N,

0 6 ajk 6 1, bjk 2 R and .(m) in u(m) is considered as the mth
derivative of the function u. In order to solve this equation,
we use the variational iteration method.

This paper is organized as follows: In Section 2, we describe

the variational iteration method briefly and apply this tech-
nique to Eq. (1.1). To show the efficiency of this method, we
give some examples and numerical results in Section 3. A con-

clusion is drawn in Section 4.

2. He’s variational iteration method

To clarify the basic ideas of He’s variational iteration method,
we consider the following nonlinear differential equation:

LðuÞ þNðuÞ � fðtÞ ¼ 0; t 2 X ð2:1Þ

where L is linear operator, N is a nonlinear operator and f(t) is
a known analytical function.

According to the variational iteration method, we can con-

struct a correction functional as follows:

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

kðsÞðLðunðsÞÞ þNð~unðsÞÞ � fðsÞÞds; ð2:2Þ

where k is a general Lagrange multiplier, which can be identi-

fied optimally via the variational theory (He, 2007), the sub-
script n denotes the nth approximation, and ~un is considered
as a restricted variation, i.e., d~un ¼ 0.

It is obvious now that the main steps of the variational iter-
ation method require first the determination of the Lagrangian
multiplier k that will be identified optimally. Having deter-

mined the Lagrangian multiplier, the successive approxima-
tions un+1, n P 0, of the solution u will be readily obtained
upon using any selective function u0. Consequently, the
solution

u ¼ lim
n!1

un: ð2:3Þ

In order to solve Eq. (1.1) by means of variational iteration
method, according to (2.2), we can construct a correction func-

tional such that

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

kðsÞ uðmÞn ðsÞ �
XJ
j¼0

Xm�1
k¼0

ljkðsÞ~uðkÞn ðajksþ bjkÞ
 

� gð~unÞ � fðsÞ
!
ds; ð2:4Þ

where d~un is considered as restricted variation. Making
the correction functional, Eq. (2.4), stationary, noticing that
d~un ¼ 0,

dunþ1ðtÞ ¼ dunðtÞ þ d
Z t

0

kðsÞ uðmÞn ðsÞ �
XJ
j¼0

Xm�1
k¼0

ljkðsÞ
 

�~uðkÞn ðajksþ bjkÞ � gð~unÞ � fðsÞ
!
ds;

dunþ1ðtÞ ¼ dunðtÞ þ d
Z t

0

kðsÞuðmÞn ðsÞds;
Lagrange multiplier can be easily identified as (He, 2007):

kðsÞ ¼ ð�1Þm 1

ðm� 1Þ! ðs� tÞðm�1Þ: ð2:5Þ

As a result, we obtain the following iteration formula of
Eq. (1.1):

unþ1ðtÞ ¼ unðtÞ þ ð�1Þm
Z t

0

1

ðm� 1Þ! ðs� tÞðm�1Þ

� uðmÞn ðsÞ �
XJ
j¼0

Xm�1
k¼0

ljkðsÞuðkÞn ðajksþ bjkÞ � gðunÞ � fðsÞ
 !

ds;

ð2:6Þ

Then starting with an initial approximation u0 and using above

iteration formula, we can obtain un for n = 1,2 , . . . which is
the nth approximation of the exact solution. In the next sec-
tion, we will implement the above method to obtain numerical
results of given examples.

3. Test problems

In this section, we present some examples with known analyt-
ical solution in order to show the efficiency and high accuracy
of the method described for solving Eq. (1.1).

Example 3.1. We first consider Eq. (1.1) with m = 1, J = 2
and the following nonzero coefficients ljk, ajk and bjk (Shakeri
and Dehghan, 2008):

l00ðtÞ ¼ �2t; l10ðtÞ ¼ �t2; l20ðtÞ ¼ 2 sinðtÞ;

a00 ¼ 1; a10 ¼ 1; a20 ¼
1

2
; b00 ¼ �

1

2
; gðuÞ ¼ u3 and

fðtÞ ¼ e�
t
2�2 �t4 � t3 þ 3

2
t2 � 3

2
t� 3

2

� �
þ 2te�

t
2�

7
4 �t2 þ 5

4

� �

� e�
3t
8�6 � 1

16
t2 � 1

4
tþ 1

� �3

� 2 sinðtÞe�t
4�2 � 1

4
t2 � 1

2
tþ 1

� �
;

with the initial condition u(0) = e�2. The simple form of the

equation which results from the above coefficients is as
follows:

uð1ÞðtÞ ¼ �2tu t� 1

2

� �
� t2uðtÞ þ 2 sinðtÞu t

2

� �
þ u3

t

4

� �
þ fðtÞ:

ð3:1Þ

The exact solution of this problem is

uðtÞ ¼ 1� t� t2e�
t
2�2: ð3:2Þ

In order to solve this equation by means of the variational iter-
ation method, according to (2.6), we have

unþ1ðtÞ ¼ unðtÞ �
Z t

0

uð1Þn ðsÞ þ 2sun s� 1

2

� �
þ s2unðsÞ

�

� 2 sinðsÞun
s

2

� �
� u3n

s

4

� �
� fðsÞ

�
ds: ð3:3Þ

Beginning with initial approximation u0(t) = u(0) = e�2, by

the iteration formula (3.3), we obtain the following successive
approximations

u0ðtÞ ¼ e�2;



