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In this work, three iterative methods have been implemented to solve several second order nonlinear
ODEs that arising in physics. The proposed iterative methods are Tamimi-Ansari method (TAM),
Daftardar-Jafari method (DJM) and Banach contraction method (BCM). Each method does not require
any assumption to deal with nonlinear term. The obtained results are compared numerically with other
numerical methods such as the Runge-Kutta 4 (RK4) and Euler methods. In addition, the convergence of
the proposed methods is given based on the Banach fixed point theorem. The results of the maximal error
remainder values show that the present methods are effective and reliable. The software used for the cal-
culations in this study was Mathematica®10.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The differential equations have many applications in science
and engineering, especially in problems that have the form of non-
linear equations. The applications of nonlinear ordinary differential
equations by mathematical scientists and researchers have become
more important and interesting. It has been known that these
equations describe different types of phenomena such as modeling
of dynamics, heat conduction, diffusion, acoustic waves, transport
and many others.

The iterative methods are often used to get the approximate
solutions for the different nonlinear problems. A new iterative
method has been presented in 2011 by Temimi and Ansari (TAM)
(Temimi and Ansari, 2011) for solving nonlinear problems. The
TAM was inspired from the homotopy analysis method (HAM)
(Liao and Chwang, 1998), and used to solve several ODEs
(Temimi and Ansari, 2015), PDEs and KdV equations (Ehsani
et al., 2013); differential algebraic equations (DAEs) (AL-Jawary
and Hatif, 2017); Duffing equations (AL-Jawary and Al-Razaq,
2016); some chemical problems (AL-Jawary and Raham, 2017),
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thin film flow problem (AL-Jawary, 2017) and Fokker-Planck’s
equations (AL-Jawary et al., 2017).

The other proposed method has been proposed in 2006 by
Daftardar-Gejji and Jafari, (DJM) (Daftardar-Gejji and Jafari, 2006)
to solve nonlinear equations. Also, this method has been used to
solve different equations such as fractional differential equations
(Daftardar-Gejji and Bhalekar, 2008), partial differential equations
(Bhalekar and Daftardar-Gejji, 2008); Volterra integro-differential
equations and some applications for the Lane-Emden equations
(AL-Jawary and AL-Qaissy, 2015), evolution equations (Bhalekar
and Daftardar-Gejji, 2010). This method presented a proper solu-
tion which converges to the exact solution “if such solution exists”
through successive approximations.

The other iterative method depends on the Banach contraction
principle (BCP) (Daftardar-Gejji and Bhalekar, 2009) where it is
another iterative method considered as the main source of the
metric fixed point theory. The Banach contraction principle also
known to be Banach’s fixed point theorem (BFPT) has been used
to solve various kinds of differential and integral equations (Joshi
and Bose, 1985).

In this paper, the TAM, DJM, and BCM will be implemented to
solve the nonlinear second order ODEs that arising in physics to
get an approximate solutions. These solutions will be compared
numerically with another results obtained by the Runge-Kutta
and Euler methods to show the validity and the efficiency of the
proposed iterative methods. The convergence for these presented
methods is also discussed.

This paper is organized as follows: Section 2 reviews the basic
ideas of the proposed iterative methods. Section 3 presents the
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convergence of the proposed methods. Section 4 illustrates the
approximate solutions and the numerical simulation for several
test problems. Finally, the conclusion has been given in section 5.

2. The basic concepts of three iterative methods

Iterative method is a mathematical procedure generates a
sequence of improved approximate solutions for a class of prob-
lems. The iterative method leads to the production of an approxi-
mate solution which converges to the exact solution when the
corresponding sequence is convergent at some given initial
approximations.

Let us introduce the following nonlinear differential equation:

Ly(x)) + N(y(x)) + &(x) = 0, (M
with the boundary conditions

day\
B<y,a> =0, xeD (2)

where x represents the independent variable, y(x) is the unknown
function, g(x) is a given known function, L(-) = %(J is the linear
operator, N(-) is the nonlinear operator, B(-) is a boundary operator.

Now, let us begin by introducing the basic ideas of the three itera-
tive methods.

2.1. The basic idea for the TAM
We first begin by assuming that y,(x) is an initial guess to solve

the problem y(x) and the solution begins by solving the following
initial value problem (Temimi and Ansari, 2011):

L)+ =0, and By, B2) ~o 3)

The next approximate solutions are obtained by solving the follow-
ing problems

L () + 80+ NOo) = 0. and B, 50} ~o. @)

and thus we have a simple iterative procedure which is the solution
of a set of problems i.e.,

Loy (9) + 860+ ND,0) =0 and (3. 2t) —0. 5)

Then, the solution for the problem (1) with (2) is given by
y = limy,. (6)

2.2. The basic idea for the DM

Let us apply the inverse operator L™'(-) = [ [*()dtdt to the
nonlinear problem presented by (1) and (2) we have

v =S + [ 3 / “N(y()dedr, 7)

and by reducing the integration from double to single (Wazwaz,
2015); we get the following form

"X

Y(X)=f(><)+/0 (x = 7N(y(7))dr, (8)

where f is a known analytic function represents the sum of the
available initial conditions and the result of integrating of the func-
tion g (if such function is available).

The solution y for Eq. (8) can be given by the following series
(Daftardar-Gejji and Jafari, 2006):

y=>, )
i=0

Now, the following can be defined

Go = N3, (10)
Gn =NV NS y)m > 1
i=0 i=0

So, that N(y) can decomposed as

0

N ) =

i=0

N(yo) + [NWo +¥1) — N(¥o)]
——

Go G
+ [NWo + Y1 +¥2) = Nyo + 1))

Gy
+INGo +Y1 +Y2 +Y3) =NWo +Y1 +¥2)] + ...