Figure 1 (a) Line: exact solution (3.2) of Eq. (3.1), point: second-order approximation solution u2(t), (b) error between the second-order

approximation solution and exact solution, uexact(t)–u2(t).
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u1ðtÞ ¼ u0ðtÞ �
Z t

0

u
ð1Þ
0 ðsÞ þ 2su0 s� 1

2

� �
þ s2u0ðsÞ

�

� 2 sinðsÞu0
s

2

� �
� u30

s

4

� �
� fðsÞ

�
ds;

¼ �182e�7
4 þ tþ 40

27

� �
e�6

þ �t2 � t3

3
� 2 cos t� 4166798

4913

� �
e�2

þ � t2

6
� 14

9
t� 40

27

� �
e�

3
8t�6

þ ð182þ 91tþ 24t2 þ 4t3Þe�t
2�

7
4 þ � � �

and so on, nth approximation can be calculated using (3.3).
Getting n= 2, we obtain the second-order approximation,

u2(t). The second-order approximation solution, exact solution
(3.2) and error between the second-order approximation solu-
tion and exact solution, uexact(t) � u2(t) are plotted in Fig. 1.

In the same manner, we obtained the higher-order approx-
imation solution of Eq. (3.1) with high accuracy by using the
iteration formula (3.3) and Maple.

Example 3.2. We next consider Eq. (1.1) with m = 2, J= 1

and the following nonzero coefficients ljk, ajk and bjk (Shakeri
and Dehghan, 2008):

l00ðtÞ ¼ t� 1; l01ðtÞ ¼ e�t; l10ðtÞ ¼ �2;

a00 ¼ 1; a01 ¼ 1; a10 ¼
1

3
; b01 ¼ �

1

5
; gðuÞ ¼ u2

and

fðtÞ ¼ � 1

4
sin2 t

3

� �
� 1

3
sin

t

3

� �
cos

t

2

� �
� 1

9
cos2

t

2

� �

þ � 1

2
sin

t

3

� �
� 1

3
cos

t

2

� �� �
tþ 1

4
cos

t

2

� �

� e�t
1

6
cos

t

3
� 1

15

� �
� 1

6
cos

t

2
� 1

10

� �� �
þ sin

t

9

� �

þ 2

3
cos

t

6

� �
þ 4

9
sin

t

3

� �
and the nonzero coefficients cik and ki in the initial conditions
are given as

c00 ¼ 3; c01 ¼ 6; c10 ¼ �2; c11 ¼ 1;

k0 ¼ 2; k1 ¼ �1
2
:

The above coefficients result in the following problem:

uð2ÞðtÞ ¼ e�tuð1Þ t� 1

5

� �
þ ðt� 1ÞuðtÞ � 2u

t

3

� �
þ u2ðtÞ þ fðtÞ;

ð3:4Þ

with initial conditions

3uð0Þ þ 6uð1Þð0Þ ¼ 2;

�2uð0Þ þ uð1Þð0Þ ¼ � 1
2
:

(
ð3:5Þ

The exact solution of this problem is

uðtÞ ¼ 1

2
sin

t

3

� �
þ 1

3
cos

t

2

� �
: ð3:6Þ

To solve this equation using the variational iteration method,
according to (2.6), we have

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

ðs� tÞ uð2Þn ðsÞ � e�suð1Þn s� 1

5

� ��

� s� 1ÞunðsÞ þ 2un
s

3

� �
� u2nðsÞ � fðsÞ

� �
ds: ð3:7Þ

We start with initial approximation u0(t) = a+ bt. Now we
find the coefficients a and b such that u0(t) satisfies the initial
conditions (3.5). Then we have the following system

3aþ 6b ¼ 2;

�2aþ b ¼ � 1
2
;

(

which yields

a ¼ 1
3
; b ¼ 1

6
;

and therefore u0ðtÞ ¼ 1
3
þ 1

6
t.

Beginning with above initial approximation, by the

iteration formula (3.7), we obtain the following successive
approximations



Figure 2 (a) Line: exact solution (3.6) of Eq. (3.4), point: second-order approximation solution u2(t), (b) error between the second-order

approximation solution and exact solution, uexact(t)–u2(t).
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u0ðtÞ ¼
1

3
þ 1

6
t;

u1ðtÞ ¼ u0ðtÞ þ
Z t

0

ðs� tÞ u
ð2Þ
0 ðsÞ � e�su

ð1Þ
0 s� 1

5

� ��

� s� 1Þu0ðsÞ þ 2u0
s

3

� �
� u20ðsÞ � fðsÞ

� �
ds

¼ � 463

288
þ 64

5
t� 77

144
t2 þ 1

36
t3 þ 7

432
t4

þ e�t
1

6
þ 8

75
cos

t

2
� 1

10

� �
þ 2

25
sin

t

2
� 1

10

� ��

þ 9

100
sin

t

3
� 1

15

� �
� 3

25
cos

t

3
� 1

15

� ��
þ � � �

and so on, nth approximation can be calculated using (3.7).
Getting n = 2, we obtain the second-order approximation,
u2(t). The second-order approximation solution, exact solution

(3.6) and error between the second-order approximation solu-
tion and exact solution, uexact(t) � u2(t) are plotted in Fig. 2.