G3

Moreover, the relation is defined with recurrence so that

Yo=1, (11)
Y1 =L(yo) + Go, (12)
Ymi1 = L¥m) +Gm,m > 1 (13)

Since L represents a linear operator > \L(y;) = L(3["oY;), we may
write

m+1 m m m m

DVi=D Lo +NQ y) =L y) +NQ yi).m > 1
i=1 i=0 i=0 i=0 i=0

So that,

Sy = F L + N )

i=0 i=0 i=0

and the approximate solution will be given in

n
Ya=> Vi neN.
i=0

2.3. The basic idea of the Banach contraction method (BCM)

Consider Eq. (8) as a general functional equation. In order to
implement the BCM, we define successive approximations
(Daftardar-Gejji and Bhalekar, 2009):

YO :f7
Y1 =Yo+No),

Y2 =Yo+N¥1), (14)

and so on, we will get successive approximations for y, (x) in the fol-
lowing generalized form

Yn=Yo +N(yn71)7 nenN (15)

Therefore, the solution for the relations (14) and (15) will be
obtained by

y = limy,,. (16)

n—oo

3. The convergence of the proposed iterative methods

In this section, we present the fundamental theorems and con-
cepts for the convergence (Odibat, 2010) of the presented methods.
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The iterations occurred by the DJM are straight used to prove
the convergence. However, for the convergence proof of the TAM
or BCM, the following procedure should be used for handling
Eq. (1) with the given conditions (2). So, we have the terms

Vo :yO(X)7
U1 :F[Z/o],
Z/2=F[Uo+l/1], (17)

Uni1 :F[Uo-'r VW +...+ Z}n].

where F represents the following operator
k-1

Flwy] :Sk*ZU,‘(X), k>1. (18)
i=0

In general, the term S; is the solution for the problem in the form,
for the TAM:

k-1

L(oe(x) +gx) + N _ni(x) =0, k> 1. (19)
i—0

For the BCM:

vy = Vo +N(’§zf,-(x)),k > 1. (20)

i=0

By using the same conditions with the intended iterative technique
that will be used. Therefore, we get y(x) = lim,_..y,(X) = > 1" ¥n-
Hence, by using Eqgs. (17) and (18), the following solution will be
obtained in a series form

yx) = f:vf(x)- (21)
i=0

According to the recursive algorithms of the proposed methods, the
sufficient conditions for convergence of these methods can be given
in following theorems.

Theorem 4.1. Let F defined in (18), be an operator from a Hilbert
space H to H. The series solution y,(x) = Y1 ,vi(x) converges if
30 <y < 1 such that Flvg + v1 + -+ vi1]) < YF[vo + v1 + -+ + 4]
(such that vi,; < yv;) Vi=0,1,2,....

This theorem is a special case of Banach’s fixed point theorem
which is a sufficient condition to study the convergence.

Proof. See (Odibat, 2010). O

Theorem 4.2. If the series solution y(x) = > " vi(x) is convergent,
then this series will represent the exact solution of the current nonlin-
ear problem.

Proof. See (Odibat, 2010). O

Theorem 4.3. Suppose that the series solution > °,v;(x) presented
by (21) is convergent to the solution y(x). If the truncated series
ST vi(x) is used as an approximation to the solution of the current
problem, then the maximum error E,(X) is estimated by

En(x) <

1 n+1
1—_.))7) Vo. (22)

Proof. See (Odibat, 2010). O

Theorems 4.1 and 4.2 state that the solutions obtained by one of
the presented methods, i.e. the relation (5) (for the TAM), the

relation (13) (for the DJM), the relation (15) (for the BCM),
or (17), converges to the exact solution under the condition
30 < ¢ < 1 such that Flvg + v1 + -+« + vi1] < EF[vo + v1 + - - + vj]
(that is ;.1 < ¢v;) Vi=0,1,2,.... In another meaning, for each i,
if we define the parameters

12441
po=14 Tl
1

07

then the series solution Y ;°, v;(x) for the nonlinear ODE given by (1)
will be convergent to the exact solution y(x), when
0<B;<1,¥i=0,1,2,.... Also, as in Theorem 4.3, the maximum
truncation error is estimated to be y(x) — > ;v < 1%/;[3”” Vo, Where
p=max{p;,i=0,1,...,n}.

[[vif| =0

23
[[vill =0 )

4. Test problems

Problem 1:

The Painlevé equation I can be given by the following form
(Hesameddini and Peyrovi, 2009)

Y'(x) = 6y°(x) +x, (24)

with the initial conditions: y(0) = 0 and y'(0) = 1. This problem will
be solved by using the three proposed iterative methods.

Solving the problem 1 by the TAM:

In order to solve Eq. (24) by the TAM, we have the following
form

Ly) =y"(x),N(y) = —6y(x) and g(x)=—x. (25)
The initial problem will be:
Lyo(x)) =x, with y,(0) and y,(0)=1. (26)

We can get the next problems from the generalized following
relationship

Lyni1 (%)) +8X) + N¥a(x)) = 0,y,,1(0) =a and y,,(0) =b.
(27)

Firstly, to get the zero approximation y,(x), the following initial
problem must be solved:

Vo) =x, (28)

By integrating both sides of Eq. (28) twice from 0 to x and substitut-
ing the initial conditions y,(0) = 0 and y;(0) = 1, we get

X3
Yolx) =x+ .
In a similar way, the rest of the other iterations can be carried out,
the first iteration can be obtained by calculating

Yi(X) = 6y5(x) +x, with y,(0)=0 and y;(0)=1, (29)
Then, the approximate solution for Eq. (29) will be then:

x xt x5 K8
y](X) =X+€+7+E+ﬁ+,...
The second iteration y,(x) can be obtained from solving the
following
Y3(x) = 6y{(x) +x,

Then, by solving Eq. (30), we obtain:

with y,(0)=0 and y,(0)=1, (30)

X3 X4 X6 X7 XS Xg X]O 71X11 X12
V¥ =X+ 5+ 7+ 157335 740 T 60 * 26200 ' 330
X13 187X14 X16 X]S
*26208 " 764400 " 100800 1 5757696 T
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Thus, we continue to obtain the approximations till n =5 for
Ya(x), but for brevity the terms are not listed.

Solving the problem 1 by the DJM:

Consider the Eq. (24) with initial conditions y(0)
y(0)=1.

Integrating both sides of Eq. (24) twice from 0 to x and using the
given initial conditions, we can have

=0 and

ﬂm:x+lf+/)/‘®%ﬂMﬂL G
6 0 0

and reducing the integration in Eq. (31) from double to single
(Wazwaz, 2015), we obtain

1 X
v =x+5¢ + | (x- D@ (32)
0
Then, the following relations can be defined:
_xily
yO - 6 )

Ny,1) = /Ox(x - ‘c)(6y,21(r))d'c, n e NU{0}.

By applying the DJM, we get

SPFILIY
yO 6 ’
x xr x5 X8
i =Xtgt3 15 336"
x3 X4 XG X7 X8 X9 X]O 7‘1X11 X12
Ya=Xt gty 15177336 740 " 60 " 26200 " 330
x13 187)(]4 X]G X18
*26208 T 764400 T 100800 " 5757696

Therefore, we continue to get approximations till n = 5, for y, (x) but
they are not listed.

Solving the problem 1 by the BCM:

Consider Eq. (24), by following the similar procedure as given in
the DJM we get the Eq. (32). So, let y,=x+1x*> and

NWa1) = Jo (x = T)(6y;_4(1))dT, neN.
Applying the BCM, we obtain:
x2
Yo=1 5

1 2 6 4 40 20 224’
V=1 +37x2+xj+37x4+£+91x6 N 17x7  1409x8 N 13x°
2 2 6 4 8 180 210 6720 @ 288
n 929x10 n 38593x!1 n 26683x12 n 1483x13 n 6239x14
16800 = 3326400 2217600 655200 3057600
n 809x13 n 4583x16 N 2357x17 n 31273x18
2352000 16128000 60928000 959616000
N 37x19 N 3499x20 N 109x21 N 81x%2
10944000 1191680000 526848000 386355200
3X23 X24 XZG
507781120 " 92323840 ' 3652812800
We continue to get the approximations till n = 5, for brevity not
listed.
It can be seen clearly that the obtained approximate solutions
from the three proposed techniques are the same.
In order to access the convergence of the obtained approximate
solution for problem 1, the relations given in Egs. (17)-(21) will be
used. The iterative scheme for Eq. (24) can be formulated as

3
Vo(X) = Yo(X) =X + 5

By applying the TAM, the operator F[z] as defined in Eq. (18)
with the term S, which is the solution for the following problem,
will be then

with 2,(0)=0 and #,(0)=1,k> 1.

(33)

Or when applying the BCM, the S, represents the solution for the
following problem,

k-1 2
ve=v0+60 vi(x), k=1 (34)
i=0

On the other hand, one can use the iterative approximations
directly when applying the DJM. Therefore, we have the following
terms:

xt x5 X8

27157336

X7 X9 X]O 71X11 X]Z X13

V2= 1420760 T 46200 " 330 " 26208
187X14 le XlS

* 764400 T 100800 T 5757696

2x10 41x'2 37x13  527x'4

g + +

105 T 9240 T 5460 " 1401400
1543x15  105563x16  91061x!7

970200 " 112112000 * 571771200
As presented in the proof of the convergence of the proposed meth-

ods, the terms given by the series Y, v;(x) in (21) satisfy the con-
vergent conditions by evaluating the g; values for this case, we get

V1 =

V3 =

fo = 21— 0.488265 < 1
Vo

B =22 0332461 < 1
141

B, = % ~0.178092 < 1 (35)

By =24~ 0102841 < 1
U3

s =25~ 0.065685 < 1
2

where, the p; values fori > 0 and 0 < x < 1, are less than 1, so the
proposed iterative methods satisfy the convergence.

In order to examine the accuracy for the approximate solutions
obtained by the proposed methods for Eq. (24) and since the exact
solution is unknown, the maximal error remainder MER,, will calcu-
lated. The error remainder function for problem 1 can be defined as

ERq(X) = ¥, (%) — 6y5(x) — X, (36)
and the MER, is:
MER, = 00111332(01|ER,1( )|, (37)

Fig. 1 shows the logarithmic plots for MER, of the approximate
solution obtained by the proposed iterative methods which indi-
cates the efficiency of these methods. It can be seen that by
increasing the iterations, the errors will be decreasing.

Also, we have made a numerical comparison between the solu-
tions obtained by the proposed methods, the Range-Kutta (RK4)
and Euler methods. The comparison for problem1 is given in
Fig. 2. It can be seen, a good agreement has achieved.

Problem 2:

The Painlevé equation II given by the following form
(Hesameddini and Latifizadeh, 2012)
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Fig. 1. Logarithmic plots for the MER, versus n from 1 to 5, for problem 1.