In the same manner, we obtained the higher-order approx-

imation solution of Eq. (3.4) with high accuracy by using the
iteration formula (3.7) and Maple.

Example 3.3. We now consider Eq. (1.1) with m= 3, J = 1
and the following nonzero coefficients ljk, ajk and bjk (Shakeri
and Dehghan, 2008):

l01ðtÞ ¼ 3et�1; l11ðtÞ ¼ �2; l02ðtÞ ¼
t

3
;

a01 ¼
1

3
; a11 ¼

1

2
; a02 ¼ 1;

and

fðtÞ ¼ �et�1 � 8

2187
t7 þ 2

27
t5 þ 5

81
t4 � 16

27
t3 þ 1

3
t2 � 4

3
tþ 3

� �

þ 893

48
t7 � 5847

16
t5 � 305

48
t4 þ 374t3 þ 235

4
t2 � 290

3
tþ 9;
and the nonzero coefficients cik and ki in the initial conditions
are given as

c00 ¼ 1; c01 ¼ �1; c02 ¼ �2; c11 ¼ 1; c12 ¼ �1; c21 ¼ 2; c22 ¼ 3;

k0 ¼ 5; k1 ¼ 7; k2 ¼ �6:

These coefficients result in the following problem:

uð3ÞðtÞ ¼ t

3
uð2ÞðtÞ þ 3et�1uð1Þ

t

3

� �
� 2uð1Þ

t

2

� �
þ fðtÞ; ð3:8Þ

with initial conditions

uð0Þ � uð1Þð0Þ � 2uð2Þð0Þ ¼ 5;

uð1Þð0Þ � uð2Þð0Þ ¼ 7;

2uð1Þð0Þ þ 3uð2Þð0Þ ¼ �6:

8><
>: ð3:9Þ

The exact solution of this problem is

uðtÞ ¼ 3t� 2t2 þ t3 � 4t4 þ t5 þ 3t6 � t8: ð3:10Þ

To solve this equation using the variational iteration method,
according to (2.6), we have

unþ1ðtÞ ¼ unðtÞ �
Z t

0

1

2
ðs� tÞ2 uð3Þn ðsÞ �

s

3
uð2Þn ðsÞ

�
� 3es�1uð1Þn

s

3

� �
þ 2uð1Þn

s

2

� �
� fðsÞ

�
ds: ð3:11Þ

We start with initial approximation u0(t) = a + bt + ct2. By
the same manipulation as in the previous example, we find
the coefficients a, b and c such that u0(t) satisfies the initial con-
ditions (3.9). In this manner, we will get

a ¼ 0; b ¼ 3; c ¼ �2;

and therefore u0(t) = 3t � 2t2.
Beginning with above initial approximation, by the itera-

tion formula (3.11), we obtain the following successive

approximations



Figure 3 (a) Line: exact solution (3.10) of Eq.(3.8), point: second-order approximation solution u2(t), (b) error between the second-order

approximation solution and exact solution, uexact(t)–u2(t).
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u0ðtÞ ¼ 3t� 2t2;

u1ðtÞ ¼ u0ðtÞ �
Z t

0

1

2
ðs� tÞ2 u

ð3Þ
0 ðsÞ �

s

3
u
ð2Þ
0 ðsÞ � 3es�1u

ð1Þ
0

s

3

� ��
þ 2u

ð1Þ
0

s

2

� �
� fðsÞ

�
ds:

¼ 3t� 2t2 þ t3 � 4t4 þ 47

48
t5 þ 187

60
t6 � 61

2016
t7

� 1949

1792
t8 þ 893

34560
t10

þ 14548

27
e�1 � 14548

27
et�1 þ � � �

and so on, nth approximation can be calculated using (3.11).

Getting n= 2, we obtain the second-order approximation,
u2(t). The second-order approximation solution, exact solution
(3.10) and error between the second-order approximation solu-

tion and exact solution, uexact(t) � u2(t) are plotted in Fig. 3.
In the same manner, we obtained the higher-order approx-

imation solution of Eq. (3.8) with high accuracy by using the
iteration formula (3.11) and Maple.

The results show that the variational iteration method
produces highly accurate approximations with only a few

iterations.
4. Conclusion

Our study deals with the numerical solution of delay differential
equations using variational iteration method. This technique
was tested on some examples and was seen to produce satisfac-
tory results. The reliability of the method and the reduction in

the size of computational domain give this method a wider
applicability. Furthermore this technique, in contrast to the
traditional perturbation methods, does not require a small

parameter in the system and the approximations obtained by
the proposed method are uniformly valid not only for small
parameters, but also for very large parameters.
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