0.10[ ' ‘ ’
0.05
E > #- Proposed
= RK4
0.02+
Euler
1072

Fig. 2. The comparison of the solutions for problem 1.

Y'(x) = 2% (%) +xy(X) + 4, (38)

with the initial conditions: y(0) = 1 and y'(0) = 0. Eq. (39) will be
solved by the three proposed iterative methods. The parameter u
in this work will be equal to 1.

Solving the problem 2 by the TAM:

In order to solve Eq. (39) by the TAM, we have the following
form

Ly)=y"N(y)=2y’ +xy and g(x)=1 (39)
The initial problem is
L(yo(x)) =0 with y,(0)=1 and y;(0)=0. (40)

The next problems can be found from the generalized iterative
formula

L¥n1 (X)) + Nyu(x)) =0,9,,1(0) =1 and y;,,(0)=0.

When evaluating the following initial problem (41), one can get
Yo(x) =1 +%2.

The first iteration y, (x) can be found by solving

Yi(x) =2y3(x) +xy;(x) +1 with y;(0)=1 and y,(0)=0.
The solution will be

P TS S S
A R R T T 77 B
Applying the same process for y, as follows

V50 = 230 +xy,(x) + 1, with y,(0)=1 and y5(0) =0.

By solving this problem, we have

32 x* 3x* x> 91x6 17x7  1409x® 13x°
Vo) =154+ 7+ 5+ 930 " 210 T 6720 T 288
N 929x10 N 38593x!1 N 26683x12 N 1483x13 N 6239x14
16800 3326400 2217600 655200 3057600
N 809x1> N 4583x16 N 2357x"7 N 31273x18
2352000 16128000 60928000 959616000
N 37x1° n 3499x20 N 109x! N 81x22
10944000 1191680000 526848000 386355200
3X23 x24 X26
+507781120 T 92323840 ' 3652812800 |
Continuing in this manner to get approximations up ton = 5 for
¥a(x), but for brevity they are not listed.

Solving the problem 2 by the D]M:

Consider the Eq. (39) with initial conditions y(0)=1 and
y(0)=0.

Integrate both sides of Eq. (39) twice from 0 to x with using the
given initial conditions, we obtain

2 X X
0 =1+5+ [ [ @@+ wmaur, (41)

and reducing the integration in Eq. (42) from double to single
(Wazwaz, 2015), we achieve
x2 X
yx) =1 +7+/ (X = 1)(2y*(7) + Ty(1))dr, (42)
0
Therefore, we have the following recurrence relation
x2
Yo=1+ 5

Nww) = [ (- D@30 + y(o)de, nen U0}

By applying the DJM, we get

2
Yo=1+7,
, X oxt x> X K8
Yy =X +€+Z+E+E+m+.“7
xt X0 41x5 17x7 197x8  13x° 929x'© 38593x!1
Y2=5%70" 90 "210 " 960 " 288 " 16800 " 3326400
26683x12 1483x13  6239x'4  809x!5  4583x6
*3217600 T 655200 T 3057600 ~ 2352000 ' 16128000
L 2357x7  31273¢8  37x9  3490¢°
60928000 | 959616000 ~ 10944000 '« 1191680000
109x21 81x22 3x23
1526848000 * 386355200 ' 507781120
x24 X26

*92323840 " 3652812800 T

Therefore, we continue to get approximations till n = 5, for y,(x) but
for brevity the terms are not listed.

Solving the problem 2 by the BCM:

Consider Eq. (39), by following the similar way in the DJM, we
get the Eq. (43). So, let yo,=1+% and N(y, ;)= fy(x—1)
(2y51(T) + T (7))dT, neN.

Applying the BCM, we obtain:

X2
J/O*1+57

_1+37%+)£+£4+£+£+£
=ttt st a0 20 224
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y :1+%+xj+37x4+§+91x6+17x7 1409)48+13x9
2 2 "6 4 T8 180 " 210 " 6720 " 288
L 920x'0 385931 26683x7 1483x  6239x
16800 ' 3326400 ' 2217600 ' 655200 3057600
, 809X | 4583¢° 23577 31273¢"
2352000 ' 16128000 ' 60928000 ' 959616000
LO37X0 349900 109¢ 81X
10944000 T 1191680000 ' 526848000 | 386355200
3x23 x24 XZG
+507781120 ' 92323840 | 3652812800

We continue to get the approximations till n =5, for brevity they
are not listed.

The obtained solutions from the three proposed methods are
same. Hence, as presented in the proof of the convergence for these
methods in the previous section and by following similar proce-
dure that presented for problem 1, the terms given by the series
S iovi(x) in Eq. (21) satisfy the convergent conditions by evaluat-
ing the B; values for each iterative method, we get

fo =21 = 0997421 < 1
Vo

By = % — 0.983067 < 1
1

B, = % —0.736222 < 1 (43)

By =24~ 0500802 < 1
U3

By=22-032419 < 1
Uy
where, the f; values fori > 0 and 0 < x < 1, are less than 1, so
the proposed iterative methods are convergent.
Further investigation can be done, in order to examine the accu-
racy for the approximate solution for this problem; the error
remainder function is evaluated:

ERq(X) = Yj(X) = 2V2(X) — Xy, (%) — 1, (44)

and the MER, is:

MER, = max |ER,(x)|, (45)
0.01<x<0.1

Fig. 3 shows the logarithmic plots for MER, of the approximate solu-
tion obtained by the proposed iterative methods which indicates
the efficiency of these methods. Also, by increasing the iterations,
the errors will be decreasing.

The numerical comparison between the solutions obtained by
the proposed methods, the Range-Kutta (RK4) and Euler methods
for problem1 is given in Fig. 4, and good agreement is clearly
obtained.

Fig. 3. Logarithmic plots for the MER, versus n from 1 to 5, for problem 2.

T T T T T T

1.015¢

1.010 &
o E -~ Proposed
= i

1.005} Zad ] i

= i 3 Euler
= 2
1.000 =0 ¥
0.00 0.02 0.04 0.086 0.08 0.10
X
Fig. 4. The comparison of the solutions for problem 2.

Problem 3:

The pendulum equation presented by the form (Duan, 2011)
Y'(x) +siny =0, (46)
with the given initial conditions: y(0) =0 and y'(0) =1, can be
solved without linearization by using the approximation of
siny ~y —1y® + {455 as it used in (He, 1999). Hence, the pendulum

equation (47) can be written by the following second order nonlin-
ear ODE

1
120

The exact solution for Eq. (47) is expressed by the following Jacobi
elliptic function y = 2 arcsin (3sn(x,1)).

a 1
Y@ +y =gV +55Y" =0 (47)

Solving the problem 3 by the TAM:

In order to solve the Pendulum equation given in Eq. (48) with
the given conditions by the TAM, we have the following form

L) =y, NO) =y~ gV + 139" (48)
The initial problem is

Lyo(®) =0 with y,(0)=0 and y,(0)=1. (49)
The next problems can be found from the generalized iterative
formula

Ly (%) + N¥a(x)) = 0,¥,.4(0) =0 and y,,(0)=1.
By evaluating the initial problem (50), one can get
Yo(X) =x.
The first iteration y, (t) can be found by solving

. 1 1 . ,
YI®) = =00 = g¥o + g5 Yo)Withy;(0) =0 and  y,(0) = 1.
The solution will be then

x X X’

N =X~ 120 5040°
Applying the same process for y, as follows

. 1 1 . ,
7500 = (1~ g7+ 13g¥1) with 3,0 =0 and y(0)=1.
By solve this problem, we get

X x> X 127x° 893x11 367x"3

Y2() =X+ 6657420 T 362880 19958400 ~ 70761600
607x1° 56881x!7 2521x19
~ 1143072000 ' 1243662336000 781861248000
1721 22129x

+92177326080  2591207055360000
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17651x% 61787x%"
+ 55306395648000000 6470848290816000000
2021x%° 73x31
+ 8981758653235200000 18002231783424000000
‘13x33 X35
+ 245294925978009600000 2211370923589632000000
X37

*+'519802247686127616000000°

Continuing in this manner to get approximations up to n =5 for
¥, (t), but for brevity they are not listed.

Solving the problem 3 by the DJM:

Consider the Pendulum equation given in Eq. (48) with the
given conditions y(0) = 0 and y'(0) = 1
Integrating both sides of Eq. (48) twice from O to x, we get

)=Xx— //y 6y +120 y°)dtdr,

and reducing the integration in Eq. (51) from double to single

(Wazwaz, 2015), we obtain

X 1
Hh=x— | x-1)y—-=y+ dt 50
y(0) =x— [ (x-my - g + 13000 (50)
Therefore, we have the following recurrence relation
yO = X7
* T, 1 3
NOwa) = = [ (= D)0 — 38 + 13900, m e NU{O).

By applying the DJM, we get

Yo =X,

XX x’
V1= 7% 7120 5040°

X 11X 127X 893x!1 367x!3
Y2 =120 ~ 5040 " 362880 19958400 ' 70761600
607x1> 56881x!7 2521x"
1143072000 + 1243662336000 781861248000
n 17x% B 22129x23
92177326080 2591207055360000
N 17651x%» 3 61787x%7
55306395648000000 6470848290816000000
N 2021x%° B 73x31
8981758653235200000 18002231783424000000
13X33 X35
+ 245294925978009600000 2211370923589632000000
x37
+ 519802247686127616000000°
Therefore, we continue to get the other iterations till n = 5, for y, (x)
but for brevity the terms are not listed.

Solving the problem 3 by the BCM:

), by applying the same way as in the D]M, we
let yo=x and Ny, ;)= - [, (x

Consider Eq. (48
get the Eq. (52). So,

(Vo1 —1¥3 1 +735¥3_1)dt, n e N.Byapplying the BCM, we obtam.
Yo =X,

XX x’
N1 =76 T 120 5040

X3 x> X 127x° 893x1 367x13
6 60 420 1362880 19958400 70761600
607x1° N 56881x!7 2521x1°
1143072000 ' 1243662336000 781861248000
N 17x%1 B 22129x%3
92177326080  2591207055360000
. 17651x2 B 61787x
55306395648000000 6470848290816000000
N 2021x2° B 73x31
8981758653235200000  18002231783424000000
13X33 X35
+345294925978009600000  2211370923589632000000
x37

* 519802247686127616000000

Yo =Xx—

We continue to get the other approximations till n = 5, for brev-
ity they are not listed.

The obtained solutions by the three proposed methods are
equal to each other. Hence, as presented in the proof of the conver-
gence in the previous section, the terms given by the series
S iovi(x) in Eq. (21) satisfy the convergent conditions by evaluat-
ing the B; values for each iterative method, we get

fo =21 = 0114522 < 1
14

By = % — 0.0358901 < 1
1

b=

U _
2
Bs :—4:00114183 <1

—0.019054 < 1 (51)

fs= v =0.00760755 < 1

where, the B; values fori > 0 and 0 < x < 1, are less than 1, so the
proposed iterative methods are convergent.

To examine the accuracy of the obtained approximate solution
for this problem, the error remainder function is evaluated

, 1 1
ERy(X) = ¥3(X) + Ya (%) = £Ya(®) + 755¥n (%), (52)
and the MER, is:

MERy = maX|ERn (x)], (33)

Fig. 5 shows the logarithmic plots for MER, of the approximate solu-
tion obtained by the proposed iterative methods which indicates
the efficiency of these methods. Moreover, by increasing the itera-
tions, the errors will be decreasing.

In addition, the numerical comparison between the solutions
obtained by the proposed methods, exact solution, the Range-
Kutta (RK4) and Euler methods for problem 3 is presented in
Fig. 6. The agreement between the solutions can be clearly seen.

Problem 4:
The nonlinear reactive transport model is given in the following
form (Ellery and Simpson, 2011):
A
Vi y(x)

Py(x) — =0 54

Y0~ 5y = O (54)

with the given boundary conditions: y'(0) =0 and y(1) =1, we

select the values for the parameters P = 0,A = 1 and B = 2 as given

in (Ellery and Simpson, 2011). The nonlinear second order ODE (56)
will be

y'(x) :ry(x),
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T T —r T T — T T T T T

MERy,

Fig. 5. Logarithmic plots for the MER, versus n from 1 to 5, for problem 3.
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a—0

> -0~ Proposed

3 RK4

0.2+ % i Euler
/ -+ Exact

0.1

yix)

0.2 0.4 0.6 0.8 1.0
X

Fig. 6. The comparison of the solutions for problem 3.

After doing a simple manipulation for Eq. (57), we have

Y0 + 0y (06) 3 y(%) = 0, (56)

with the following initial conditions y(0) = a and y'(0) = 0, where
the unknown constant a will be evaluated later from the given
boundary condition y(1) = 1.

Solving the problem 4 by the TAM:

In order to solve the Eq. (58) with the given initial conditions by
the TAM, we have the following form

L) = ¥ NW) = 29005 (9) ~ 5y, (57)
The initial problem is
L(yo(x)) =0 with y,(0)=a and y;(0)=0. (58)

The next problems can be found from the generalized iterative
formula

Lyn1(¥) + Ny, () =0,y,4,(0)=a and y;.,(0)=0.
By solving the initial problem (60), one can get
Yo(x) =a.

The first iteration y, (x) can be found by solving

1 1 .
Yix) = —EJ’O(X)}’S(X) +§J’0(X) with y,(0)=a and y;(0)=0.

The solution will be
ax?

y1(x) :a+T‘

Applying the same process for y,, we have

1 1 . ,
Y2(%) = —=5y1®)y1(x) +5y1(x) with y,(0)=a and y;(0)=0.

By solving this problem, we obtain

(X) —a+a7x2,@+a7x4,@
Vo) =0+ =g " 96 ~ 192

Also, y; can be found by solving the problem

Y3(%) = = 3¥2(X)y5(x) +3¥,(x) with y;(0) = a and y;(0) = 0, we
get

W —a+E_TX X of X X an et
Vs = 4 8 16 96 64 128 768 5760

_ax® N 7@x® Ta*x®  @x® N axt  a®
1440 11520 46080 86016 86016 344064°

Continuing in this manner to get the fourth and fifth approxima-
tions but for brevity they are not listed.

Solving problem 4 by the DJM:
Consider the Eq. (58) with the initial conditions y(0) = a and

¥(0)=0.
Integrating both sides of Eq. (58) twice from 0 to x, we get
X X ‘l . ‘1
yw=a+ [ [ (=qvew @+ 5y )dur, (59)
o Jo 2 2

and reducing the integration in Eq. (61) from double to single
(Wazwaz, 2015), we obtain

X 1 . 1
v =at [ "=y + 330 (60
Therefore, we have the following recurrence relation
YO =aq,

Na) = [ 6= 0)(= 3000 + 33000 )de. menU(0)

By applying the DJM, we get

yO:a’
_=
yl_ 4 )

1,, ax* ax*
Yo =- ga + 96 192"
ax? a2x* ax* a'x* axb a2x8
Y3=76 ~ 96 "128 768 5760 1440
7a*xs ax8 a’x® a*x8
T 46080 86016 86016 344064

Therefore, we continue to get the other approximations till n = 5 for
¥,(t), but for brevity they are not listed.

7a3x8
11520

Solving the problem 4 by the BCM:

Consider Eq. (58), by followed the same way as in the DJM, we
get the Eq. (62). So, let yo=a and N(y, ;) = [, (x—71)
(=3Yn1(DYn_1 (D) + 3¥pa(7))dT, nEN.

By applying the BCM, we obtain:

Yo=2a,

ax?
yh=a+ 0

ax?  a*x* ax* a*x*
V2=t g T96 192’

ax?  a*x* a®x* ax* a’x* a*x* a*xt
Vs=Aat 7 "7g " 96 "96 64 128 768

ax®  a*x®  T7a’x5  T7a*x® ax8 a’x8 a*x8
5760 1440 T 11520 46080 86016 ' 86016 344064

(61)

We continue to get the approximations till n =5, for brevity they
are not listed.
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The value of a is evaluated by using the given boundary condi-
tion y(1) = 1, so we have a = 0.8466736340782172. Now, we can
find the g; values in order to prove the convergence condition.
Hence, the terms of the series > ;°;v;(x) given in Eq. (21), we get

fo = 21— 0.397909 < 1
Vo
By = vﬁ — 0.404609 < 1
1
B, = Z—z — 0411597 < 1 (62)
By = 24— 0.407664 < 1
U3
Us

Bs=—=040779 < 1
Uy
where, the ; values fori > 0 and 0 < x < 1, are less than 1, so the
proposed iterative methods are convergent.

To examine the accuracy for the approximate solution for this
problem; the error remainder function is calculated

I 1 /! 1
ERn(x) = Yn(X) + 5V (X)Yn(X) = 5¥Ya(X), (63)
and the MER, is:
MERy = maX|ERn ()], (64)

Fig. 7 shows the logarithmic plots for MER, of the approximate
solution obtained by the proposed iterative methods which indi-
cates the methods are reliable and effective. Also, by increasing
the iterations, the errors will be decreasing.

Moreover, the numerical comparison between the solutions
obtained by the proposed methods, the Range-Kutta (RK4) and
Euler methods for problem 4 is presented in Fig. 8 and a good
agreement can be clearly seen.

Problem 5:

The temperature distribution equation in a uniformly thick
rectangular fin radiation to free space is given in the following
form (Mohyud-Din et al., 2017)

Y'(x) —y*(x) =0, (65)
with the given boundary conditions: y’(0) = 0 and y(1) = 1.

The Eq. (66) will be solved by the three iterative methods with
the initial conditions y(0) = a and y'(0) = 0, where the unknown
constant a will be evaluated later from the given boundary condi-
tion y(1) = 1. The parameter ¢ affects on the obtained solution will
be seen numerically later.

Solving the problem 5 by the TAM:

In order to solve the Eq. (66) with the initial conditions by the
TAM, we have the following form

Ly)=y", N@y) =y*x), (66)

é.vv'IV|..,..v'|.V|'|

/

Fig. 7. Logarithmic plots for the MER, versus n from 1 to 5, for problem 4.

T T T T T T T T T
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’ == Euler
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Fig. 8. The comparison of the solutions for problem 4.

The initial problem is

Lyo(®) =0 with y,(0)=a and y,(0)=0. (67)
The next problems can be found from the generalized iterative
formula

Lyn1 () + N@a(x)) =0, y,,1(0)=a and y,;(0)=0.
By solving the initial problem (68), one can get
Yo(x) =a.
The first iteration y, (x) can be found by solving
Yi(x) = eys(x) with y;(0) = a and y}(0) = 0.The solution will be

Vi) =a+ %a“xze.

Applying the same process for y, as follows
Ya®) =yix) with y,(0)=a and y;(0)=0.
We solve this problem, we get

a16X1065

— 1421742 11063 1 13,8 4
V(%) =a+ 500 + @K e + 55000 + 5 aKet +

2 6 20 112

Continuing in this manner to get the other approximations till
n =5, but for brevity the evaluated terms are not listed.

Solving the problem 5 by the DJM:

Consider the Eq. (66) with the initial conditions y(0) = a and
y'(0)=0.
Integrating both sides of Eq. (66) twice from O to x, we get x

yoo=a+ | ' / "4 (1))dedr, (68)

and reducing the integration in Eq. (69) from double to single
(Wazwaz, 2015), we have

s =a+ [ x- Do) (69)
Hence, we have the following recurrence relation

Yo=2a,

NDw) = [ (x- D@ nenuo),

By applying the DJM, we get

Yo=2a,

o (70)

a'6x10¢5
1440 -

_1742 1 104,63 1 13,8 -4
y276axe +20Cl X'€ +112(1 X°e +
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Therefore, we continue to get the other approximations till n = 5,
for y,(x) but the terms are not listed.

Solving the problem 5 by the BCM:

Consider Eq. (66), by applying the same procedure as in the
DJM, we get the Eq. (70). So, let y,=a and
Na 1) = ff(x— T4, (1)dT, neN.

Applying the BCM, we obtain:

yO:a7
14,
y=a+5a'%e
_ 1 4. 1245 1 1063 1 1354 0%
y27a+2axe+6axe +20(1 X € +112a X°€ + 1440

We continue to get the approximations till n = 5, for brevity
they are not listed.

The value of a is obtained by using the given boundary condi-
tion y(1) = 1 for several values of a depends on the values of e.
So, at € = 0.1 we get a = 0.9568205007628632. Now, we can find
the g; values in order to prove the convergence condition. Hence,
the terms of the series > ;°,#i(x) given in Eq. (21), we have

fo =21 = 0.0697115 < 1
Vo

By = % —0.0243227 < 1
1

/;2:%:0.0111531@ (71)

By = % —0.00621257 < 1
3

By =25 — 0.00394466 < 1
Vs

where, the B; values fori > 0 and 0 < x < 1, are less than 1, so the
proposed iterative methods are convergent.

To examine the accuracy for the approximate solution for this
problem; the error remainder function is

ERy(X) = (%) — €y,(x),
and the MER, is:
MER, = max|ER,(x)| (72)

Fig. 9 shows the logarithmic plots for MER, of the approximate
solution obtained by the proposed iterative methods, it can be seen
that by increasing the iterations, the errors will be decreasing.

The numerical comparison between the solutions obtained by
the proposed methods, the Range-Kutta (RK4) and Euler methods

T T T T T T T T — T T T T T

MER,,

Fig. 9. Logarithmic plots for the MER, versus n from 1 to 5, for problem 5.
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- €=0.4
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¥ €=0.6

—— €=0.7
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Fig. 11. The numerical affections of € values for problem 5.

for problem 5 is given in Fig. 10, once again a good agreement
between the solution can be noticed.

Moreover, we have plotted the effect of € for different values
given in Fig. 11.

Problem 6:

The motion equation for a system of mass with serial linear and
nonlinear stiffness on a frictionless contact surface is presented by
(Ganji and Babazadeh, 2009):

(1+0.1365y%)y” + 0.2730y(y')* + 4.5454y + 2.2727y* =0, (73)

For more details for this model, we refer the reader to (Ganji and
Babazadeh, 2009). Eq. (74) can be manipulated to get nonlinear
the second order ODE

y" +0.1365y2y" + 0.2730y(y’)2 +4.5454y +2.2727y3 =0, (74)
with the initial conditions: y = 0.5 and y’ = 0 at x = 0.
Solving the problem 6 by the TAM:

In order to solve Eq. (75) with the initial conditions by the TAM,
we have the following operators
Ly)=y".
N(y) = —(0.1365y2y" + 0.27303/(}1’)2 +4.5454y + 2.2727y?)
(75)
The initial problem is
L(y,) =0 with y,(0)=0.5 and y,(0)=0. (76)

The next problems can be found from the generalized iterative
formula

L¥ni1) +Ns) = 0,¥,.1(0) = 0.5 and y; ,(0) = 0.

Solving the initial problem (77), one can get

Yo =05.
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The first iteration y, (x) can be found by solving

Y| = —(0.1365y2y4 + 0.2730y,(y})* + 4.5454y, + 2.2727y3)
with y;(0) = 0.5 and y;(0) = 0.

The solution will be

¥, = 0.5 —1.27839375x%.

Applying the same process for y, as follows
¥y = —(0.1365y2y" + 0.2730y, (y})* + 4.5454y, + 2.2727y3)
with y,(0) = 0.5 and y,(0) = 0.
We solve this problem and then we have
¥, = 0.5 - 1.23476856328125x% + 0.5542817560763965x*
—0.09065096778687438x° + 0.08479065714299731x5.

Continuing in this manner to get other approximations till n = 5;
but for brevity they are not listed.

Solving problem 6 by the DJM:

Consider Eq. (77) with the initial conditions y(0) = 0.5 and
y'(0) =0.
Integrating both sides of Eq. (77) twice from O to x, we get

X X
y=05— / / (0.1365y%y" + 0.2730y(y') + 4.5454y
0 0
+2.2727y?)ddr, (77)

and reducing the integration in Eq. (78) from double to single
(Wazwaz, 2015), we achieve

X
y=05— / (x — 7)(0.1365y%y" + 0.2730y(y)? + 4.5454y
0
+2.2727y3)dr. (78)

Hence, we have the following recurrence relation
Yo = 0.5,

"X
NOni1) = - /O (x — 1)(0.1365y2% + 0.2730y, (y})? + 4.5454y,

+2.2727y3)dt, neNuU{0}.

By applying the D]M, we get
Yo =0.5,
¥, = —1.27839375x2,

y, = 0.04362518671875004x + 0.5542817560763965x*

— 0.09065096778687438x° + 0.08479065714299731x%.
Therefore, we continue to get approximations till n =5 for y,, but
the terms are not listed.

Solving the problem 6 by the BCM:

Consider Eq. (75), by following similar way used in the DJM, we
get the Eq. (79). So, let yo=a and N(y, ,)=— [, (x—71)
(0.1365y2_,y:_; +0.2730y,_,
0V,_1)* +4.5454y, | +2.2727y3_,)dt, n < N.Applying the BCM,
we obtain:

Yo =0.5,
¥, = 0.5 - 1.27839375x2,
¥, = 0.5 — 1.23476856328125x> + 0.5542817560763965x*
— 0.09065096778687438x° + 0.08479065714299731x8.
(79)
We continue to get the approximations till n =5, for brevity they
are not listed.
Now, the g; values are evaluated in order to prove the conver-

gence condition. Hence, the terms of the series Y ;°;z;(x) given in
Eq. (21), we have

By =22 -0378314 < 1
41
By = % —0.190321 < 1
yj (80)
B =4 =0.0927949 < 1
3

B =25 00772565 < 1
[Z}
where, the B; values fori > 1 and 0 < x < 1, are less than 1, so the
proposed iterative methods are convergent.

To examine the accuracy for the approximate solution for this
problem; the error remainder function is

ER:(X) = y;(X) + 0.1365y; (x)¥; (x) + 0.273y,(x) (,(x))*

+4.5454y,,(x) + 22727y} (%), (81)
and the MER, is:
MER, = max|ER, ()|, (82)

Fig. 12 shows the logarithmic plots for MER,, of the approximate
solution obtained by the proposed iterative methods, also, by
increasing the iterations, the errors will be decreasing.

The numerical comparison between the solutions obtained by
the proposed methods, the Range-Kutta (RK4) and Euler methods
for problem 6 is presented in Fig. 13.

In Table 1, the convergence rate (CR) for all problems was esti-
mated by using the following formula

T T T — T T T T T T T

0.50F
0.20+ -
0.10 -
=y ®- Proposed
X 0.05
RK4
0.02} Euler
1072
0.0 0.1 0.2 03 04 05 06 07
x
Fig. 13. The comparison of the solutions for problem 6.
Table 1
The rate of convergence for the six problems.
Methods Problem Problem Problem Problem Problem Problem
1 2 3 4 5 6
The CR 1.03613 1.10076 1.13879 1. 1.14431 1.05231
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log (%)
" log (1)

Linear convergent has been achieved in all methods i.e.p ~ 1.

5. Conclusion

In our study of this paper, we have successfully used the TAM,
DJM and BCM to solve several problems contain nonlinear second
order ODEs that arising in physics problems. Each solution has
been obtained in a series form. Then we solved these problems
by numerical methods which are the Rang-Kutta (RK4) and Euler
methods. We compared the numerical results with approximate
solutions and were in good agreement. We have used the calcula-
tions in this study by the aid of Mathematica®10.
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